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Abstract

Here we supplement some earlier work (Beaudry and Portier [2004]) with some new evidence
obtained from Japanese and U.S. sectoral data. Our results show that (i) In the U.S. as well as for
Japan, Stock Prices short run movements incorporate most (all) of the long run shocks to Total
Factor Productivity and (ii) the Stock Price news is indeed a shock that does not affect sectoral
TFP s on impact, but that increases TFP in the long run in the sectors that are driving TFP
growth, namely durable goods, and among them equipment sectors.
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1 Introduction

In a previous work (Beaudry and Portier [2004]), we have presented properties of the joint behavior

of total factor productivity and stock prices on U.S. postwar data, properties which highlight new

challenges for business cycle theory. In particular, we presented two orthogonalized moving average

representation for these variables: one based on an impact restriction and one based on a long run

restriction. We then examined the correlation between the innovations that drive the long run move-

ments in TFP and the innovation which is contemporaneously orthogonal to TFP. We found this

correlation to be positive and almost equal to 1, indicating that permanent changes in productivity

growth are proceeded by stock market booms. We showed why this observed positive correlation runs

counter to that predicted by simple models where surprise changes in productivity drive fluctuations.

We also discussed how the pattern could arise if agents have advanced information about future tech-

nological opportunities, or if productivity growth emerges as a delayed byproduct of a period high

investment activity. In either case, the results suggests that changes in technological opportunities

may be central to business cycle fluctuations even if surprise changes in productivity are not.
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†Université de Toulouse (GREMAQ, IDEI, LEERNA, Institut Universitaire de France and CEPR)
‡Prepared for the 17th Annual TRIO (NBER-CEPR-TCER) conference, Keio University, Tokyo, Japan

1



In this paper, we extend this analysis to Japanese aggregate data and U.S. sectoral one. The

analysis of aggregate Japanese data confirm our previous results: Stock Prices innovation do contain

most (all) the information about the long run movements of aggregate TFP , and are responsible

for short run business cycle fluctuations. The analysis of U.S. Manufacturing two-digit data shows

that the Stock Price news is indeed a shock that does not affect sectoral TFP s on impact, but that

increases TFP in the long run in the sectors that are driving TFP growth, namely durable goods,

and among them equipment sectors.

2 The Setup

The object of this section is to present a new means of using orthogonalization techniques –i.e. impact

and long run restrictions – to learn about the nature of technological progress diffusion and business

cycle fluctuations. We do not use these techniques simultaneously (as is now common in the literature),

but is instead to use them sequentially. In particular, we will want to apply this sequencing to describe

the joint behavior of stock prices (SP ) and measured total factor productivity (TFPt) in a manner

that can be easily mapped into structural models. The main characteristic of stock prices that we

want to exploit is that it be an unhindered jump variable, that is, a variable that can immediately

react to changes in information without lag.

2.1 Two Orthogonalization Schemes

Let us begin our discussion from a situation where we already have an estimate of the reduced form

moving average (Wold) representation for the bivariate system {TFPt, SPt}, as given below (for ease

of presentation we neglect any drift terms).(
∆TFPt

∆SPt

)
= C(L)

(
µ1,t

µ2,t

)
where L is the lag operator, C(L) = I +

∑∞
i=1 CiL

i, and where the variance co-variance matrix of

µ is given by Ω. Furthermore, we will assume that the system has at least one stochastic trend and

therefore C(1) is not equal to zero. In effect, most of our analysis will be based on a moving average

representation derived from estimation a vector error correction model (VECM) for TFP and stock

prices.

Now consider deriving from this Wold representation alternative representations with orthogonal-

ized errors. As is well know, there are many ways of deriving such representations. We want to

consider two of these possibilities, one that imposes an impact restriction on the representation and

one that imposes a long run restriction. In order to see this most clearly, let us denote these two

alternative representations by:
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(
∆TFPt

∆SPt

)
= Γ(L)

(
ε1,t

ε2,t

)
, (1)

(
∆TFPt

∆SPt

)
= Γ̃(L)

(
ε̃1,t

ε̃2,t

)
, (2)

where Γ(L) =
∑∞

i=0 ΓiL
i , Γ̃(L) =

∑∞
i=o Γ̃iL

i and the variance covariance matrices of ε and ε̃ are

identity matrices. In order to get such a representation, say in the case of (1), we need to find the Γ

matrices that solve the following system of equations:{
Γ0Γ′0 = Ω
Γi = CiΓ0 for i > 0

However, since the above system has one more variable than equations, it is necessary to add a

restriction to pin down a particular solution. In case (1), we will pin down a solution by imposing

that the 1, 2 element of Γ0 be equal to zero, that is, we choose an orthogonalization where the second

disturbance ε2 has no contemporaneous impact on TFP . In case (2), we impose that the 1, 2 element

of the long run matrix Γ̃(1) =
∑∞

i=0 Γ̃i equals zero, that is, we choose an orthogonalization where the

disturbance ε̃2 has no long run impact on TFP (the use of this type of orthogonalization was first

proposed by Blanchard and Quah [1989]).

2.2 Some Simple Structural Interpretations

Here we illustrate the implications of sequentially using impact and long-run restrictions in a canonical

optimal growth model in which technological improvements come either as surprises or diffuse slowly

across the economy but where agents recognize the potential impact of an innovation well before it has

improved productivity. We will show that these two models deliver different predictions with respect

to the correlation between ε and ε̃. As we want to derive simple and explicit results, the models

we present here do not aim at realism as many assumptions are made in order to allow analytical

solutions. The second example is taken from Beaudry and Portier [2004]

A Simple Optimal Growth Model with Technology and Preference Shocks: Let us now

consider an economy in which preferences of the representative household are given by

U = E0

∞∑
t=0)

βt

[
log Ct − Λt

Lσ
t

σ

]
(1)

where C is consumption, L labor and Λ a stationary preference shock.

Λt = eη2,t (2)
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This preference shock acts here as a “demand” shock. A government spending shock would be a more

natural candidate for a demand shock, but the present formulation has the advantage of analytical

tractability, and for our purpose, is equivalent to a government spending shock. The household

accumulates capital, and we assume full depreciation, so that

Kt+1 = It (3)

where K is capital and I investment. The budget constraint of the household, that rents capital and

labor services to the representative firm, is given by

Ct + It = wtLt + κtIt−1 (4)

where κ is the rental rate of capital services and w the wage rate.

The representative firm in this economy produces according to the CRS technology

Yt = θtK
γ
t L1−γ

t (5)

where θ is again a random walk technology shock.

θt = θt−1 eη1,t (6)

η1,t and η2,t are assumed to be iid processes with identity covariance matrix and zero mean.

We assume that agents behave competitively, maximize utility or profit at given prices and that

markets clear. In such an economy, as shown in the appendix, the solution is log-linear. With this

solution, one can perform the short-run and long-run orthogonalizations we presented above, and

recover the shocks ε and ε̃ as functions of the structural shocks η1,t and η2,t. Since firms make zero

profits every period, the stock market value of firms is uninteresting in this model, but there are still

asset price fluctuations in the bond market. Hence, here we will focus on the joint behavior of TFP

and the bond price as the system of interest, that is, the bond price will play the role of the variable

Xt introduced in the preceding section.

In this model, the equilibrium joint behavior of TFP and the log bond price (denoted pb) has a

structural moving average given by:(
∆TFPt

∆pb
t

)
=

(
1 0

(1−γ)
1−γL − 1 − (1−L)(1−γ)2

σ(1−γL)

) (
η1,t

η2,t

)
(7)

Performing short-run and long-run identification on this system, we obtain

ε1 = η1 , ε2 = η2 , ε̃1 = η1 , ε̃2 = η2 (8)

In particular, we have ε2 ⊥ ε̃1.
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A Model with Delayed Response of Innovation on Productivity Let us now consider an

alternative setting where stock prices continue to be a discounted sum of future profits but where

technological innovations no longer immediately increases productivity but instead only increase pro-

ductive capacity over time. The objective of this example is to emphasize what such an environment

predicts regarding the correlation between ε2 and ε̃1 derived using sequentially impact and long run re-

strictions. To this end, let us assume that measured TFP, denoted θ, is composed of two components:

a non-stationary component Dt and a stationary component νt. The component νt can be thought of

as either a measurement error or as a temporary technology shock. For the discussion, we will treat νt

as a temporary shock to θ, although the measurement error interpretation has the same implications.

In contrast, the component Dt is the permanent component of technology, and is assumed to follow

the process given below:


θt = Dt + νt

Dt =
∑∞

i=0 diη1,t−i

di = 1− δi, 0 ≥ δ < 1
νt = ρνt−1 + η2,t, 0 ≤ ρ < 1

(9)

We will call the process for Dt a diffusion process since an innovation η1 is restricted to have

no immediate impact on productive capacity (d0 = 0), the effect of the technological innovation on

productivity is assumed to grow over time (di ≤ di+1) and the long run effect is normalized to 1.

In contrast to the common random walk assumption for the permanent component of TFP, such a

process allows for an S-shaped response of TFP to a technological innovation; which is consistent

with many micro-based studies of the effects of technological innovation on productivity (Pakes [1985]

mentions the “long and erratic lag structure between invention and the current benefits derived from

it”) We now want to derive the implied structural moving average for ∆TFP and ∆SP . To that end,

consider a simple Lucas’ tree type of model, where the ownership of the unique tree of the economy

is tradable and where it pays dividend θt.

Households consume and trade firms shares. Preferences are represented by:

U = E0

∞∑
t=0

βt C
1−σ
t

1− σ
(10)

with σ ≥ 0. The household can buy or sell shares St at unit price Pt. As there is a unique tree in the

economy, the stock market value is SPt = Pt. The household budget constraint is given by

Ct + PtSt+1 ≤ (Pt + θt)St (11)

Optimal behavior of the household is given by budget constraint (11), Euler equation (12)

Pt = βEt

[(
Ct

Ct+1

)σ

(Pt+1 + θt+1)
]

(12)
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and the transversality condition limj→∞ Etβ
jPt+jSt+j+1 = 0.

At the competitive equilibrium, St = 1 and Ct = θt for all t. The stock market value SPt is then

given by

SPt = βEt

[(
θt

θt+1

)σ

(SPt+1 + θt+1)
]

(13)

In order to obtain simple analytical results, we make the further assumption that households are risk

neutral, so that σ = 0. In that case, equation (13) collapses to

SPt = βEt [(SPt+1 + (1− α)θt+1)] (14)

Solving forward and using the transversality condition limj→∞ βjEt[SPt+j ] = 0, we obtain

SPt = βEt

 ∞∑
j=0

βjθt+j+1

 (15)

Using the process of θt given in (9), one can obtain the following structural moving average represen-

tation for TFP and stock prices first differences:(
∆TFPt

∆SPt

)
=

(
(1− δ)

∑∞
i=1 δi−1Li (1−L)

(1−ρL)
β(1−δ)
1−βδ

∑∞
i=0 δiLi βρ

1−βρ
1−L
1−ρL

) (
η1,t

η2,t

)
(16)

From the above representation, we see that the impact matrix on levels of TFP and SP is of the form:(
0 1

β(1−δ)
1−βδ

βρ
1−βρ

)
(17)

And the long run matrix for the levels of TFP and SP is of the form(
1 0
β

1−βδ 0

)
(18)

Hence, performing our short-run and long-run identification on this system, the relationship be-

tween the identified errors εt, ε̃t and the structural errors ηt are:

ε1 = η2 , ε2 = η1 , ε̃1 = η1 , ε̃2 = η2 (19)

In particular, we have that ε2 is co-linear to ε̃1 in this case. What we have found in our previous

work is indeed that ε2 is co-linear to ε̃1 on aggregate postwar U.S. data.

3 Data and Specification Issues

Our empirical investigation will use annual japanese and US data.
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3.1 U.S. Data

U.S. data cover the period 1948 to 2000. The two series that interest us for our bi-variate analysis are

an index of stock market value (SP) and a measure of total factor productivity.

The stock market index we use is the quarterly Standards & Poors 500 Composite Stock Prices

Index, deflated by the seasonally adjusted implicit prices deflator of GDP in the non farm private

business sector and transformed in per-capita terms by dividing it by the population aged 15 to 64.

We denote the log of this index by SP

The construction of our baseline TFP series is relatively standard. We restrict our attention to

the non farm private business sector. From the U.S. Bureau of Labor Statistics, we retrieved two

series: labor share (sh) and capital services (KS) which measures the services derived from the stock

of physical assets and software. The average value of the labor share is sh = 67.66%. Output (Y )

and hours (H) are non farm business measures, from 1947 to 2000 (also from U.S. Bureau of Labor

Statistics). We then construct a measure of (log) TFP as

TFPt = log

(
Yt

Hsh
t KS1−sh

t

)

3.2 Japanese Data

Japanese data cover the period 1960 to 2000. Most are obtained from Hayashi and Prescott1: TFP ,

GNP deflator, age 20-69 population in millions, Total Hours (Column V, sheet ”Labor” of Hayashi-

Prescott), Consumption (Private consumption, Column AB of the sheet “Product”) and Investment

(Private Fixed Capital Investment , Column AH of the sheet “Product”). The Hours series have

been deflated by the 20-69 population one, investment and consumption series have been deflated by

both GNP deflator and age 20-69 population. The Stock Price series is the end-of-year Nikkei 2252,

deflated by GNP deflator and age 20-69 population.

Specification: From our data on TFP and SP, we first want to recover the Wold moving average

representation for ∆TFP and ∆SP . Since from unit root tests (not reported here) and cointegration

tests, we found that SP and TFP are likely cointegrated I(1) processes, a natural means of recovering

the Wold representation is by inverting a VECM. The second specification choice is related with the

number of lags to include in the VECM. Again, our strategy is not to impose much to the data.

According to likelihood ratio two lags are chosen for U.S. data and 6 for Japanese ones.
1See Hayashi and Prescott [2002] and the web site http://www.e.u-tokyo.ac.jp/∼hayashi/hp/hayashi prescott.htm

for the Excel Files)
2As obtained from http://www.finfacts.com/Private/curency/nikkei225performance.htm
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4 Aggregate Results For The U.S. and Japan

4.1 Lessons for TFP movements

We estimate a VECM for (TFP, SP ) with one cointegrating relation and recover two orthogonalized

shock series corresponding to the ε and ε̃ discussed in Section 2, that is, ε was recovered by imposing

an impact restriction (a restriction on Γ0) and ε̃ was recovered by imposing a long run restriction. The

level impulse responses on (TFP, SP ) associated with the ε2 shock and the ε̃1 shock are displayed on

Figure 1 for the U.S. and 4 for Japan. The U.S. results are taken from Beaudry and Portier [2004].

A first striking observations is that for Japanese data too, those responses appear very similar when

comparing one orthogonalization to another. More specifically, the dynamics associated with the ε1

shock–which by construction is an innovation in stock prices which contemporaneously orthogonal to

TFP– seems to permanently affect TFP, while the dynamics associated with the ε̃1 shock –which

by construction has a permanent effect on TFP– has essentially no impact effect on TFP but has a

substantial effect on SP . On the one hand, these results suggest that ε2 contains information about

future TFP growth which is instantaneously and positively reflected in stock prices. While on the

other hand, they suggest that permanent changes in TFP are first reflected in stock prices before they

actually increase productive capacity. From both U.S. and Japanese data, we observe that it takes at

least 5 years for TFP to respond positively in a significant way. .

The similarity between the effects of these two shocks is further confirmed by the inspection of the

forecast error variance decomposition plot (Figure 2 for the U.S.A. and 5 for Japan). Observe that

the ε̃1 shock explains very little of the short run movements of TFP (less than 30% the first 4 years).

On the other hand, the ε2 shock also explains most of the long variance of TFP after 30 yeas (80% for

Japan). This result derives from the quasi-identity between the ε2 shock and the ε̃1 shock, as shown

in Figure 3 for the U.S. and Figure 6 for Japan, which simply plots ε2,t against ε̃1,t. In effect, the

correlation coefficient between these two series is .98 (with a standard deviation of .03) for the U.S.

and .91 (with a standard deviation of .07) for Japan, that is, these two orthogonalization techniques

recover essentially the same shock series.

What kind of structural macroeconomic model is consistent with these two orthogonalization tech-

niques generating the same shock series? For Japan as for the U.S., this pattern appears consistent

with the view –which we call the news view– that improvements in productivity are generally antici-

pated by market participants due to a lag between the recognition of a technological innovation and

its eventual impact on productivity.
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4.2 Lessons for Macroeconomic Fluctuations

The observation that our estimates of ε2 and ε̃1 are highly correlated and induce similar impulse

responses suggests that news about future technological developments may be a relevant driving

force behind business cycle fluctuations. We have shown (Beaudry and Portier [2004] that output,

consumption, investment and hours do respond positively in the short run to those technological

disturbances on postwar U.S. data.

Let us proceed to similar estimation for Japan. To that end, we estimate the following truncated

moving average representation for different variables Zt:

∆Zt =
J∑

j=0

φu
j ut−j + µt (20)

where Z will either be consumption (C), investment (I), output (C + I) or hours (H), u is either ε2 or

ε̃1 and where µ a variable-specific disturbance that is orthogonal to u. The resulting sequence given

by
∑n

j=0 φj provides an estimate of the impulse response function of X to a u shock, that is, the

response to what we claim may be a news shocks. The truncation is done for J = 5.

Figure 8 displays the responses of consumption, investment, output (defined as C + I) and hours

to ε2 and ε̃1, that is, the responses to what we suggest may reflect news of a technological innovation

which only diffuses slowly into productive system. As can be seen in the Figure, the responses to

both shocks is virtually undistinguishable. Consumption and Hours increase by about .5% on impact,

while the impact response of Investment and Output is more modest. After one year, all responses

are above one percentage point.

As in the case of U.S. data, these results suggest that an ε2 (1) creates business cycle like fluctua-

tions, (2) does not affect TFP contemporaneously and (3) affect TFP in the long run. This pattern is

consistent with the interpretation of ε2 as being primarily a news shock. Such a structural interpreta-

tion is supported by the fact that the same responses for the economy are obtained from a short run

identification in which we identify a news shock as ε2 in our (TFP, SP ) system as the innovation to

stock prices that is orthogonal to current TFP, or if we examine the effects of ε̃1 which by definition

affects long run TFP.

4.3 A Decomposition of Japanese Movements of TFP and Stock Prices

Here we use the estimated VARs to decompose historical movements into components explained by the

various epsilons. Formally, and using the short run identification as an example, we use the estimated

VAR decomposition (21) to decompose(
∆TFPt

∆SPt

)
= Â(L)

(
∆TFPt

∆SPt

)
+ Π

(
TFPt−1

SPt−1

)
+ C +

(
ε1,t

ε2,t

)
(21)
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where C is a vector of constant term and Π is the cointegration coefficients vector. Starting from

the observed initial conditions for TFP and SP , we can for example construct the series TFP ε2 and

SP ε2 of the variations of TFP and Stock prices explained by ε2 only (in other words what would have

happened absent of ε1 shocks as(
∆TFP ε2

t

∆SP ε2
t

)
= Â(L)

(
∆TFP ε2

t

∆SP ε2
t

)
+ Π

(
TFP ε2

t−1

SP ε2
t−1

)
+ C +

(
0

ε2,t

)
(22)

Figure 9 display in its upper-left panel the predicted series of TFP absent of shocks over the

whole period, which corresponds to the prediction that one can make with the VAR in 1968. Observe

that the actual path for TFP is above the expected one after the mid 80’s. The upper-right panel

shows that the innovations to TFP of the short run identification, ε1 (and also ε̃2 in the long run

identification) are not responsible for this higher than expected TFP , as the predicted series absent of

those shocks tracks almost perfectly the actual one. The lower-left panel shows that ε2 or ε̃1 explain

the evolution of the series after the mid 80’s. Figure 10 shows the result of the same exercise for the

Stock Price series, and shows how the non-permanent technological shock ε̃2 (and similarly ε1) are

responsible for the boom-bust dynamics of the 90’s

Figures 11 and 12 perform similar exercises, but starting from the actual value of the series in

1989, and provide an accounting of the “lost decade”. First, TFP has been way below its expected

trend, as expected in 1989. Second, ε2 or ε̃1 explain the evolution of the series. More specifically, the

shocks ε2 or ε̃1 in 1990 and 1992 (as shown on Figure 7 are responsible for most of TFP stagnation.

Those two shocks are also responsible for most of the Stock Price bust of the 90’s.

5 Sectoral Results For The U.S.

The shock ε2, that is identified as the Stock Price innovation in a (TFP, SP ) VAR (that is the shock

that is orthogonal to current TFP , where TFP is measures in the Nonfarm Private Business sector),

has been shown to be explaining most (all) of the long run variance of TFP . It is of interest to go

deeper in the inspection of the TFP impact and long run response to this shock, as to give some

food for a further more structural interpretation. It is of particular interest to inspect the response of

different sectors to that shock.

In this section, we make use of the BLS Multifactor Productivity Trends in Manufacturing–

published data for 20 SIC 2-digit Manufacturing3. We estimate the sectoral TFP response to an

aggregate Stock Price innovation following a two-step procedure. We first estimate an aggregate ε2

shock, as explained in section 2. We then project each sectoral productivity TFP s, where s indexes

the sector, on present and past values of ε2
3As obtained from http://www.bls.gov/mfp/home.htm
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∆TFP s
t =

J∑
j=0

φjε2,t−j + µt (23)

where µ a variable-specific disturbance that is orthogonal to ε2. The resulting sequence given by∑n
j=0 φj provides an estimate of the impulse response function of TFP s to a ε2 shock. We truncate

at J = 10, and our sample runs from 1951 to 2000.

Table 1 displays the impact and long run response of sectoral TFP to a one-standard-deviation

shock, while 2 displays the p-values associated to the tests φ0 = 0 (Impact) and
∑1

j=0 0φj = 0 (“long

run”). The whole IRF are displayed in Figures 13, 14 and 15. According to the “news” interpretation

we have proposed, the impact response should be zero, while the long run one positive, at least for the

sectors that have been driving aggregate TFP growth for the postwar period. What do we obtain?

Neither Manufacturing TFP as a whole, nor Nondurable or Durable ones do significantly increase

on impact. When one goes to the two-digit series, it is only in one out of 18 sectors, Transportation

Equipment that the impact response is significantly different from zero (at 5%) , and is indeed neg-

ative. Therefore, one cannot interpret the zero response of aggregate as the result of some complex

aggregation effect. As far as the long run is concerned, Manufacturing as well as Nondurable and

Durable goods TFP do respond positively in the long run, although Nondurable TFP response is

not significantly positively (at 5%)(see Figure 13). The fact that the response of Durable goods TFP

is large and significant in the long run favors the importance of an embodied technological progress

type of explanation for aggregate TFP , and is confirmed by the two-digit results. Most of the sectors

(14 out of 18, the exceptions being Food & Kindred Products, Textile Mills Products, Lumber & Wood

Products and Furniture & Fixtures ) respond positively to the shock. The news ε2 is associated with

a significantly (at 5%) long run (10 years) response in those sectors that have been driving U.S. TFP

growth over the last 40 years: Industrial Machinery & Computer Equipment, Electric & Electronic

Equipment, Transportation Equipment, Instruments (at 6.6%) for durable goods, Petroleum Refining

and Rubber & Plastic Products (at 16%) for nondurable goods.

Those results give some extra support to our interpretation of this Stock Price innovation as an

aggregate TFP news, that is widely spread across the sectors that are important for growth: not only

this ε2 explains the long run of aggregate TFP without affecting it in the long run

6 Conclusion

TO BE WRITTEN
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Appendix

A Tables

Table 1: Impact and Long Term Responses of TFP to a one-standard-deviation Stock price Innovation
ε2

Impact 10 years
Manufacturing -0.1 2.9
Nondur. Goods 0.1 0.6
Durable Goods -0.3 4.6
Non Durable
Food & Kindred Prod. 0.4 -1.0
Textile Mills Prod. 0.2 -1.2
Apparel & Related Prod. 0.3 0.1
Paper & Allied Prod. -0.3 1.5
Printing & Publishing -0.2 0.8
Chem. & Allied Prod. -0.4 2.5
Petroleum Refining -0.0 1.7
Rubber & Plastic Prod. 0.3 2.1
Durable
Lumber & Wood Prod. -0.3 -0.3
Furniture & Fixtures 0.1 -0.7
Stone, Clay & Glass -0.1 1.9
Primary Metal Ind. -0.5 2.1
Fabricated Metal Prod. 0.1 0.4
Ind. Machinery,Comp.Eq. 0.3 5.4
Electric & Electr. Eq. 0.7 6.3
Transportation Equip. -1.2 3.6
Instruments -0.4 2.5
Misc. Manufacturing -1.1 3.2
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Table 2: P-value for the test that the impact or 10 years response of TFP to a Stock price Innovation
ε2 is zero

Impact 10 years
Manufacturing 68.6 % 1.8 %
Nondur. Goods 86.8 % 61.6 %
Durable Goods 39.0 % 0.1 %
Non Durable
Food & Kindred Prod. 33.3 % 53.3 %
Textile Mills Prod. 65.5 % 38.3 %
Apparel & Related Prod. 27.6 % 91.3 %
Paper & Allied Prod. 51.1 % 43.4 %
Printing & Publishing 41.2 % 48.3 %
Chem. & Allied Prod. 61.1 % 35.5 %
Petroleum Refining 92.3 % 2.0 %
Rubber & Plastic Prod. 42.1 % 15.8 %
Durable
Lumber & Wood Prod. 58.2 % 89.2 %
Furniture & Fixtures 59.7 % 45.3 %
Stone, Clay & Glass 82.2 % 18.7 %
Primary Metal Ind. 31.8 % 26.4 %
Fabricated Metal Prod. 84.6 % 65.6 %
Ind. Machinery,Comp.Eq. 55.3 % 0.4 %
Electric & Electr. Eq. 17.6 % 0.2 %
Transportation Equip. 0.6 % 2.4 %
Instruments 31.1 % 6.6 %
Misc. Manufacturing 7.6 % 14.8 %
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B Figures

Figure 1: Impulse Responses to Shocks ε2 and ε̃1 in the (TFP, SP ) VAR, Using U.S. Annual Obser-
vations (1948-2000)
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On each panel of this figure, the bold line represents the point estimate of the responses to a unit ε2
shock (the shock that does not have instantaneous impact on TFP in the short run identification); the
line with circles represents the point estimate of the responses to a unit ε̃1 shock (the shock that has a
permanent impact on TFP in the long run identification). Both identifications are done in the baseline
bivariate specification. The unit of the vertical axis is percentage deviation from the situation without
shock. Dotted lines represent the 10% and 90% quantiles of the distribution of the IRF in the case
of the short run identification, this distribution being the bayesian simulated distribution obtained by
Monte-Carlo integration with 2500 replications, using the approach for just-identified systems discussed
in Doan (1992).
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Figure 2: U.S.A.: Forecast Error Variance of TFP explained by ε2 and ε̃1
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This figure displays the share of TFP forecast error variance attributed to ε2 (the shock that does
not have instantaneous impact of TFP in the short run identification) or to ε̃1 (the shock that has a
permanent impact on TFP in the long run identification)(right panel), both in the baseline bivariate
U.S. specification.

Figure 3: ε2 Against ε̃1 in the (TFP, SP ) VAR, Using U.S. Annual Observations (1948-2000)
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Each panel of this figure plots ε2 against ε̃1. Both shocks are obtained from the baseline (TFP, SP )
VAR, with 2 lags and one cointegrating relation. The straight line is the 45◦ line.
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Figure 4: Japan: Impulse Responses of TFP and Stock Prices to ε2 (solid line) and ε̃1 (circles) with One
Cointegrating Relation in the (TFP, SP ) VAR using confidence bands of the long run identification
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On each panel of this figure, the bold line represents the point estimate of the responses to a unit ε2
shock (the shock that does not have instantaneous impact on TFP in the short run identification); the
line with circles represents the point estimate of the responses to a unit ε̃1 shock (the shock that has a
permanent impact on TFP in the long run identification). Both identifications are done in the baseline
bivariate specification. The unit of the vertical axis is percentage deviation from the situation without
shock. Dotted lines represent the 10% and 90% quantiles of the distribution of the IRF in the case
of the long run identification, this distribution being the bayesian simulated distribution obtained by
Monte-Carlo integration with 1000 replications, using the approach for just-identified systems discussed
in Doan (1992).

Figure 5: Japan: Forecast Error Variance of TFP explained by ε2 and ε̃1
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This figure displays the share of TFP forecast error variance attributed to ε2 (the shock that does
not have instantaneous impact of TFP in the short run identification) or to ε̃1 (the shock that has a
permanent impact on TFP in the long run identification)(right panel), both in the baseline bivariate
Japanese specification.
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Figure 6: ε2 Against ε̃1 in the (TFP, SP ) VAR, Japanese Annual Data
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This figure plots ε2 against ε̃1. Both shocks are obtained from the baseline (TFP, SP ) VAR, with 6
lags and one cointegrating relation. The straight line is the 45◦ line.

Figure 7: Estimated ε2 and ε̃1 in the (TFP, SP ) VAR, Japanese Annual Data
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This figure plots ε2 and ε̃1. Both shocks are obtained from the baseline (TFP, SP ) VAR, with 6 lags
and one cointegrating relation.
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Figure 8: Response of Consumption, Investment, Output (Defined as C + I) and Hours to ε2 and ε̃1
in the (TFP, SP ) VAR, Japanese Annual Data
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This figure displays the response of consumption, Investment, Output (Defined as C +I) and Hours to
a unit ε2 shock (the shock that does not have instantaneous impact on TFP in the short run identifi-
cation) or to a unit ε̃1 (the shock that has a permanent impact on TFP in the long run identification).
The unit of the vertical axis is percentage deviation from the situation without shock (See the main
text for more details).

19



Figure 9: Historical Decomposition of the TFP path, Whole Sample, (TFP, SP ) VAR, Japanese
Annual Data
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This figure plots the decomposition of TFP into movements explained by some various combinations
of structural shocks (See the main text for more details). Results are obtained from the baseline
(TFP, SP ) VAR, with 6 lags and one cointegrating relation.
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Figure 10: Historical Decomposition of the SP path, Whole Sample, (TFP, SP ) VAR, Japanese
Annual Data
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This figure plots the decomposition of SP into movements explained by some various combinations
of structural shocks (See the main text for more details). Results are obtained from the baseline
(TFP, SP ) VAR, with 6 lags and one cointegrating relation.
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Figure 11: Historical Decomposition of the TFP path, 1990’s, (TFP, SP ) VAR, Japanese Annual
Data
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This figure plots the decomposition of TFP into movements explained by some various combinations
of structural shocks (See the main text for more details). Results are obtained from the baseline
(TFP, SP ) VAR, with 6 lags and one cointegrating relation.
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Figure 12: Historical Decomposition of the SP path, 1990’s, (TFP, SP ) VAR, Japanese Annual Data
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This figure plots the decomposition of sP into movements explained by some various combinations
of structural shocks (See the main text for more details). Results are obtained from the baseline
(TFP, SP ) VAR, with 6 lags and one cointegrating relation.
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Figure 13: U.S. Sectoral TFP Responses To a Stock market Innovation ε2
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This figure displays the response of Sectoral TFP to a unit ε2 shock (the shock that does not have
instantaneous impact on aggregate TFP in the short run identification). The unit of the vertical axis
is percentage deviation from the situation without shock (See the main text for more details).
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Figure 14: U.S. Sectoral TFP Responses To a Stock market Innovation ε2, 2-digit level (a)
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This figure displays the response of Sectoral TFP to a unit ε2 shock (the shock that does not have
instantaneous impact on aggregate TFP in the short run identification). The unit of the vertical axis
is percentage deviation from the situation without shock (See the main text for more details).
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Figure 15: U.S. Sectoral TFP Responses To a Stock market Innovation ε2, 2-digit level (b)
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This figure displays the response of Sectoral TFP to a unit ε2 shock (the shock that does not have
instantaneous impact on aggregate TFP in the short run identification). The unit of the vertical axis
is percentage deviation from the situation without shock (See the main text for more details).

26


	Introduction
	The Setup
	Two Orthogonalization Schemes
	Some Simple Structural Interpretations

	 Data and Specification Issues 
	U.S. Data
	Japanese Data

	Aggregate Results For The U.S. and Japan
	Lessons for TFP movements
	Lessons for Macroeconomic Fluctuations
	A Decomposition of Japanese Movements of TFP and Stock Prices

	Sectoral Results For The U.S.
	Conclusion
	Tables
	Figures

