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Abstract

In this paper we characterize the optimal allocation mechanism for N objects, (permits),

to I potential buyers, (�rms). Firms�payo¤s depend on their costs, the costs of competitors

and on the �nal allocation of the permits, allowing for externalities, substitutabilities and com-

plementarities. Firms�cost parameter is private information and is independently distributed

across �rms. Due to fact that there are multiple objects to be allocated and buyers valuations

are non-linear the problem fails to be "regular," even if the monotone hazard rate property

is satis�ed. Moreover the standard ironing technique does not apply. Our �rst insight is to

develop a new method to solve for the optimal mechanism for the "general case." In this case

the optimal mechanism may require randomization between allocations. Externalities in our

model are type dependent. This has two consequences: �rst, even though the private infor-

mation of each �rm is one dimensional (its cost), an allocation�s virtual valuation depends on

the cost parameters of all �rms. Second, the �critical�type of each buyer, (the type for which
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participation constraint binds) is not exogenously given but depends on the particular mech-

anism selected. Our model captures key features of many important multi-object allocation

problems like the allocation of time slots for TV commercials, landing slots in airports, pri-

vatization and �rm takeovers. Keywords: Optimal Auctions, Multiple Objects, Externalities,

Mechanism Desigǹ. JEL D44, C7, C72.

1 Introduction

In this paper we characterize the optimal allocation mechanism for N objects (permits), to I

potential buyers (�rms). Firms�payo¤s depend on their costs, the costs of competitors and on the

�nal allocation of the permits, allowing for externalities, substitutabilities and complementarities. A

�rm cares not only whether it obtains a particular set of permits, but also cases about who obtained

which licence. Firms�cost parameter is private information and is independently distributed across

�rms. Externalities are type dependent.

The model of this paper can be thought as follows: There is a revenue-maximizing seller 1(the

government) trying to sell permits for operating in a certain market to some potential buyers. These

permits represent a right to participate in the market. The pro�ts of a given �rm depend on three

things: its own marginal cost, which is private information, the market structure and the marginal

costs of the competitors that also participate in the market. After the permits have been allocated,

the �rms that got one or more of them face a perfectly anticipated demand and engage in some

sort of oligopolistic competition. We can also allow for the possibility that these �rms are already

competing in di¤erent markets, so even if they do not get permits assigned, who gets the permits

will a¤ect their pro�ts. The presence of such externalities allows the seller to extract extra payments

from any given �rm, just by threatening to setup a very damaging market structure in case it does

not participate in the process

In a large variety of multi-object allocation problems the presence of externalities is of central

role. Our model with small modi�cations can help address the following problems.

1The objective function can be modi�ed to take into account the possibility that the government cares also for

consumer surplus.
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� Firm Take-overs: Externalities are of huge importance in �rm take-overs: Recently (Febru-

ary 2004), Cingular bought AT&T wireless for $41 billion after a bidding war with Vodafone. Some

perceive that the big winner of this sale will be Verizon even though it was not a participant in the

auction (NY Times February 17, 2004 �Verizon Wireless May Bene�t From Results of Auction�).

� Allocation of Airport Take-O¤ and Landing Slots. Airport take-o¤ and landing slots
are a scarce resource yet not priced! There are important externalities since for instance if two

airlines are �erce competitors in a big airport say United and American at O�Hare, then if United

obtains critical landing slots in LAX, (Los Angeles International Airport), this may well a¤ect its

market position in O�Hare vis-a-vis American.

� Auctioning of time slots for advertisements on TV, radio. In reality airtime for

advertisements is priced using conventional mechanisms, whereas if networks take-into account the

presence of externalities and auction-o¤the time slots, we might end up with less (even zero) airtime

of advertisement yet higher revenue. How much would a �rm pay so that its �ercest competitor does

not advertise in the intermission of Super-ball? One can imagine a network asking this question to

Miller, Budweiser, Bud etc. Taking this to an extreme there may be a potential for a lot of revenue

with actually no one airing a spot. In other words strongly opposed interests may permit the seller

to extract payments just for doing nothing !2

� Privatization - Mechanism Design with Endogenous Market Structure. . Our model

captures such scenarios and generalizes previous work by Dana and Spier (1994), who examine

whether the government should sell a �rm in one piece or cut it into two, (for a discussion on this,

see Milgorm (1996)).3 In the work of Dana and Spier (1994) the outcome of the mechanism depends

heavily on the weight that the government assigns to revenue versus e¢ ciency and on the type of

competition that prevails in the market after privatization.

� Selling licences for cellular networks, TV or radio broadcasting.

� Optimal Bundling: Since we allow for complementarities and substitutability one can think
2This is similar to the common agency problem, as identi�ed for example in Dixit (1997).
3Gale (1991) also considers a variation of this problem but because he imposes a very strong super-additivity

condition to the pro�t function, he shows that an optimal mechanism always gives all the �permits�to at most one

buyer, so the market structure is always the one of a monopoly.
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of applications for cases of bundling of goods, (bundles like telecommunication services - internet -

cable TV, computers-printers-software-digital cameras etc).

This paper is related to the optimal auction literature for multiple objects and to the literature of

mechanism design with externalities. Maskin and Riley (1989) analyze the case of single dimensional

private information and continuously divisible goods, Armstrong (2000) allows for multidimensional

uncertainty but there are only two buyers and two types. Jehiel, Moldovanu and Stacchetti, (JMS)

(1996) study optimal auction design in the presence of externalities in a single unit environment

where externalities are type independent.4 Because of the presence of externalities the seller can

extract payment for the losers but the revenue maximizing allocation of the object is the same

as in the case of the revenue maximizing auction without taking into account the presence of

externalities. JMS (2001) consider again the design of optimal auctions of a single object in the

presence of externalities. Here the externalities are type dependent: the type of each buyer is

a vector of numbers that determines his/her utility as a function of who gets the object. The

multi-dimensionality makes the solution of the general problem intractable: it is almost impossible

to verify that the set of conditions that are implied by incentive compatibility are satis�ed (the

allocation rule has to be monotonic and conservative - or path independent).

Our innovation is to allow for multiple objects, general payo¤ functions that allow for com-

plementarities and substitutabilities and type dependent externalities among buyers, but because

private information is single-dimensional we can solve the problem. Due to fact that there are mul-

tiple objects to be allocated and buyers valuations are non-linear the problem fails to be "regular,"

even if the monotone hazard rate property is satis�ed. Moreover the standard ironing technique

does not apply. Our �rst insight is to develop a new method to solve for the optimal mechanism

for the "general case." In this case the optimal mechanism may require randomization between

allocations. Second, even though the private information of each �rm is one dimensional (its cost),

an allocation�s virtual valuation depends on the cost parameters of all other �rms. This captures

nicely the existence of externalities among buyers: how much money the seller can extract from

�rm A depends on the technology of �rm B, which captures together with other parameters how

4General models allowing for type dependent externalities like those of Jehiel-Moldovanu (2001), and Krishna and

Perry (2001) are concerned with the design of e¢ cient mechanisms.
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strong of a competitor �rm B is. As in JMS (1996) and JMS (2001) the critical type, (where the

participation constraint binds), of the buyer is not exogenously given but depends on the range of

the externalities. But unlike JMS (1996) and (2001) in our approach since we allow for more general

payo¤ functions, the critical type also depends on the actual mechanism. This critical type of each

agent determines how much money the seller can extract from the players. Hence the characteriza-

tion of the optimum becomes intricate: given a mechanism there is a vector of critical types and a

amount of payments that the seller can extract from the buyers: the mechanism depends not only

on the virtual valuations, but also on which is the critical type. Moreover the vector of critical types

is mechanism speci�c. A consequence of this interrelationship between the critical types and the

mechanism is that the optimal allocation of the object in the presence of externalities is di¤erent

from the one we would obtain with no externalities. In contrast, the presence of externalities in JMS

(1996) a¤ects only the payment that the seller can extract from the buyers and not the allocation

of the object.

To summarize, the two main insights of our analysis are

1) With Non-Linear valuations the optimal mechanism may randomize between allocations: a

new method to obtain the optimal mechanism.

2) With type-dependent externalities "punishments" depend on the allocation that the seller

wants to implement: we still obtain revenue equivalence - but now revenue is not any more a linear

function of the allocation.

2 The model

A seller owns N indivisible objects that are of 0 value to her and faces I risk-neutral buyers. Both

N and I are �nite natural numbers. The seller, (indexed by zero), can bundle these N objects in

any way she sees �t. An allocation z = (z0; z1; ::::; zI) is an assignment of objects to the buyers

and to the seller. The set of possible allocations is given by Z � [I [ f0g]N and hence Z is �nite.
Buyer i�s valuation of allocation z is �i(z; ci; c�i); which is indexed by i0s type ci and by the types

of all the other buyers c�i: Buyer i0s type ci is distributed on Ci = [ci; ci]; with 0 � ci � ci < 1
according to a distribution Fi that has has a strictly positive and continuous fi. All buyers�types
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are independently distributed. We use

f�i(c�i) = f1(c1)� f2(c2):::fi�1(ci�1)� fi+1(ci+1):::fI(cI)

and

f(c) = f1(c1):::fI(cI); where c 2 C = C1 � C2 � ::� CI :

We assume that5

�i is decreasing and convex in ci
�i(z; �; c�i) is di¤erentiable for all z and c�i:
This speci�cation makes clear that we are in the context of an auction with externalities, since

each buyer cares not only for the objects that are assigned to him, but also for the allocation of

the remaining ones. Notice also that we allow �i(z; ci; c�i) 6= 0 even when the allocation z does

not include any objects for i, so we can include the cases when the bidders are �rms competing in

a di¤erent markets, and whatever happens in the current sale one will a¤ect their positioning and

interaction relative to the other buyers, which will in turn a¤ect their payo¤s.

3 Characterization of Feasible Mechanisms

By the revelation principle we know that we can restrict attention to direct revelation mechanisms.

A direct revelation mechanism M = (p; x) consists of an assignment rule p : C �! �(Z) and

a payment rule C �! RI .
The assignment rule speci�es the probability of each allocation for a given a vector of messages.

We denote by pz(c) the probability that allocation z is implemented when the message tuple is

c. The payment speci�es a vector of expected payments given a vector of reports. For a �xed

5Gale�s (1990) condition on pro�t function, would in our notation read as follows:

(8z 2 @Z)(8z0 2 Z=@Z)(8c 2 [ci; ci])
IX
i=1

�i(z; ci; c�i) �
IX
i=1

�i(z
0; ci; c�i)

where @Z = fz 2 Zj(9i 2 f1; :::; Ig)zi = Ng.
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mechanism M = (p; x), the ex-ante utility of a �rm of type ci when he participates and declares c0i
is:

Ui(ci; c
0
i; (p; x)) =

Z
C�i

X
z2Z
(pz(c0i; c�i)�i(z; ci; c�i)� xi(c0i; c�i))f�i(c�i)dc�i

The utility of a buyer if he decides not to participate in the mechanism is given by

U i(�i; ci) =

Z
C�i

X
z2Z

�zi�(z; ci; c�i)f�i(c�i)dc�i

where �i 2 �(Z) is the (possibly random) allocation that the seller employs if i refuses to participate.
The role of these "punishment allocations" will be discussed in the section that follows.

We say that a mechanism (p; x) is feasible i¤

Ui(ci; ci; (p; x)) � Ui(ci; c
0
i; (p; x)) for all ci; c

0
i 2 Ci

Ui(ci; ci; (p; x)) � U i(�i; ci) for all ci 2 CiX
z2Z

pz(c) � 1; pz(c) � 0 for all c 2 C

The �rst set of constraints are the incentive compatibility constraints, the second set of constraints

are the voluntary participation constraints and the third set of constraints impose the requirements

that probabilities sum up to one and are non-negative numbers. Then the problem of a revenue

maximizing seller can be written as

max
(p;x) feasible

Z
C

IX
i=1

xi(c)f(c)dc

Now we turn to characterize properties of feasible mechanisms. First let�s de�ne

Pi(ci) �
Z
C�i

X
z2Z

pz(ci; c�i)
@�i(z; ci; c�i)

@ci
f�i(c�i)dc�i:
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This the expected "marginal cost" of allocation z: If �i were increasing in ci we could then call

Pi the expected marginal value of allocation z: The analog of Pi in Myerson (1981) is Pi(ci) =R
C�i

p(ci; c�i)f�i(c�i)dc�i since there is only one object and
@�i(z;ci;c�i)

@ci
= 1.

Given an incentive compatible mechanism (p; x) i0s maximized payo¤ is given by

Vi(ci) = max
c0i

Z
C�i

(
X
z2Z

pz(c0i; c�i)�i(z; ci; c�i)� x(c0i; c�i))f�i(c�i)dc�i:

We are now ready to investigate properties of feasible mechanisms.

Lemma 1. A mechanism (p; x) is feasible i¤

Pi(c
0
i) � Pi(ci) for all c0i > ci (1)

Vi(ci) = Vi(ci)�
ciR
ci

Pi(s)ds for all ci 2 Ci (2)

Vi(ci) � U i(�i; ci) for all ci 2 Ci (3)

pz(c) � 0
X
z2Z

pz(c) � 1 (4)

Proof. By the convexity of �i(z; �; c�i) we have V is a maximum of convex functions, so it is convex,
and therefore di¤erentiable a.e. It�s also easy to check that the following are equivalent:

(a) (p; x) is incentive compatible

(b) Pi(ci) 2 @V (ci)
(c) U(ci; ci; (p; x)) = V (ci)

(=)) Since the mechanism is incentive compatible, from the previous characterization we get

that a feasible mechanism must satisfy (b). A result in Krishna and Maenner (1998) then implies

(2). By the convexity of V , we know @V is monotone, so:

(Pi(ci)� Pi(c0i))(ci � c0i) � 0

This immediately implies (1). Finally, individual rationality is the same as (3).

((=)Individual rationality is the same as (3). To prove incentive compatibility it�s enough to show
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that Pi(ci) 2 @Vi(ci). By (1) and (2),

V (c0i)� V (ci) =

c0iZ
ci

Pi(s)ds

� Pi(ci)(c
0
i � ci)

which shows Pi(ci) 2 @Vi(ci).

Lemma 2. The expected payment of an agent of i can be written asZ
C

xi(c)f(c)dc =

Z
C

X
z2Z

pz(ci; c�i)[�i(z; ci; c�i) +
Fi(ci)

fi(ci)

@�i(z; ci; c�i)

@ci
]f(c)dc� Vi(ci) (5)

Proof. Z
C

xi(c)f(c)dc =

Z
C

[
X
z2Z

pz(ci; c�i)�i(z; ci; c�i)]f(c)dc�
Z
Ci

V (ci)dci

But because of (2), and using changing the order of integration we get:

Z
Ci

V (ci)dci =

Z
Ci

[V (ci)�
ciZ
ci

Pi(si)dsi]fi(ci)dci

= V (ci)�
Z
Ci

Pi(si)[

siZ
ci

fi(ci)dci]ds

= V (ci)�
Z
Ci

Pi(ci)Fi(ci)dci

= V (ci)�
Z
Ci

(

Z
C�i

X
z2Z

pz(ci; c�i)
@�i(z; ci; c�i)

@ci
f�i(c�i)dc�i)Fi(ci)dci

= V (ci)�
Z
C�i

X
z2Z

pz(ci; c�i)
@�i(z; ci; c�i)

@ci

Fi(ci)

fi(ci)
f(c)dc

>From the last expression the result follows.
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4 Analysis of the Problem

In the environment under consideration, each buyer potentially cares about the ultimate allocation

of objects even if no objects are assigned to him. The seller can take advantage of the presence

of these external e¤ects and extract higher payments by arti�cially creating unfavorable outside

options. For example, consider the auction for licences of nth generation mobile services. Firms

bidding in this auction may also operate in the market for the provision of internet services. The

seller knows, and can take advantage of, the fact that if one �rm does not participate in the auction

for the licences, it will be for sure be left out of that market, and it will lose market share in the

market of high speed internet connections. This idea appeared for the �rst time in a mechanism

design problem in JMS (1996) and (2001). The mechanism designer has, is some loose sense, the

power to impose outside options.

We denoted by Zi � Z denote the subset of allocations that the seller can employ to threaten buyer
i 6. Let �i denote a probability distribution over elements of Zi, then the seller can then threaten

buyer i that he will implement �i if he/she decides not to participate. Put it di¤erently �i 2 �(Zi)
speci�es the probability of each allocation when �rm i decides not to participate in the auction.

This is the threat allocation rule: because there are externalities the seller can threat i that in the

event that i fails to participate, he will face a very unfavorable allocation. In turn �i determines U i

U i(�i; ci) =

Z
C�i

X
z2Z

�zi�i(z; ci; c�i)f�i(c�i)dc�i;

which as we will explain later determines Vi(�ci) in (5).

As a side note, we must say that we are making a very strong assumption about the commitment

ability of the seller. His threat of choosing a particular allocation in case agent i does not participate

is credible only under this assumption. To see how important this is, and a possible approach when

6We will assume that Zi � fz 2 Zjzj 6= i for all j 2 f1; :::; Ngg, so the seller cannot force the agent to get some
objects
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one removes this assumption, see subsection 5.5.

In general the payo¤ at the outside option, that is U i(ci; �i), will depend on ci. This interdepen-

dency will make the characterization of the optimal punishment complicated: these punishments

f�igi2I will depend on the particular assignment function p that the seller wants to implement.
Apart from this complication the problem under consideration has complications that arise from

the fact that there are multiple objects for sale and from the fact that valuations are non-linear. In

order to address these complications one at a time we will deal with three cases separately.

In subsection 4.1 we consider the (simpler) cases where, for any threat rule �i, the payo¤ of buyer

i from non-participation does not depend on his type ci, that is

U i(ci; �i) = U i(�i) for all ci 2 Ci:

From an economic point of view, we can consider these cases as the ones where the externality is

created by the interaction in a di¤erent market, so it does not depend on the realization of the cost

parameter for this particular one. Imagine, for example, the case of �rms that already compete in

the provision of internet services, and are bidding for permits in the telecom business.

In subsection 4.2 we consider the cases where the payo¤of buyer i from non-participation, U i(ci; �i),

can indeed depend on his type ci. A good example for this environment is the case of advertising.

The externality su¤ered by a candidate because his competitor gets to air a spot depends on his

strength.

4.1 The Optimal Mechanism with Type-Independent �Threats�

As we said before, we consider the cases where the payo¤ of buyer i from non-participation does

not depend on his type ci. More rigorously we have:

�i(z; ci; c�i) = �i(z; c�i) for all z 2 Zi
The key consequence is that the optimal threat that the seller employs will be independent of

the particular allocation rule p that he wants to implement. This will allow us to separate the
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optimization problem in two.

Step 1: Determination of the Optimal Punishments

In the case under consideration, where buyer i�s payo¤ from a punishment allocation does not

depend on i�s type, we can determine f�igi2I independently of fp; xg. Remembering that Zi � Z
is the set of allocations that the seller can use to punish buyer i we have the following lemma.

Lemma 3. The optimal punishments f�igi2I are given by

�z
i

i = 1 for all i 2 I; where

zi 2 argmin
z2Zi

Z
C�i

�i(z; ci; c�i)f�i(c�i)dc�i:

Proof. Given such a punishment allocation the payo¤ of buyer is given by

U i(�
zi

i ) =

Z
C�i

�(zi; ci; c�i)f�i(c�i)dc�i;

which is by assumption independent of ci: By the de�nition of zi this is the worst possible outside

option that the seller can induce for buyer i.

Step 2: Determination of the Optimal Allocation Rule

Next we describe a simple program whose solution gives an optimal feasible mechanism. Before we

do this we need to de�ne the counterpart of virtual valuation for the allocation problem that we

are considering here.

The Total Virtual Valuation of allocation z is given by

Jz(c) =

IX
i=1

[�i(z; ci; c�i) +
Fi(ci)

fi(ci)

@�i(z; ci; c�i)

@ci
]

Remarks:

1)In Myerson (1981) the concept of virtual valuation is buyer-speci�c. Letting vi denote buyer i�s

valuation of the object, it is given by

Ji(vi) = vi �
1� Fi(vi)
fi(vi)

:
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2)In the current problem the concept of virtual valuation is allocation speci�c, and since an alloca-

tion may a¤ect all the buyers we have to sum over all buyer�s virtual valuations from allocation z.

3) The total virtual valuation of allocation z depends on the whole vector of types.

If in a mechanism (bp; bx; �) the assignment function bp solves
max

p s.t.(1);(??)

Z
C

X
z2Z

pz(c)Jz(c)f(c)dc

, the payment function bx satis�es
bxi(c) =X

z2Z
bpz(c)�i(z; ci; c�i) + ciZ

ci

X
z2Z

@�i(z; s; c�i)

@s
bpz(s; c�i)ds� Vi(�ci);

and

Vi(�ci) = U i(�
zi

i );

where

�z
i

i = 1 i¤ z
i 2 argmin

z2Zi

Z
C�i

�i(z; ci; c�i)f�i(c�i)dc�i

then the mechanism is optimal.

Proof. This result follows immediately from lemmas 2 and 3.

Proposition 4.1 describes a program whose solution gives us an optimal mechanism. The solution

of this program is straightforward if the assignment function that solves the relaxed program

max
p s.t.(??)

Z
C

X
z2Z

pz(c)Jz(c)f(c)dc (6)

also satis�es (1). This is so because the relaxed program can be solved by pointwise maximization.

Following Myerson (1981) we will refer to this case as the regular case.

We now state three assumptions, each one of which guarantees precisely this.
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7 Let z1,z2 2 Z be any two allocations. For a given cost realization (ci; c�i) if z1 2 argmax
z2Z

Jz(c
�
i ; c�i)

and z2 2 argmax
z2Z

Jz(c
+
i ; c�i) , then

@�i(z2; ci; c�i)

@ci
� @�i(z1; ci; c�i)

@ci

A su¢ cient condition for Assumption 4.1 to hold is

Jz(ci; c�i) is decreasing in ci and

@Jz1(ci; c�i)

@ci
� @Jz2(ci; c�i)

@ci
=) @�i(z1; ci; c�i)

@ci
� @�i(z2; ci; c�i)

@ci

Even more stringent than this is
8 Allocations zi 2 Z are ranked: @�i(zk;ci;c�i)

@ci
� @�i(zl;ci;c�i)

@ci
and @Jzk (ci;c�i)

@ci
� @Jzl (ci;c�i)

@ci
for all

k < l and c 2 C.
The Proposition that follows describes the solution to the seller�s problem if pointwise maximization

of the relaxed problem (6) leads to a feasible allocation.

Suppose that Assumption 4.1 is satis�ed. Then the optimal allocation bp is given by:
bpz�(c) =

8<: 1 if z� 2 argmax
z
Jz(c)

0 otherwise

Proof. The solution proposed corresponds to pointwise maximization, so the only possibility that

is not optimal is that is not feasible. To check that feasibility is satis�ed notice that

Pi(ci) =

Z
C�i

X
z2Z

pz(ci; c�i)
@�i(z; ci; c�i)

@ci
f�i(c�i)dc�i

7In the case of no externalities, this condition is implied by Jz(ci) decreasing in ci, which is the equivalent to the

regularity condition in Myerson (1981).
8In their particular framework, this is the assumption made in Dana and Spier (1994).
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and consider a �xed c�i. In a region [c; c] where z 2 argmax
z2Z

Jz(c) p(ci; c�i) does not change

(pz = 1) and Pi(ci) is nondecreasing by the convexity of �i(z; �; c�i). For a given c� where z1 2
argmax

z2Z
Jz(c

�
i ; c�i) and z2 2 argmax

z2Z
Jzc

+
i ; c�i), p

z1(c�i
�; c�i) = 1 and pz2(c�i

+; c�i) = 1, so Pi(ci) is

nondecreasing because of Assumption 4.1.

In the problem considered in Myerson (1981), a su¢ cient condition for the problem to be regular is

that the virtual valuations are increasing. For example, if the distribution Fi satis�es that
1�Fi(ci)
fi(ci)

is increasing (called the monotone hazard rate property,(MHR)) then the problem is regular. For

the cases where the monotonicity of the virtual valuations fails, Myerson introduced an arti�cial

program replacing virtual valuations with �ironed�ones (made monotonic in a �clever�way), and

established that the solution of this arti�cial problem solves the original one.

Some remarks are in place

1) Myerson�s ironing technique does not work here: even if virtual valuations are monotonic (de-

creasing, in our case), the assignment function obtained via pointwise optimization will in general

fail to satisfy (1).

2) The assumptions that guarantee that a problem is regular are quite stringent, as the example

that follows demonstrates.

Consider the case of the privatization of a public monopoly where the market structure can be

decided by the seller. There are 2 potential buyers, A and B, and 4 possible allocations Z =

fmonopoly A, monopoly B, duopoly, no saleg = fzA; zB; zAB; z0g The (constant) marginal cost of
each �rm is ci � U [0; 1]. We will assume that there is a demand function a�q, where a > 1 (so that
production is always positive). If we consider the case when the ex-post competition is Cournot,

the valuations for buyers A and B are respectively given by:
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�A(z0; cA; cB) = 0 �B(z0; cA; cB) = 0

�A(zA; cA; cB) =
(a�cA)2
4b

�B(zA; cA; cB) = 0

�A(zB; cA; cB) = 0 �B(zB; cA; cB) =
(a�cA)2
4b

�A(zAB; cA; cB) =
(a+cB�2cA)2

9b
�B(zAB; cA; cB) =

(a+cA�2cB)2
9b

In this very simple case, Assumption 4.1 is satis�ed i¤ a � 8.

Proof. : In fact, for Assumption 4.1 to hold, it must be the case that

@JzA
@cA

� @JzAB
@cA

or equivalently (7)

32cB � 6a+ 25cA (8)

implies that

@�A(zA; cA; cB)

@cA
� @�A(zAB; cA; cB)

@cA
or equivalently (9)

8cB � 7cA � a (10)

Notice that if a � 7
6
, 8 is satis�ed for all cA; cB 2 [0; 1], so 10 must also hold for all cA; cB 2 [0; 1].

But this is true only for a � 8. This immediately implies that the condition is not satis�ed if

a 2 (7
6
; 8).

If a 2 [1; 7
6
), then there exist cA; cB such that 32cB = 6a+25cA. Then for that realization, 10 must

hold, but we have:

8cB � 7cA = 32cB � 25cA � 3cA
= 6a� 3cA
= a+ (5a� 3cA)

So we need that 5a� 3cA � 0, but this implies cA � 5
3
a � 5

3
, which is impossible.

Finally to see that if a � 8 the condition hold, we notice that in that case 10 is always satis�ed.
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This example is in the same spirit as the ones in Section 3 in Dana and Spier (1994). There, they

impose conditions that guarantee that @JzA
@cA

� @JzAB
@cA

and @�A(zA;cA;cB)
@cA

� @�A(zAB ;cA;cB)
@cA

are always

true, which is equivalent to our assumption 4.19.

What can be done if the regularity condition is not satis�ed? Recall that the purpose of the reg-

ularity condition is to guarantee that pointwise optimization of the objective function will lead to

a solution that satis�es the feasibility requirements. For the cases where this fails, Myerson has

introduced the �ironing�technique, that essentially smooths out virtual valuations into monotone

functions. This is done in a way that does not change the solution of the original problem. The

possibility of using this technique relies on the fact that payo¤s are linear in the allocation and that

each agent cares only about one allocation (getting the object in that case).

When an agent cares about more than one allocation, and especially when one allocation a¤ects

more than one player (externalities), monotonicity conditions are not enough (as shown in example

??). Also, when utilities are not linear in the type, we can have an allocation rule bp =2 @�(Z). For
a discussion about this, see section 6

4.2 The Optimal Mechanism with Type-Dependent �Threats�

Here we consider the seller�s problem in the case the agents can be threatened with allocations that

have type-dependent e¤ects upon them. So in this subsection we will remove assumption 4.1.

In this case the seller�s maximization problem can be written as:

max
p;x;f�igi2I

R
C

IP
i=1

xi(c)f(c)dc

s:t:

Ui(ci; ci; (p; x)) � Ui(ci; c
0
i; (p; x)) for all ci; c

0
i 2 Ci

Ui(ci; ci; (p; x)) �
R
C�i

P
z2Zi

�zi�i(z; ci; c�i)f�i(c�i)dc�i for all ci 2 CiP
z2Z

pz(c) � 1; pz(c) � 0 for all c 2 C

9In the illustrative cases they present in Section 3, they verify the assumption @�m1
@c1

� @�D1 (q1(c1);q2(c2))
@c1

, whereas

the assumption @J10
@c1

� @J11
@c1

is imposed even in those illustrative cases.
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Before we move on let us highlight in what respects this more general problem di¤ers for the ones

already examined in the literature. From the section that characterizes feasible mechanisms we

obtain that

xi(c) =
X
z2Z

"
(pz(c0i; c�i)�i(z; ci; c�i)�

Z �ci

ci

"X
z2Z

pz(s; c�i)
@�i(z; si; c�i)

@ci

#
ds

#
� Vi(�ci) (11)

In the standard problem without externalities, the worst that the seller can do to a buyer is not

to assign him the object, hence the worse that the seller can do is to enforce a payo¤ of zero: the

payment function is then given by (11), where Vi(�ci) is determined by the fact that the buyer always

has the option not to participate which implies that

Vi(�ci) = 0 (12)

In the case of type-independent externalities, analyzed in the previous section, the only di¤erence

is that

Vi(�ci) = U i(�
zi

i ) (13)

This is essentially the same as the role of punishments as examined in JHM (1996).

Notice that the threat is independent of the mechanism, that is of the assignment function p, and

the payment function x. Moreover, the �critical type� is always �ci, so it�s enough to check the

participation constraint at �ci. This won�t be the case when the externalities are type-dependent.

The Determination of Punishments in the General Case

In the general case both the �optimal threat�and the �critical type�depend on the allocation rule

that the seller wants to implement. Let�s see how they are determined and how they depend on the

allocation rule p.

A given allocation rule p determines up to a constant the expected payo¤ for each type of a buyer,
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which is given by the familiar expression

Vi(ci) = Vi(�ci; p)�
Z �ci

ci

Z
C�i

"X
z2Z

pz(s; c�i)
@�i(z; s; c�i)

@ci

#
f�i(c�i)dc�ids

At an optimal mechanism the constant Vi(�ci) is determined by the optimal threat that the seller

can design. Let us call V̂ (ci) the payo¤ of type ci of buyer i net of the constant that is

V̂i(ci) = �
Z �ci

ci

Z
C�i

"X
z2Z

pz(s; c�i)
@�i(z; s; c�i)

@ci

#
f�i(c�i)dc�ids

which is, as we have shown, a decreasing and convex function of ci. Now for each such expression

there exists a �worst punishment�which is identi�ed in two steps.

Step 1: Determination of the Critical Type c�i (p; �i)

For each assignment function p (which determines V̂i(ci)) and threat rule �i 2 �(Zi), there exists a
critical type c�i (p; �i). Let�s de�ne the expected payo¤ given a threat rule �i for agent i if his type

is ci as

�i(ci; �i) =

Z
C�i

X
z2Zi

�zi�i(z; ci; c�i)f�i(c�i)dc�i

The seller is contemplating what would be the largest constant that he could reduce i
0
s payo¤ given

a proposed allocation p and a threat rule �i: this constant is going to be determined by the type

where V̂i would hit �i �rst if we were to shift it down, we call this type c�i (p; �i): Formally c
�
i (p; �i)

solves the following program:

c�i (p; �i) 2 argmin
ci

h
V̂i(ci)� �i(ci; �i)

i
(14)

The constant by which the seller can reduce i�s payo¤ is given by the di¤erence

V̂i(c
�
i (p; �i))� ��i(c�i (p; �i); �i):
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ci

V(ci)

ci*(z)

The computation of ci*(p,z)

),( iii cU ρ

Given the convexity of V (�) and �i(�; �i), the Problem described in (14) can be written as:

c�i (p; �i) 2 arg min
ci s:t: �0i(ci;�)2@V (ci)

h
V̂i(ci)� �i(ci; �i)

i
:

This characterization, even if it looks more di¢ cult, is extremely useful when the expected payo¤

functions �i(�; �i) are linear, since the set of types where �i(ci; �i) 2 @Vi(ci) is a singleton. Suppose
for example that �i(�; �i) = a�ici + b�i. Then

c�i (p; �i) =

8>><>>:
c if Pi(c) � a�i
c if Pi(c) � a�i
P�1i (a�i) otherwise

After �nding the critical type for a particular threat rule �i, we can compute the value of Vi(ci) , since
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from the characterization of incentive compatible mechanisms we have that Vi(ci) = Vi(c�i (p; �i)) +
cR

c�i (p;�i)

Pi(s)ds, so we can write

Vi(ci) = �i(c
�
i (p; �i); �i) +

ciZ
c�i (p;�i)

Pi(s)ds

Step 2: Determination of the optimal punishments �i

The next step for the seller is to �nd, for a given allocation rule p, the optimal threat ��i (p), which

satis�es

��i (p) 2 arg min
�i2�(Zi)

�i(c
�
i (p; �i); �i) +

Z c

c�i (p;�i)

Pi(s)ds

As we remarked before, the fact that the optimal punishment depends on the allocation rule p that

the seller has in mind is a big di¤erence with the previous literature. The next example illustrates

that.

Suppose that Zi = fzA; zBg, the allocation rules p1 and p2 generate V̂i(ci; p1) = 1 � 10ci and
V̂ 2i (ci; p2) = 0 respectively in Ci = [0; 1], and

�i(zA; ci) = 1� 10ci
�i(zB; ci) = 0

Then, denoting by �A and �B the respective degenerate measures, we get

Vi(1; �A; p1) = �9

Vi(1; �B; p1) = 0

but

Vi(1; �A; p2) = 1

Vi(1; �B; p2) = 0
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so �(p1) = �A and �(p1) = �B.

Notice that ��i does not necessarily lie in @�(Zi), as shown by the next example:

Suppose that Zi = fzA; zBg, the allocation rule p generates V̂i(ci) = 1� ci in Ci = [0; 1] and

�i(zA; ci) = 1� 10ci
�i(zB; ci) = 0

Then

�zAi = 1 =) c�i = 0 and Vi(1) = 0

�zBi = 1 =) c�i = 1 and Vi(1) = 0

but

�zAi = 0:1 and �zBi = 0:9 =) c�i 2 [0; 1] and Vi(1) = � 9
10

Step 3: The Optimization Problem

From the previous steps, we see that the payments that can be extracted from the buyers can be

written as a function only of the assignment rule p, since

Vi(ci) = �i(c
�
i (p; �

�
i (p))) +

Z ci

c�i (p;�
�
i (p))

Pi(s)ds:

Contrast this expression with (12) and (13) notice that in this case Vi(ci) depends on p.

The previous results allow us to fully characterize the problem in terms of the assignment function

p:

If in a mechanism (bp; bx;b�) the assignment function bp solves:
max
p

R
C

P
z2Z

pz(c)
IP
i=1

h
�i(z; ci; c�i) +

Fi(ci)
fi(ci)

@�i(z;ci;c�i)
@ci

i
f(c)dc�

IP
i=1

Vi(ci; p)

s:t: Pi increasing,
P
z2Z

pz(c) � 1 and p(c) � 0
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where

Vi(ci; p) = �i(c
�
i (p; �i(p)); �i(p)) +

ciZ
c�i (p;�i(p))

Pi(s)ds

and where in turn c�i (p; �i) satis�es

c�i (p; �i) 2 argmin
ci

h
V̂i(ci; p)� �i(ci; �i)

i
and �i(p) satis�es

�i(p) 2 arg min
�i2�(Zi)

�i(c
�
i (p; �i); �i) +

Z �ci

c�i (p;�i)

Pi(s)ds

If also the payment function bx satis�es:
bxi(c) =X

z2Z
bpz(c)�i(z; ci; c�i) + ciZ

ci

X
z2Z

@�i(z; s; c�i)

@s
bpz(s; c�i)fi(s)ds� Vi(�ci; bp)

and b�i satis�es
b�i 2 arg min

�i2�(Zi)
�i(c

�
i (bp; �i); �i) + Z �ci

c�i (bp;�i) Pi(s)ds
then the mechanism is optimal.

This program is not linear in p anymore, as we illustrate with an example in section 5, so the usual

approach of pointwise maximization fails. Fortunately the problem has enough structure10to allow

the use of variational methods without imposing additional restrictions on the mechanism (such as

di¤erentiability).

A simpler characterization can be found if the externalities are big, as we show in the next part.

The Optimal Mechanism in the Case of Large Externalities
10In particular enough di¤erentiability on �i will guarantee enough regularity on c�(p; �i) as a function of the

mechanism.
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Suppose that the externalities are �big� in the following sense: for each i, there exists an

allocation z�i 2 Zi such that

@�i(z
�
i ; ci)

@ci
� @�i(z; ci; )

@ci
for all z 2 Z

and

�i(z
�
i ; ci) � �i(z; ci) for all z 2 Z

Suppose assumption 4.2 is satis�ed. Then individual rationality for agent i has to be veri�ed

only at c�i = ci, and the problem of the seller can be rewritten as:

max
p

R
C

P
z2Z

pz(c)
IP
i=1

h
�i(z; ci; c�i) +

Fi(ci)�1
fi(ci)

@�i(z;ci;c�i)
@ci

i
f(c)dc

s:t: Pi increasing,
P
z2Z

pz(c) � 1 and p(c) � 0

Proof. First we prove that under assumption 4.2, if individual rationality is satis�ed for ci = ci then

it is satis�ed for all ci 2 Ci. It�s clear that under assumption 4.2 the optimal punishment for agent
i is given by the threat rule b�i(z�i ) = 1. Since Pi(ci) 2 @V (ci) and

Pi(ci) =

Z
C�i

X
z2Z

pz(c)
@�i(z; ci; c�i)

@ci
f�i(c�i)dc�i

�
Z
C�i

X
z2Z

pz(c)
@�i(z

�
i ; ci; c�i)

@ci
f�i(c�i)dc�i

=
@�i(z

�
i ; ci)

@ci

the fact that V (ci) � �(z�i ; ci) implies that V (ci) � �(z�i ; ci) for all ci 2 Ci.
The revenue of the seller is given byZ

C

X
z2Z

pz(c)
IX
i=1

�
�i(z; ci; c�i) +

Fi(ci)

fi(ci)

@�i(z; ci; c�i)

@ci

�
f(c)dc�

IX
i=1

Vi(ci)
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Now, knowing that c�i = c we can write:

Vi(ci) = �i(z
�; ci) +

Z
Ci

Pi(s)ds

= �i(z
�; ci) +

Z
Ci

264Z
C�i

X
z2Z

pz(c)
@�i(z; ci; c�i)

@ci
f�i(c�i)dc�i

375 dci
= �i(z

�; ci) +

Z
C

X
z2Z

pz(c)
@�i(z; ci; c�i)

@ci

1

fi(ci)
f(c)dc

Now, using this in the previous expression we can rewrite the revenue of the seller asZ
C

X
z2Z

pz(c)
IX
i=1

�
�i(z; ci; c�i) +

Fi(ci)� 1
fi(ci)

@�i(z; ci; c�i)

@ci

�
f(c)dc�

X
i2I
�i(z

�
i ; ci)

Since the last term does not depend on p the result follows.

Exactly as in subsection 4.1, the solution to this problem can be divided in two broad categories: the

regular case (when pointwise maximization gives a feasible solution) and the non-regular one. The

assumptions that guarantee regularity are analogous, only with slightly changed virtual valuations.

As a simple corollary to the previous proposition, we can see that the allocation rule chosen by the

seller is ine¢ cient for a di¤erent reason than in the case of no externalities. Here, when compared

to the ex-post e¢ cient allocation rule, the seller allocates the objects �too much�. Let�s call bp the
solution to the seller�s problem and p� the e¢ cient allocation, that is

p�
�z

(c) =

8<: 1 if �z 2 argmax
z

P
i2I
�i(z; ci; c�i)

0 otherwise

Suppose that the allocation z0 = (0; :::; 0) satis�es that �i(z0; ci; c�i) = 0 for all c 2 C. Then,
compared to the ex-post e¢ cient allocation rule, the solution to the seller�s problem assigns the

object too much, or more formally:

fc 2 Cjbpz0(c) = 1g � fc 2 Cjp�z0 (c) = 1g
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Proof. It follows immediately from the fact that Fi(ci)�1
fi(ci)

@�i(z;ci;c�i)
@ci

� 0

5 An Example

As an illustration of our previous analysis we present an example. Consider 2 �rms �ghting for a

single slot to advertise their products. The value of actually airing a spot depends on the actual

cost parameter ci of the �rm, which is private information. The cost is uniformly and independently

distributed in [0; 1]. We denote by z = 0 the allocation when the object is not sold and z = i the

allocation when the object is given to agent i.

5.1 No externalities

Suppose that �rms care only about getting the object. This case is one that can be just solved as

in Myerson (1981). For example, suppose that pro�t functions for agent 1 are given by:

�1(0; c1; c2) = 0

�1(1; c1; c2) = 1� c1
�1(2; c1; c2) = 0

and for agent 2 are given by:

�2(0; c1; c2) = 0

�2(1; c1; c2) = 0

�2(2; c1; c2) = 1� c2
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In this case the virtual valuations are

J1(c1; c2) =

2X
i=1

[�i(1; ci; c�i) +
Fi(ci)

fi(ci)

@�i(1; ci; c�i)

@ci
]

= 1� 2c1
J2(c1; c2) = 1� 2c2
J0(c1; c2) = 0

The solution is then given by:

p1(c) = 1 if c1 � c2 and c1 � 1
2

p2(c) = 1 if c1 � c2 and c2 � 1
2

0 otherwise

This assignment function is illustrated in �gure 2. The payments are given by

x1(c) =

(
1�maxfc2; 12g if c1 � minfc2; 12g
0 otherwise

x2(c) =

(
1�maxfc1; 12g if c2 � minfc1; 12g
0 otherwise

It�s also easy to compute the revenue for the seller:

1Z
0

1Z
0

x1(c1; c2)dc2dc1 =

1
2Z
0

1
2Z

c1

(1� c2)dc2dc1 +

1
2Z
0

1Z
1
2

1

2
dc2dc1

=
5

24

Since the problem is symmetric we get a total revenue R = 5
12

5.2 Type Independent Externalities

Now, let�s suppose that �rms also care about the competitor not getting the advertisement slot.

But suppose that a �rm�s payo¤ if a competitor wins the auction is independent of that �rms�own
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cost. For example, pro�t functions for agent 1 are given by:

�1(0; c1; c2) = 0

�1(1; c1; c2) = 1� c1
�1(2; c1; c2) = ��

and for agent 2 are given by:

�2(0; c1; c2) = 0

�2(1; c1; c2) = ��

�2(2; c1; c2) = 1� c2

The virtual valuations are now

J1(c1; c2) = 1� 2c1 � �

J2(c1; c2) = 1� 2c2 � �

J0(c1; c2) = 0

And the optimal allocation is exactly the same as in the previous case, that is:

p1(c) = 1 if c1 � c2 and c1 � 1��
2

p2(c) = 1 if c1 � c2 and c2 � 1��
2

0 otherwise

Notice that now the seller keeps the object with a bigger probability, and he can also extract an

extra payment of � from each bidder.

x1(c) =

(
1�maxfc2; 1��2 g+ � if c1 � minfc2; 1��2 g
0 otherwise

x2(c) =

(
1�maxfc1; 1��2 g+ � if c2 � minfc1; 1��2 g
0 otherwise

The total revenue is then R = (1��)2
4

+ (1��)3
12

+ (1+�)2(1��)
2

+ 2�
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5.3 Type Dependent Externalities

Now, let�s suppose that �rms also care about the competitor not getting the advertisement slot.

Even more, the cost of a competitor winning the auction is higher when their own cost realization

is higher. For example, pro�t functions for agent 1 are given by:

�1(0; c1; c2) = 0

�1(1; c1; c2) = 1� c1
�1(2; c1; c2) = ��c1

and for agent 2 are given by:

�2(0; c1; c2) = 0

�2(1; c1; c2) = ��c2
�2(2; c1; c2) = 1� c2

With this we can write the virtual valuations associated to each allocation:

J1(c1; c2) =
2X
i=1

[�i(1; ci; c�i) +
Fi(ci)

fi(ci)

@�i(1; ci; c�i)

@ci
]

= 1� 2c1 � 2�c2
J2(c1; c2) = 1� 2c2 � 2�c1
J0(c1; c2) = 0

The seller�s problem can be written as:

max
p

R
[0;1]

R
[0;1]

[p1(c)[1� 2c1 � 2�c2] + p2(c)[1� 2c2 � 2�c1]]dc1dc2 � V1(1)� V2(1)

s:t: �
R
[p1(c) + �p2(c)]dc2 is increasing

�
R
[�p1(c) + p2(c)]dc1 is increasing

p1(c) + p2(c) � 1

We provide the solution only for the case that externalities are large.
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ci

V(ci)

V(ci)

The Critical Type: Large Externalities

icα−
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5.4 The Solution for the Case that Externalities are Large: � > 1

This is the easy case to handle. Since the �threat allocation�is linear (�i(ci) = ��ci) we know that
the critical type c�i is determined by

ci =

8>><>>:
0 if P (0) � ��
1 if P (1) � �
P�1(�) otherwise

We can show now that independently of the allocation rule selected, the critical type for

each agent is always c�i = 0. Notice that P1(c1) =
1R
0

[�p1(c) � �p2(c)]. Since p1(c) + p2(c) = 1 and

p1(c); p2(c) � 0 we can conclude that P1(0) � ��, so c�1 = 0. We analogously conclude that c�2 = 0.
Then

V1(1) = �i(c
�
i ) +

1Z
c�i

P1(c1)dc1

= �i(0) +

1Z
0

P1(c1)dc1

=

1Z
0

1Z
0

[�p1(c)� �p2(c)]dc

Analogously V2(1) =
1R
0

1R
0

[��p1(c)� p2(c)]dc

Then the problem of the seller becomes

max
p

R
[0;1]

R
[0;1]

[p1(c)[1� 2c1 � 2�c2] + p2(c)[1� 2c2 � 2�c1]]dc1dc2 � V1(1)� V2(1)

s:t:
R
[p1(c)[�1] + p2(c)[��]]dc2 is nondecreasingR
[p1(c)[��] + p2(c)[�1]]dc1 is nondecreasing
p1(c) + p2(c) � 1

32



and can be rewritten as

max
p

R
[0;1]

R
[0;1]

[p1(c)[2 + �� 2c1 � 2�c2] + p2(c)[2 + �� 2c2 � 2�c1]]dc1dc2

s:t:
R
[p1(c)[�1] + p2(c)[��]]dc2 is nondecreasingR
[p1(c)[��] + p2(c)[�1]]dc1 is nondecreasing
p1(c) + p2(c) � 1

Pointwise maximization gives us

p1(c) = 1 if 2 + �� 2c1 � 2�c2 � 2 + �� 2c2 � 2�c1 and 2 + �� 2c1 � 2�c2 � 0
p2(c) = 1 if 2 + �� 2c2 � 2�c1 � 2 + �� 2c1 � 2�c2 and 2 + �� 2c2 � 2�c1 � 0
0 otherwise

that can be rewritten as

p1(c) = 1 if c2 � c1 and 2 + �� 2c1 � 2�c2 � 0
p2(c) = 1 if c1 � c2 and 2 + �� 2c2 � 2�c1 � 0
0 otherwise

Feasibility is satis�ed since for a �xed c2 the function c1 �! �p1(c1; c2)��p2(c1; c2) is nondecreasing.
The same is true for a �xed c1 and the function c2 �! ��p1(c1; c2)� p2(c1; c2).

5.5 Sequentially Rational Punishments

Let�s consider again the case of section 4.1, but now let�s suppose that the seller does not have

commitment ability. Now he cannot get an extra payment of � based on the threat of giving the

object to the other player, since it�s not credible. Now player i knows that in case he does not

participate, the seller will face a one bidder auction. In that case the virtual valuations would be

J�i(c�i) = 1� 2c�i
J0(c�i) = 0

so the optimal allocation would be
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Seller

0
c1

c2

c2=(1-c1)/α

c2=1-αc1

Agent 1

Agent 2

Example: Case of Large Externalities
α=2 Efficient Allocation
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Seller

0
c1

c2

c2=(2+α-2c1)/2α

c2=(2+α-2αc1)/2

Agent 1

Agent 2

Example: Case of Large Externalities
α=2 With Optimal Punishment
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Seller

0
c1

c2

c2=(1-2c1)/2α

Example: Case of Large Externalities
α=2 Without Optimal Punishment

c2=(1-2αc1)/2

Agent 1

Agent 2
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p�i(c�i) =

(
1 if c�i � 1

2

0 otherwise

and the imposed externality on agent i would be (in expectation) only of �
2
. In that case, the extra

payment that the seller would be able to extract would be reduced by half and the total revenue

would be R = (1��)2
4

+ (1��)3
12

+ (1+�)2(1��)
2

6 New Ironing

In the cases where pointwise optimization leads to a solution that is not feasible, we have to take

the feasibility constraints explicitly into account. Myerson (1981) presents a clever way of dealing

with this di¢ culty. He proposes a rewriting of the objective function in terms of �ironed�virtual

valuations that has the advantage that pointwise maximization of this arti�cial objective function

leads to a feasible solution and moreover the solution of this arti�cial program solves the original

one as well. Unfortunately this beautiful technique does not work here where there is more then

one object, and payo¤s are non-linear in the allocation.

In order to obtain the optimal allocation in this case without imposing regularity conditions we

should do a di¤erent form of ironing. For simplicity let us �rst illustrate the technique in a special

environment where there is a single buyer.

There is a single agent and n+ 1 allocations: z0; z1; ::::; zn:

Suppose also that the derivatives are ranked in the following way: @�(z0;c)
@c

> @�(z1;c)
@c

> ::::

Now consider a point c� where

argmax
z
Jz(c

��) = zk and argmax
z
Jz(c

�+) = zl:

with k < l. Furthermore for simplicity assume that there is only one such point.

Our �rst result states that the problem for the seller is simple: it�s enough to �nd an optimal region

[x; x] where the feasibility constraint is satis�ed with equality (that is Pi(c) is constant). Outside

of that region the solution maximizes the objective function pointwise.
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c1

c1

Pz1

Jz0

Pz0

Jz1

One Buyer, Linear Valuations:
Regular Case
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Lemma 4. If fbpzigi2f0;:::;ng is a solution to the assignment problem, then there exist x; x satisfying
c � x � c� � x � c such that

lX
i=k

bpzi(c)@�i(zi; c)
@c

=
lX
i=k

bpzi(x) @�i(zi; c)
@c

����
c=x

for all c 2 [x; x]

bpzk(x) = 1 if x > cbpzl(x) = 1 if x < c

Proof. Obvious

The problem can then be written as to minimize the loss in that region:

min
x;�x

mi(c); i2fk;:::;lg

Z c�

x

"
Jzk(c)�

X
k�i�l

mi(c)Jzi(c)

#
f(c)dc

+

Z �x

c�

"
Jzl(c)�

X
k�i�l

mi(c)Jzi(c)

#
f(c)dc

s:t:
X
k�i�l

mi(c)
@�(zi; c)

@c
=

X
k�i�l

mi(c)
@�(zi; c)

@c

�����
x

mk(x) = 1 if x > c

ml(x) = 1 if x < cX
k�i�l

mi(c) = 1; mi(c) � 0;

rewriting we can get:

min
x;�x

mi(c); i2fk;:::;lg

Z c�

x

X
k+1�i�l

mi(c) [Jzk(c)� Jzi(c)] f(c)dc

+

Z x

c�

X
k�i�l�1

mi(c) [Jzl(c)� Jzi(c)] f(c)dc
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s:t:
X
k�i�l

mi(c)
@�(zi; c)

@c
=

X
k�i�l

mi(c)
@�(zi; c)

@c

�����
x

mk(x) = 1 if x > c

ml(x) = 1 if x < cX
k�i�l

mi(c) = 1; mi(c) � 0

These problem can be decomposed. For each x and fmi(x)gli=k, �nding the optimal mixture at a
point c is a simple linear program. Even more, the next result allows us to decompose the problem

in two:

Lemma 5. Consider the constrained problem

min
x;�x

mi(c); i2fk;:::;lg

Z c�

x

X
k+1�i�l

mi(c) [Jzk(c)� Jzi(c)] f(c)dc

+

Z x

c�

X
k�i�l�1

mi(c) [Jzl(c)� Jzi(c)] f(c)dc

s:t:
X
k�i�l

mi(c)
@�(zi; c)

@c
=

@�(zk; c)

@c

ml(x) = 1 if x < cX
k�i�l

mi(c) = 1; mi(c) � 0

If the solution to this problem has x > c, then the solution to the original problem also has x > c.

Proof. See appendix

So we can solve �rst the problem constrained to a mixture with mk(x) = 1, if the solution is not a

corner (x > c) then we have a solution. If not, we just need to maximize over the optimal mixture

at c.

To illustrate some properties of the solution, let�s consider the case when l = k+1, so we are dealing

only with two allocations.
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In this case the problem becomes

min
x;�x
mk(c)

Z c�

x

(1�mk(c)) [Jzk(c)� Jzl(c)] f(c)dc

+

Z x

c�
mk(c) [Jzl(c)� Jzk(c)] f(c)dc

s:t: mk(c)
@�(zk; c)

@c
+ (1�mk(c))

@�(zl; c)

@c
=

�
mk(c)

@�(zk; c)

@c
+ (1�mk(c))

@�(zl; c)

@c

�����
x

mk(x) = 1 if x > c

ml(x) = 1 if x < c

0 � mk(c) � 1

From the �rst constraint we get

mk(c)
@�k(c)

@c
+ (1�mk(c))

@�l(c)

@c
=
@�k(c)

@c

����
x

and that gives us

mk(c) =
mk(x)

@�k(c)
@c

���
x
+ (1�mk(x))

@�l(c)
@c

���
x
� @�l(c)

@c

@�k(c)
@c

� @�l(c)
@c

The second constraint imposes a condition on x whenever x < c. Using the expression for mk(c)

found above, this can be written as

mk(x)
@�k(c)

@c

����
x

+ (1�mk(x))
@�l(c)

@c

����
x

� @�l(c)

@c

����
x

= 0

Then x(x) is de�ned implicitly as the solution to the above equation as long as it is less or equal

than c, and as c otherwise. Notice that the convexity of �k; �l immediately implies that x(x) is

nondecreasing.
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Rewriting the problem (now only as a function of x and mk(x)) we get:

min
x

c�Z
x

@�k(c)
@c

�mk(x)
@�k(c)
@c

���
x
� (1�mk(x))

@�l(c)
@c

���
x
� @�l(c)

@c

@�k(c)
@c

[Jzk(c)� Jzl(c)] f(c)dc

+

x(x)Z
c�

mk(x)
@�k(c)
@c

���
x
+ (1�mk(x))

@�l(c)
@c

���
x
� @�l(c)

@c

@�k(c)
@c

� @�l(c)
@c

[Jzl(c)� Jzk(c)] f(c)dc

Let�s name the objective function R(x;mk(x)). We get that

dR(x)

dx
= �

"
@�k(c)
@c

�mk(c)
@�k(c)
@c

� (1�mk(c))
@�(c)

@c
@�k(c)
@c

� @�l(c)
@c

#�����
x

[Jzk(x)� Jzl(x)] f(x)

+

264mk(x)
@�k(c)
@c

���
x
+ (1�mk(x))

@�l(c)
@c

���
x
� @�l

@c

@�k(c)
@c

� @�l(c)
@c

375
�������
x(x)

[Jzl(x(x))� Jzk(x(x))]
dx(x)

dx
f(x(x))

+

x(x)Z
x

mk(x)
@2�k(c)
@c2

���
x
+ (1�mk(x))

@2�l(c)
@c2

���
x

@�k(c)
@c

� @�l(c)
@c

[Jzl(c)� Jzk(c)] f(c)dc

The second term exists only when x(x) < c and in that case it vanishes because of ??. Then we

get that

dR(x)

dx
= (1�mk(x))[Jzk(x)� Jzl(x)]f(x)

+

"
mk(x)

@2�k(c)

@c2

����
x

+ (1�mk(x))
@2�l(c)

@c2

����
x

# x(x)Z
x

Jzl(c)� Jzk(c)
@�k(c)
@c

� @�l(c)
@c

f(c)dc

and that

dR(x)

dmk(x)
=

�
@�k(c)

@c
� @�l(c)

@c

�����
x

x(x)Z
x

Jzl(c)� Jzk(c)
@�k(c)
@c

� @�l(c)
@c

f(c)dc

It�s easy to see that
x(x)R
x

Jzl (c)�Jzk (c)
@�k(c)

@c
� @�l(c)

@c

f(c)dc is nondecreasing in x: the integrand is negative when

c < c� and positive otherwise, and x(x) is nondecreasing in x. This observation, plus the fact that
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h
@�k(c)
@c

� @�l(c)
@c

i���
x
> 0 and

x(c)R
c�

Jzl (c)�Jzk (c)
@�k(c)

@c
� @�l(c)

@c

f(c)dc > 0 allows us to characterize the solution

x =

8>><>>:
c if

x(c)R
c

Jzl (c)�Jzk (c)
@�k(c)

@c
� @�l(c)

@c

f(c)dc � 0h
dR(x)
dx

i�1
(0) if not

and

mk(x) =

8><>: 0 if
x(c)R
c

Jzl (c)�Jzk (c)
@�k(c)

@c
� @�l(c)

@c

f(c)dc � 0

1 if not

We illustrate this technique of obtaining the optimal allocation via a simple example.

Example: Suppose that there a single buyer whose cost parameter is private information and dis-

tributed on the interval [ 1
10
; 2
5
] according to F (c) =Mec

2
and that there are two possible allocations,

z1 and z2: For each cost realization the payo¤ arising from these two allocations is given by

�(z1; c) = Bc2 + Ac+K1

�(z2; c) = Bc2 +K2;

where B > 0; A > 0

Pz2 =
@�(z2; c)

@c
= 2Bc

Pz1 =
@�(z1; c)

@c
= 2Bc+ A

For this example we have that
F (c)

f(c)
=

Mec
2

2Mcec2
=
1

2c
:

so we can write

Jz2(c) = Bc2 +K2 +
1

2c
2Bc

Jz1(c) = Bc2 + Ac+K1 +
1

2c
[2Bc+ A]
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c1

c1

Pz1

Jz2

Pz2

Jz1

One Buyer, Non-linear Valuations
General Case: Ironing An Example

C*=0.2929

x cx =

Consider parameters A = 1; K1 = �2 and K2 = 0. In that case there is a unique change of sign of

the expression Jz1(c)� Jz2(c) at

c� =
2�

p
2

2
= 0:2929:

For c = 0:1 we have that Jz1(c)� Jz2(c) = 3:1 and for c = 0:4 we have that Jz1(c)� Jz2(c) = �0:35.
So at c� = 0:2929 pointwise optimization would dictate that we should move from allocation 1 to

allocation 2 but this is not feasible since for all c we have Pz1 =
@�(z1;c)
@c

= 2Bc+1 � Pz2 =
@�(z2;c)
@c

=

2Bc:

The problem can be then written as:
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min
x;�x

mi(c); i2f0;1;:::;ng

Z c�

x

m2(c) [J1(c)� J2(c)] f(c)dc

+

Z �x

c�
[1�m2(c)] [J2(c)� J1(c)] f(c)dc

s:t: (1�m2(c))(2Bc+ A) +m2(c)2Bc = 2Bx+ A

m2(x) = 1 if x < 0:4

0 � m2(c) � 1

From the �rst constraint we get that

m2(c) =
2B(c� x)

A
; for c 2 [x; �x) and

1�m2(c) =
A� 2B(c� x)

A

and from the second we get that for x < c it must be the case that

m2(�x) =
2B(�x� x)

A
= 1

�x =
A

2B
+ x

Then we conclude:

x =

(
A
2B
+ x if A

2B
+ x � c

c if not

Now let�s substitute m2(c) and x in the objective function and look for the optimal x. We get:

min
x

Z c�

x

2B(c� x)
A

[J1(c)� J2(c)] f(c)dc+
Z x(x)

c�

A� 2B(c� x)
A

[J2(c)� J1(c)] f(c)dc

Naming the objective function R(x) and di¤erentiating it, we obtain

@R(x)

@x
=

2B

A

Z x(x)

x

[J2(c)� J1(c)] f(c)dc

= 4BM

Z x(x)

x

�
2� c� 1

2c

�
ec

2

dc
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Let�s consider B = 1. In that case x(x) = 0:4. From previous work we know that @R(x)
@x

is

nondecreasing, and now we can �nd that @R(x)
@x

= 0 at x = 0:1928. From the previous equations we

can �nd the optimal mixture m2(c).

7 Concluding Remarks

In this paper we study the optimal allocation mechanism for N objects (permits), to I potential

buyers (�rms). Private information is single-dimensional and we can solve the problem even though

our environment in all other respects is very general. Payo¤ functions allow for complementarities,

substitutabilities and type dependent externalities among buyers. The presence of type-dependent

externalities implies that even though the private information of each �rm is one dimensional (its

cost), virtual valuations depend on the cost parameters of all other �rms. This captures nicely

the existence of externalities among buyers: how much money the seller can extract from �rm A

depends on the technology of �rm B, which captures together with other parameters how strong

of a competitor �rm B is. As in JHM (1996) and (2001) the type of the buyer that is indi¤erent

between participating or not, is not exogenously given but depends on the range of the externalities.

This critical type of each agent determines how much money the seller can extract from the players.

Unlike JHM (1996) and (2001), in our model this type depends also on the actual mechanism that

the mechanism designer employs. The reason for this is the presence of general type-dependent

externalities. The characterization of the optimum then becomes intricate: given a mechanism

there is a vector of critical types; the amount of payments that the seller can extract from the

buyers depends on the vector of critical types therefore the mechanism depends not only on the

virtual valuations, but also on which is the critical type. All these are novel but important insights

which can have signi�cant implications for the design of allocation mechanisms for multiple objects

such as the design of mechanisms for the allocation of time-slots for advertisements, landing slots

in airports and many others.
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