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Abstract

Recent empirical literature that uses the Structural Vector Autoregression (SVAR) approach
has shown that a productivity shock identified using long–run restrictions leads to a persistent
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after a technology shock. We find that this model is not rejected by the data as it is able to
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Introduction

Following Blanchard and Quah (1989) and Gali (1999), the recent empirical literature that uses the

Structural Vector Autoregression (SVAR) approach has shown that a productivity shock identified

using long–run restrictions lead to a persistent and significant decrease in hours worked. Using a

difference specification (DSVAR), Gali (1999) shows that hours significantly decreases in the short

rune in all G7 countries, with the exception of Japan. Gali (2004) also finds similar qualitative results

for the euro area as a whole. Conversely, with the level specification1 (LSVAR), the point estimate

of the impact response becomes positive, but very small and not significantly different from zero.

Despite a hump–shaped response of hours, the effect is not significantly different from zero for each

horizon.2 Conversely, the negative response of hours in DSVAR appears robust to various detrending

methods of hours (see Gali and Rabanal (2004)) and to the inclusion of other variables in the VAR

model (see Gali (1999), Francis and Ramey (2004)). If the measurement device, i.e. the DSVAR

model, is taken seriously, this result is really challenging for a large part of the business cycle research

program. Indeed, as pointed out by Gali and Rabanal (2004), the standard Real Business Cycle

(RBC) model cannot reproduce this pattern, as hours worked increase after a positive technology

shock. For Francis and Ramey (2004), these empirical evidences reject unambiguously the RBC

model and thus constitute the death of the paradigm. For Gali (1999) and Gali and Rabanal (2004),

these empirical findings suggest to abandon the frictionless approach in favor of models with nominal

rigidities (stricky prices and/or sticky wages3). It is worth noting that flexible price models are able

to reproduce a fall in hours following a technology shock, but they must include many frictions, such

that habit persistence in consumption together with a high level of adjustment costs on physical

capital (see Beaudry and Guay (1996), Boldrin, Christiano and Fisher (2001), Francis and Ramey

(2004)).

However, recent contributions have questioned the ability of SVAR models to consistently measure the

1Christiano, Eichenbaum and Evans (2004) argue that the DSVAR may induce distortions if hours worked are
stationary in level.

2Chari, Kehoe and McGrattan (2004b) find similar results using various US datasets, with the exception of Francis
and Ramey (2004) dataset.

3Gali and Rabanal (2004) propose a structural model with real frinctions and nominal rigidities (“triple” sticky,
following McGrattan (2004)) that is consistent with these evidences.
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effect of a technology shock using long–run restrictions. Erceg, Guerrieri and Gust (2004) have shown

using models calibrated on US data that the effect of a technology shock is not precisely estimated

with SVAR. Moreover, when they adopt a DSVAR specification, the bias increases significantly.4

Chari, Kehoe and McGrattan (2004b) provide similar results. They simulate a RBC model estimated

by Maximum Likelihood on US data with two shocks (a permanent technology shock and a stationary

labor tax shock) and they find that the DSVAR approach leads to a negative response of hours under

a structural model wherein hours respond positively. These two papers cautions the use of SVAR in

order to identify the effect of technology shocks as a model–independent approach. Moreover, these

findings point out that it is not necessary to build macroeconomic model with a fall in hours after a

technology shock.

This paper pursues this research line using another quantitative approach. Erceg, Guerrieri and

Gust (2004) calibrate some models’ parameters using a small set of moments and thus looks at their

quantitative implications for the identification of technology shock using long–run restrictions. The

two models under study (flexible and sticky) are not formally evaluated on their ability to reproduce

other moments characterizing the US business cycle and impulse responses of various aggregate

variables. Chari, Kehoe and McGrattan (2004b) estimate a flexible price model on US data. However,

in order to solve some singularity problems, they add shocks that account for measurement errors.

It will be thus hard to know what are the main sources of aggregate fluctuations in simulation

experiments (structural shocks or measurement errors). Our approach differs in many ways. First,

the model’s parameters are estimated such that impulse responses from the model are as close as

possible to the impulse responses from the actual data. Second, we introduce a large number of

over–identifying restrictions. This allows us to test the hypothesis: Do We Need Models with a

Fall in Hours?. Third, we use an original econometric approach in order to estimate and test the

model. Rather than using a limited information strategy (see Rotemberg and Woodford (1997),

Christiano, Eichenbaum and Evans (2004), Altig, Christiano, Eichenbaum and Linde (2005)), that

estimate directly the structural parameter from impulse responses, we use an Indirect Inference

4This is true in the case of a RBC model. A Sticky Price/Wage model delivers better results, as the LSVAR and
DSVAR provide a consitent estimate of the true (negative) response of hours.
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approach (see Gouriéroux, Monfort and Renault (1993), Gouriéroux and Monfort (1996)). The

idea of Indirect Inference typically is to use an auxiliary model (or an auxiliary criteria) in order

to indirectly estimate and test a structural model. The empirical strategy adopted in this paper

typically use the evidence from simulations experiments in Erceg, Guerrieri and Gust (2004) and

Chari, Kehoe and McGrattan (2004b). As the DSVAR used by Gali can deliver downward biased

responses of hours following a technology shock, we use DSVAR model as an auxiliary model. The

model is not estimated directly from DSVAR on actual data, but indirectly using both DSVAR under

the structural model and DSVAR under actual data. This indirect approach allows to correct for

biases and distortions, if they exist. If we keep in mind one of the main results of Chari, Kehoe and

McGrattan (2004b), this means that a model wherein hours worked increase after a technology shock

is potentially able to match a DSVAR model where hours decreases. We thus estimate a RBC model

in the line of Kydland and Prescott (1982). The model is simpler than Kydland and Prescott as time

non–separability includes only one lag in leisures choices. However, we depart from Kydland and

Prescott as we introduce an additional shock that shifts utility over periods. The preference shock

accounts for persistent changes in the marginal rate of substitution between goods and work. This

model can be viewed as “old–fashioned” and thus representative of the first generation of frictionless

RBC models. By this mean, we want to evaluate if this type of model is really dead.

We complement this econometric approach by a simple model from which we can easily compute

the impulse responses. Using this simple model as the Data Generating Process (DGP), we show

analytically that DSVAR leads to biased estimated response of hours. In the original model, hours

does not respond to a technology shock, whereas they persistently decrease in the DSVAR. Moreover,

the bias increase with the variance and the persistence of the non–technology shock. When the

persistence of this shock is very high, adding more lags in the DSVAR does not allows to correct

the bias in the estimated response. These results shows that a direct quantitative evaluation of a

structural model from DSVAR can be misleading. They also suggest an alternative quantitative

method, i.e. an indirect approach that that consider the DSVAR model as an auxiliary model for

estimating and testing a structural model.
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As in Christiano, Eichenbaum and Vigfusson (2004), we first estimate impulse responses from DSVAR

using alternative measures (in logs) of productivity and hours worked with quarterly U.S. data for

the period 1948:1-2002:4. We then estimate the structural parameters using indirect inference on

the impulse responses of hours to a technology and non–technology shock. For each dataset, the

structural model is able to produce impulse responses very close to the ones obtained from actual

data. This means that our structural model wherein hours worked persistently increases after a

technology shock is consistent with the Gali’s finding, i.e. a technology shock in DSVAR leads to

a fall in hours. Moreover, from the parameter estimates, we compute the contribution of the two

shocks to aggregate fluctuations. We find that the technology shock is the main source of output

growth fluctuations, whereas the preference shock explains most of fluctuations in hours. We end

our empirical exercice looking at the LSVAR approach. We show that the DSVAR specification,

although bias induced, encompasses the LSVAR specification.

The paper is organized as follows. In a first section, we introduce a simple model that allows to clearly

show the main sources of distortion with the DSVAR approach. In section 2, we briefly present a

Kydland–Prescott type model. The third section is devoted to the econometric methodology. In

section 4, we present the data and the results. A last section concludes.

1 Lessons from a Simple Model

In this introductory example, we consider a simple flexible prices equilibrium model without capital

accumulation5. This model is deliberately stylized in order to deliver analytical results when a

DSVAR model is estimated under this DGP. One can argue that the economy is highly stylized, so

we cannot take its quantitative implications seriously. For example, the response of hours following

a technology shock is zero. This is in contradiction with our results from SVARs in section 4 and

previous quantitative findings (see Gali (1999), Gali and Rabanal (2004), Christiano, Eichenbaum and

Vigfusson (2004)). This is not problematic for our purpose, as we simply try to evaluate the ability

of SVARs (as a model–free statistical measurement method) to recover the effect of a technology

5A version of this model with capital accumulation is considered in the next section. Our main analytical findings
are not qualitatively altered in this more general setup (See Erceg, Guerrieri and Gust (2004) and Chari, Kehoe and
McGrattan (2004b)
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shock. The lack of response of hours to a technology shock has only to be considered as a reference

number for the analysis.

1.1 The Model

The representative household seeks to maximize

log Ct + χt(1 − Nt) (1)

subject to the budget constraint

Ct ≤ wtNt + Πt (2)

for every periods. The quantity of good consumed in period t is Ct. The variable Nt denotes hours,

wt is the real wage and Πt represents the profit that household receives from the firm. The utility

function is separable, logarithmic in consumption and following Hansen (1985), linear in leisure, thus

implying an infinite labor supply elasticity. Without loss of generality, the time endowment is set

to unity. χt is a random variable that shifts utility every periods. The logarithm of this variable is

assumed to follows an AR(1)

log(χt) = ρχ log(χt−1) + exp (εχ,t)

where εχ,t ∼ N (0, σ2
χ). As noticed by Gali (2004b), this shock can be an important source of

fluctuations, as it allows to represent persistent shifts in the marginal rate of substitution between

goods and work (see Hall (1997)). Such shifts accounts for persistent fluctuations in labor supply

that follow some changes in demography structure and/or labor market participation. Moreover, this

preference shock allows to generate persistence in hours.6 It is worth noting that our assumption of

linear labor supply has no consequence on our results. In what follows, the formula would be exactly

the same, except that we have to scale the variance of the preference shock by the square of ones

plus the inverse of the Frishian labor supply elasticity. The first order conditions of the households

problem (1)–(2) yield

χtCt = wt

6Note that this shock is observationally equivalent to a tax on labor income (see Erceg, Guerrieri and Gust (2004)
and Chari, Kehoe and McGrattan (2004b)). It allows to simply account for distortions on the labor market, i.e. labor

wedges following Chari, Kehoe and McGrattan (2004a).
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Consumption is an increasing function of real wage, whereas it decreases facing a positive preference

shock on leisure.

The representative firm produces an homogenous good with a technology

Yt = ZtN
α
t

where α ∈ (0, 1]. The variable Zt is the aggregate technology. The growth rate of Zt is assumed to

be iid and normally distributed

Zt = Zt−1 exp (εz,t)

where εz,t ∼ N (0, σ2
z). The first order condition of the firm is

wt = α
Yt

Nt

From the households and firms optimality conditions and market clearing Yt = Ct = ZtN
α
t , the

equilibrium employment is given by Nt = α/χt, whereas labor productivity is directly deduced from

the production function. Taking logs and without loss of generality ignoring constant terms, we

obtain the following log–linear representation of the economy

nt = −χt (3)

∆xt = εt + (1 − α)∆χt (4)

log(χt) = ρχ log(χt−1) + εχ,t (5)

where lower letters represent the logarithm of each variables. In this economy, employment (3)

does not react to a technological shock but decreases facing a preference shock. The technological

shock increases positively and permanently – one–for–one – productivity (4), whereas the stationary

preference shock (5) has no long–run effect.

1.2 Identification from SVAR(1)

We use the solution (3)–(5) as the DGP. Given the realization of the equilibrium, we will seek to

evaluate the quantitative implications of SVARs when the econometrician uses long–run restrictions

(on productivity or output growth) in order to recover the effect of a technology shock on employment.

Note that we consider that fluctuations in hours can be highly persistent and undistinguishable from
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a unit root in small sample when ρχ is close to one. Indeed, many studies have suggested that hours

can display non–stationarity (see Gali and Rabanal (2004) and Gali (2004b) among others). We

consider the estimation of VAR models and the identification of technology shock using long–run

restriction in a VAR model with a first difference specification. The VAR(1) model to be estimated

has the following forms:

zt = A1zt−1 + εt

where zt includes the following variables

zt =

(
∆xt

∆nt

)
DSVAR(1)(∆x, ∆n) model

In order to get analytical results, we only consider a VAR(1) model. Despite its simplicity, this

assumption allows us to shed light on the main mechanisms at works. Increasing the number of

lags does not modify the main results (especially when the preference is highly serially correlated

(ρχ ≈ 1). Estimated VARs’parameters and associated IRF allows to determine the mapping between

the structural parameters and the ones of the DSVAR. We impose the long–run restriction that only

the productivity shock has a permanent effect on labor productivity (see the subsection 3.1 for more

details about the identification using long–run restrictions). The following proposition determines

impulse responses of hours to a technology shocks.

Proposition 1 When α ∈ (0, 1) and σu, σε > 0, the impulse responses of hours worked to a technol-

ogy shock under the structural model (3)–(5)is negative for each horizon in the DSVAR(1) (∆x, ∆n)

model.

Proposition 1 shows that the estimated response of hours in the DSVAR is downward biased. Note

that these results are asymptotic and does not come from small sample biases. When the variance

of the non–technological shocks is non–zero and α ∈ (0, 1), this response is always negative. More

precisely, the IRF at horizon k of the level of hours is given by:

∂nt+k

∂η1,t

= − (1 − α)σ2
χ(

σ2
z + 2(1−α)2

3−ρχ

σ2
χ

)1/2

k∑

j=0

(
−

(
1 − ρχ

2

))j
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where η1,t is the productivity shock in DSVAR identified using long–run restrictions. We see that

when the variance of the non–technology shock increases relatively to the the variance of the tech-

nology shock, the negative response is more pronounced. Moreover, when the labor share decreases

the negative response is amplified. Conversely, when this share tends to one, the response is zero.

In this latter case, the productivity growth depends only on the technology shock and the response

of hours is zero. This simply means that when the productivity growth is an appropriate measure

of total factor productivity growth, the DSVAR specification allows to recover the true IRF of hours

that follows a technology shock. Another interesting result concerns the estimated response to a

technology shock when hours display persistence. Proposition 1 shows that the persistence of the

preference shock χt does not qualitatively affect the results in the DSVAR specification. The re-

sponses of hours is always negative in the DSVAR(∆x, ∆n) for any value ρ ∈ [0, 1]. Note that when

hours are non–stationary, the difference specification of employment in SVARs does not allow to

recover the true response. In the limit case (ρχ → 1), the impulse responses are given by:

lim
ρχ→1

∂nt+k

∂η1,t

= −(1 − α)σ2
χ

(
σ2

z + (1 − α)2 σ2
χ

)−1/2

The response of hours is asymptotically biased in the DSVAR model even when the preference

shock follows a random walk. This result can be easily explain, as the preference shock will have a

permanent effect on productivity when ρχ = 1. In this case, the long run restriction in the DSVAR

model (only the technology shock has a permanent effect) is not satisfied. Finally, we have considered

for simplicity only a VAR(1) model. The quantitative results will be affected in the case of DSVARs,

has the first difference of hours introduces a unit root in the moving average of preference shock,

especially when ρχ is close to zero. This point is illustrated by figure 1–(a) that reports the response

of hours to a technology shock for various lags (p = 1, ..., 12) when the preference shock is iid. In

his case, increasing the number of lags allows to weaken the negative response of hours. Except at

the impact where the response remains always negative, the response of hours is almost zero. This

result does not hold when the preference shock (and thus hours) is persistent. Figure 1–(b) reports

the impulse responses of hours for various lags when ρχ = 0.98. As this figure shows, increasing the

number of lags has a very small effect, especially in the short run. This result can be easily understood

from the structural model when ρχ ≈ 1. In this case, employment and productivity in first difference
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are iid and estimated parameters from any V AR(p) would be zero. The selection of the number of

lags does not affect the response of hours. Finally, it is worth noting that despite its simplicity, the

identification of technology shock from the model possesses some empirical contents. Indeed, the IRF

from the DSVAR model under the model roughly match the IRF from the data. When hours are

taken in first difference with productivity growth, the response is persistently negative as predicted

by Proposition 1.

This latter remark suggests another way to quantitative evaluate business cycle models from DSVAR.

Rather than a direct evaluation from impulse responses of hours in DSVAR, Proposition 1 suggests

an indirect approach. Let ψ̂T the estimated impact response of hours to a technology shock using a

DSVAR specification with actual data. Under the structural model, the impact response is

ψ(α, σz, ρχ, σχ) = − (1 − α)σ2
χ(

σ2
z + 2(1−α)2

3−ρχ

σ2
χ

)1/2

Assume for simplicity that ρχ = 0 and α and σz are set. One can thus determine a value of σχ such

taht the following equality hold:

ψ(σχ) = ψ̂T

The binding function ψ(σχ) offers the opportunity to estimate a value of σχ, such that the impact

response in a DSVAR model under the structural model is equal to the impact response in a DSVAR

under actual data. Figure 2 illustrates this property. In this figure, we report the binding function is

the (ψ(σχ), σχ) plane.7 This figure also illustrates the results of Proposition 1. When the standard–

error of the non–technology shock increases, the negative response of hours in the DSVAR model is

more pronounced. Now, we use the point estimate8 ψ̂T ≃ −0.27 of Gali and Rabanal (2004). From

this point estimate, we can directly deduce the value of σχ such that ψ(σχ) = ψ̂T using the binding

function. This example simply show how to conduct a quantitative investigation about the ability

of business cycle models to match impulse responses of hours in DSVAR model. We now introduce

a RBC model in the line of Kydland and Prescott (1982)

7In this figure, we set α = 0.6 and σz = 0.025.
8See also the subsection 4.1 and figure 3.
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2 A Kydland–Prescott Type Model

We consider a simpler and modified version of the Kydland–Prescott model in the line of Wen (1998).

We depart from Kydland and Prescott as the model includes two shocks: a random walk productivity

shock (Zt) and a stationary preference shock (χt). Second, we consider that intertemporal leisure

choices are not time separable – as in Kydland and Prescott –, but we assume that the service

flows from leisure are a linear function of current and one lag leisure choices. More precisely, the

intertemporal expected utility function of the representative household is given by

Et

∞∑

i=0

βi
{
log(Ct+i) + χt+i log(L⋆

t+i)
}

where β ∈ (0, 1) denotes the discount factor and Et is the expectation operator conditional on the

information set available at time t. Ct is the consumption and leisure at time t and L⋆
t+i represents

some service flows from leisure Lt. As in the simple model, the labor supply Nt ≡ 1−Lt is subjected

to a stochastic shock χt, that follows a stationary stochastic process:

log(χt) = ρχ log(χt−1) + σχεχ,t

where |ρχ| < 1, σχ > 0 and εχ,t is iid with zero mean and unit variance. The servie flows is represented

by

L⋆
t = B(L)Lt

where B(L) is a defined as:

B(L) = 1 − bL

where L is a lag operator. This form of the utility function – although simpler – is very similar to

Kydland and Precott9. The main difference with Kydland and Precott comes from the sign of b.

Kydland and Prescott imposed that b is strictly negative, implying that current and future leisure

choice are intertemporally substituable. We do not impose such a restriction and b will be chosen in

order to match some moments.

9We consider only one lag whereas Kydland and Prescott assumes habit in leisure gradually reacts to past leisure
choices.
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The representative firm use capital Kt and labor Nt to produce a final good. The technology is

represented by the following constant returns–to–scale Cobb–Douglas production function

Yt = Kα
t (ZtNt)

1−α

where Zt is assumed to follow an exogenous process of the form

log(Zt) = γz + log(Zt−1) + σzεz,t

where σz > 0 and εz,t is iid with zero mean and unit variance. The constant γz is a drift term in

random walk process of Zt. Capital stock evolves according to the law of motion

Kt+1 = (1 − δ) Kt + It

where δ ∈ (0, 1) is a constant depreciation rate. Finally, the final output good can be either consumed

or invested

Yt = Ct + It

We first apply a stationnary–inducing transformation for variables that follows a stochastic trend.

Output, consumption and investment are dived by Zt, whereas the capital stock is dived by Zt−1.

The approximate solution of the model is computed from a log–linearization of stationary equilibrium

conditions around the deterministic steady state using the numerical algorithm of Anderson and

Moore (1985).

3 Econometric Methodology

In order to estimate and evaluate the RBC model, we use Indirect Inference (see Gouriéroux, Monfort

and Renault (1993), Gouriéroux and Monfort (1996) and the basic intuitions of subsection 1.2). We

then depart from a large strand of the literature that employs a limited information strategy (see

Rotemberg and Woodford (1997), Christiano, Eichenbaum and Evans (2004) and Altig, Christiano,

Eichenbaum, and Linde (2005), among others). The idea of this strategy is to estimate the structural

parameters such that the impulse responses of some macroeconomic variables in the model directly

match the impulse responses in a SVAR model from actual data. We do not employ this empirical

strategy as we have shown in the introductory example of subsection 1.2 that the response of the
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DSVAR can be severely downward biased. The idea of indirect inference is to use auxiliary criterium

(or auxiliary model) in order to estimate the model. Rather than directly estimate the model using

the theoretical impulse responses, we estimate a DSVAR model under the model and compute the

responses of hours using long–run restrictions. These responses are then compared to the ones

obtained from actual data and structural parameters are estimated such that the discrepancy between

the two responses is as small as possible.

In order to present our econometric approach, we define the following VAR model:

zt = A1zt−1 + · · · + Apzt−p + εt, Eεtε
′

t = Σ, (6)

with zt = (∆xt, ∆nt)
′, where nt is logged total hours worked per capita and xt is the labor pro-

ductivity. This specification with hours worked in first difference is used by Gali (1999), (2004a),

(2004b), Gaĺı and Rabanal (2004), Francis and Ramey (2004). We follow Gaĺı and Rabanal (2004)

and assume that p = 4.

3.1 Identification of Impulse Responses

Let us define B (L) = (I2 − A1L − · · · − ApL
p)−1, so that

zt = B (L) εt,

where I2 is the identity matrix. Now, we assume that the canonical innovations are linear combina-

tions of the structural shocks ηt, i.e. εt = Sηt, for some non singular matrix S. As usual, we impose

an orthogonality assumption on the structural shocks, which combined with a scale normalization

implies Eηtη
′

t = I2. This gives us three constraints out of the four needed to completely identify S.

To setup the last identifying constraint, let us define C (L) = B (L)S. Given the ordering of zt, we

simply require that C (1) be lower triangular, so that only technology/supply shocks can affect the

long-run level of labor productivity. This amounts to imposing that C (1) is the Cholesky factor

of B (1)ΣB (1)′. Given consistent estimates of B (1) and Σ, we easily obtain an estimate for C (1).

Retrieving S is then a simple task using the formula S = B (1)−1 C (1). Impulse responses are then

deduced from the V MA(∞) representation:

zt = B (L)B (1)−1 C (1) ηt (7)
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where η1,t is the identified technology shock, whereas η2,t is the non–technology one. The standard–

errors of IRFs are computed numerically using the δ-function method. 10

3.2 Estimation Method

This section presents the econometric methodology. We partition the model parameters θ into two

groups θ = {θ1, θ2}.

The first group, denoted θ1, is composed of γz, β, α and δ. The growth rate of Zt is equal to 0.0036.

We set β = 1.03−0.25, which implies a steady state annualized real interest rate of 3 percent. We set

α = 0.40, that implies a steady state labor share equal to 60%. Finally, we set δ = 0.025, which

implies an annual rate of depreciation on capital equal to 10 percent.

The second group of model parameters is θ2 = {b, σz, ρχ, σχ}. These four parameters are estimated

using Indirect Inference. The basic idea of the Indirect Inference is to use an auxiliary criteria

(here, the IRFs computed from an estimated a DSVAR model) in order to estimate the parameter of

interest. The DSVAR model is thus considered as an auxiliary model, that allows through simulations

to identify and estimate θ2. Note that when the DSVAR model provides consistent estimates of the

true IRFs, the parameters ρχ and σχ does not matter and it would be impossible to identify them

from the responses of hours to a technology shock. Conversely, when the DSVAR model induces

large distortions in the estimated response of hours to a technological shock, this offers us with the

opportunity to identify and estimate these parameters (see the discussion in subsection 1.2). In the

empirical exercice, we consider the impulse responses of hours to a technology ∂nt+k/∂η1,t and a

non–technology shock ∂nt+k/∂η2,t, deduced from (7) for k = 1, ..., h where h is the selected horizon.

The estimation method is implemented as follows.

Step 1: Estimate a q-dimensional vector of IRFs, denoted ψ̂T , from actual data, where q = denotes the

number of selected impulse responses (horizon of the responses h and/or the number of responses).

Step 2: From the model’solution, and given the vector of structural parameters, θ, and initial condi-

tions on capital, labor and the shocks, S simulated paths for productivity and employment, denoted

x̃i
T (θ), ñi

T (θ), i = 1, · · · , S, are performed.

10See appendix B for further details.
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Step 3: From these simulations, we estimate a VAR model from the simulated data z̃t = (∆x̃t, ∆ñt)
i ′,

z̃i
t = Ãi

1z̃
i
t−1 + · · · + Ãi

pz̃
i
t−p + ε̃

i
t, Eεi

tε
i′
t = Σ̃

i
, i = 1, · · · , S

with the same number of lags (p = 4). We then compute the associated vector of IRFs, denoted

ψ̃i
T (θ) (i = 1, · · · , S) using long–run restrictions as in step 1

z̃i
t = B̃i (L) B̃i (1)−1 C̃i (1) η̃

i
t

and we construct their average

ψ̃S
T =

1

S

S∑

i=1

ψ̃i
T (θ)

Step 4: A Indirect Inference estimate θ̃S
2,T for θ2 minimizes the quadratic form:

J(θ2) = g′

T,SWT gT,S

where gT,S =
(
ψ̂T − ψ̃S

T (θ2)
)

and WT is a symmetric nonnegative matrix defining the metric.

Steps 2 to 4 are conducted repeatedly until convergence — i.e. until a value of θ2 that minimizes the

objective function is obtained. Let denote ψ0 the pseudo–true value of ψ and θ2,0 the pseudo–true

value of θ2, under standard regularity conditions, for S held fixed and as T goes to infinity,
√

T (θ̃S
2,T −

θ2,0) is asymptotically normally distributed, with a covariance matrix equal to
(
1 + 1

N

)
(D′

θWT Dθ)
−1

where Dθ = ∂gT,S/∂θ2.

A preliminary consistent estimates of the weighting matrix WT is required for the computation of

θ̃S
2,T . It may be directly based on actual data, and corresponds to the inverse of the covariance matrix

of
√

T (ψ̂T − ψ0), which is obtained from step 1. Here, W−1
T is a diagonal matrix with the sample

variances of the ψ̂T along the diagonal. These variances correspond to the confidence intervals of

impulse responses. So, with this choice of WT , θ2 is effectively chosen so that ψ̃S
T (θ2) lies as much as

possible inside these confidence intervals of ψ̂T .

For identification sake, we impose that the number of IRFs exceeds the number of structural param-

eters. This enables us to conduct a global specification test in the lines of Hansen (1982), denoted

J − stat = TSJ(θ2)/(1 + S), which is asymptotically distributed as a chi–square, with a degree of

freedom equal to the number of over–identifying restrictions (q − dim θ2).
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4 Empirical Results

In this section, we present the empirical results obtained with US data. We first document the data

and discuss the impulse responses of hours to a technology shocks. Second, we present the estimation

of the structural parameters using Indirect Inference on DSVAR. Finally, we investigate the ability

of the structural model to ecompass LSVARs and DSVARs.

4.1 Data and the Responses of Hours

We first present results based on a simple bivariate VAR in a first difference specification. As in

Christiano, Eichenbaum and Vigfusson (2004), we use alternative measures (in logs) of productiv-

ity and hours worked: (i) non–farm business output divided by non–farm business hours worked,

non–farm business hours worked divided by civilian population over the age of 16 (NFB sector);

(ii) business output divided by business hours worked, business hours worked divided by civilian

population over the age of 16 (B sector); (iii) real GDP divided by non-farm business hours worked,

non-farm business hours worked divided by civilian population over the age of 16 (mixed NFB) and

(iv) real GDP divided by total business hours, business hours worked divided by civilian popula-

tion over the age of 16 (mixed B). The empirical analysis uses quarterly U.S. data for the period

1948:1-2002:4.

The response of hours worked to a technology shock for each measure of productivity and hours are

similar (see figure 3). For instance, as in Gali (1999), hours worked decrease significantly at the

impact. The negative effect appears rather persistent. In the case of NFB sector data, as noticed by

Gali and Rabanal (2004), hours do eventually return to their original level. Conversely, the response

of hours is persistently bellow zero for the considered horizon. The main difference concerns the

confidence interval. For measures (i) and (ii) (NFB sector and B sector), the negative response is not

significantly different from zero after two periods, whereas the negative response remains significant

at any horizon for measures (iii) and (iv). The impulse responses of hours to the non–technology

shock11 is persistant and hump–shaped. Moreover, the response of hours is precisely estimated for

11More precisely, figure 3 reports the responses of hours to a shock without long run effect on labor productivity.
The shock is interpreted as a negative preference shock that reduces hours and increases labor productivity.
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each horizon.

4.2 Estimation Results from DSVARs

The previous evidences does not support the empirical relevance of standard RBC models, as they

cannot reproduce a persistent and negative response of hours after a transitory technology shock. We

now investigate this issue using the econometric methodology discussed previously. Table 1 report

the estimation resutls in four cases. Each case is associated to a particular mesure of productivity and

hours worked. In each siutation, we use a bivariate VAR with a first difference specification and four

lags. S = 30 simulations were used for a sample size equal to 192. Simulated values are redrawn from

the same seed values for each function evaluation. In order to reduce the effect of initial conditions,

simulated samples include 250 initial points which are subsequently discarded in the estimation.

The minimization of the simulated criterion function is carried out using a Nelder-Meade method

for minimization provided in the Optim matlab numerical optimization toolbox. At convergence

of the Nelder-Meade method, a local gradient search method was used to check convergence. We

estimate the four structural parameters (b, σz, ρχ, σχ) using the responses of hours to technology and

non–technology shock for an horizon equals to 21. By the mean, the model is estimated in order

to match employment fluctuations generated by two shocks. We thus introduce 2 × 21 − 4 ≡ 38

over–identifying restrictions.

We first discuss the parameters estimates. The parameter of labor supply (b) is significantly positive,

indicating that labor supply is subject to intertemporal complementarities. This result is in accor-

dance with previous results of Eichenbaum, Hansen and Singleton (1988), Bover (1991) and Wen

(1998). The estimated value is rather large (greater than 0.8 in each case) and very close to estimated

values in Eichenbaum, Hansen and Singleton (see Table II, p. 65). Our results also contradict the

calibration – not the specification of labor supply – of this parameter in Kydland and Prescott and

clearly suggest that leisure today significantly reduces leisure services in the subsequent time period.

Note that the estimated value is very similar in each case, i.e. the same degree of habit persistence

in leisure habit allows to match different datasets. The estimated value of the standard–error of the

technology shock σz is rather large (0.0256 and 0.0228), when indirect inference with DSVARs as
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auxiliary models is a applied on NFB or B sector data. This result comes in part from the high

volatility of productivity and hours in these two sectors. When the data are mixed, the estimated

value is close to previous estimates (0.0126 and 0.0137). This result can also been explained by the

estimated value of b. When b is positive and large, the response of hours to any shock at impact will

be small and increase gradually with the horizon. This is a direct consequence of habit in leisure

that tends to smooth labor supply. The estimated value of the autoregressive parameter ρχ is not

large, especially if we compare it to previous estimates. Our estimations suggests values between 0.65

and 0.70, whereas Chari, Kehoe and McGrattan report estimated values between 0.94 and 0.97.12

The differences comes partly from the specification of the utility function. In Chari, Kehoe and

McGrattan, the utility function is time separable, so most of the persistence in the fluctuations of

hours worked is the result of a persistence property of the forcing variable. Conversely, when b > 0,

hours can respond more persistently to a transitory shock. This explains that a large value of ρχ

is unnecessary in order to reproduce persistent fluctuations in hours. Finally, the estimated value

of σχ is rather large (between 0.025 and 0.034) compared to previous estimates.13 As discussed

in subsection 1.2, a large standard-error of the preference shock creates distortions in the DSVAR

specification and thus allows to match more easily the negative response of hours.

Table 1 reports the global specification test statistic (J − stat). For each dataset, the model is not

globally rejected by the data, as the p-values associated to the J-stat are large. One may argue

that the standard–errors of the responses of hours to a technology shock are large and thus the

structural model can easily match the data. For example, in the case of NFB and B sectors datasets,

the response of hours is not significantly different from zero after 3 periods. But in the case of

mixed datasets, the response of hours is significantly different from zero and the structural model

matches well the data. Moreover, the four structural parameters are estimated in order to match

simultaneously the responses of hours to a technology and non–technology shocks. The latter are

precisely estimated and any departure from the response is highly penalized.

Figures 4–7 report the IRFs of hours to a technology and non–technology shocks under actual data

12Erceg, Guerrieri and Gust (2004) use ρχ = 0.95.
13Chari, Kehoe and McGrattan report estimated values between 0.0076 and 0.0110, but they add measurement

errors in the system.
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and the model. These figures also include the true response of hours in the RBC model. As these

figures shown, the response of hours to a technology shock is always positive. Note that the RBC

model is able to reproduce a hump–shaped positive response of hours, as the maximal response is

obtained after ten periods. The implied response of hours from DSVAR is negative and does not

display an hump–shaped profile. These figure also illustrates the downward bias implied by DSVAR

model. Another interesting quantitative feature of the RBC model is its ability to present a persistent

response of hours to a non–technology shock.

Finally, we report in Table 1 the variance decomposition for output growth and employment. In each

case, the fraction of variance of output growth explained by the technology shock always exceeds

70%. For instance, it exceed 90% with NFB sector data. It follows that a RBC model wherein the

technology shocks represent the main source of output growth fluctuations is able to replicate the

negative response of hours in DSVARs. It is worth noting that the preference shock explained most

of employment fluctuations (between 70% and 92% of the variance). This is in accordance with the

business cycle accounting exercice of Chari, Kehoe and McGrattan (2004a).

4.3 Estimation Results from SVARs

The estimation of impulse responses of hours critically depends on the SVAR specification. Chris-

tiano, Eichenbaum and Vigfusson (2004) argue that a difference specification of hours may create

severe distortions in the DSVAR specification if hours are truly stationary. Using a LSVAR specifi-

cation, they obtained a positive and hump–shaped response of hours following a technology shock,

but the response is not precisely estimated (see Chari, Kehoe and Mac Grattan (2004b)). We report

in Figure 8, the response of hours to a technology and non–technology shock in the LSVAR speci-

fication with NFB sector data. The response is always positive, but it is not significantly different

from zero at each horizon. Conversely, the response of hours to a non–technology shock is persistent

and significant.

We now investigate the ability of the structural model to replicate such patterns with NFB sector

data. To do this, we conduct three experiments. In the first one, we compute the IRFs of hours in

a LSVAR specification using the estimations of Table 1 (column NFB sector). This counterfactual
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experiment accounts for the ability of the model estimated from a DSVAR to replicate impulse

responses from LSVAR under the structural model. In the second experiment, we estimate the

structural model using the responses of hours to a technology and non–technology shocks in a LSVAR

specification. We also compute the IRF of hours in a DSVAR specification under the estimated

model. Finally, in a third experiment, we estimate the four structural parameters in order to match

simultaneously the impluse responses of hours in a DSVAR and LSVAR specifications.

Table 2 report the empirical results. The first column is identical to the one of table 1. Given

these parameters estimates, we compute the IRF from LSVAR under the structural model. Figure 9

reports the IRF from the actual data, from the simulated data and from the model. The right part

of the figure 9 concerns the quantitative implications for LSVAR specification. As this figure shows,

the structural model reproduces well the response of hours. The responses of hours from simulations

present a similar hump–shaped to the ones obtained from the data. To test the match between the

two IRFs, we compute the following Qi for various horizon:

Qi =
(
ψ̂[1:i],T − ψ̃S

[1:i],T (θ̂2)
)
′

W[1:i],T

(
ψ̂[1:i],T − ψ̃S

[1:i],T (θ̂2)
)

where W[1:i],T is the inverse of the covariance matrix of ψ̂[1:i],T . This simple test (see the Qi (i =

6, 11, 21) statistic in Table 2) indicates that the structural model produce responses of hours that

are not significantly different from the LSVAR model at horizon 6 and 11 (see the P-values of Q6

and Q11). However, for a longer horizon, the model faces some difficulties to reproduce the response

of hours to a non–technology shock (see Q21 in the table). We now investigate if the model is able

to match the response of hours in a LSVAR specification. The second column of Table 2 reports the

parameter estimates. Note that the standard errors of the two shocks is larger than the ones of first

column. The global specification tests indicates that the model easily matches the responses of hours.

Given the large confidence interval of the response to a technology shock (see figure 10), this is not

surprizing.14 Moreover, the LSVAR specification is in accordance with the structural model. Using

these estimated value, we simulate the model and compute the responses of hours using a DSVAR

specification. The right part of figure 10 reports the impulse responses from DSVAR. The responses

from simulated data depart significantly from the ones of the actual data. Indeed, the response

14However, the response to a non–technology shock is very precisely estimated, making any departure very penalizing.
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of hours to a technology shock is zero at the impact and becomes persistently positive. Moreover,

the response to a non–technology shock does not present a hump–shaped profile. The Qi statistic

(see the second column of table 2) indicates that the model estimated from a LSVAR specification

fails to reproduce a DSVAR specification. This result, together with the previous one, show that

the DSVAR specification, although providing biased responses of hours, indirectly encompasses the

LSVAR specification. Finally, we estimate the structural model using the two specifications of the

SVAR model as the auxiliary models, i.e. the responses of hours to a technology and non–technology

shock with the hours in first difference and in level. The J-statistic in the third column of Table

2 is very small compared the critical value and the structural model is able to march very well the

responses of hours. In the DSVAR specification, the response under the model is negative, whereas

it is persistently positive in the LSVAR specification. These results show that a simple RBC model

wherein hours increase after a technology shock easily encompasses SVAR models with contradictory

results.

5 Concluding Remarks

The identification of the response of hours worked after a technology shock using SVAR has renewed

the debate on the relative contributions of various shocks to the business cycle. The SVAR approach

documents a striking evidence for the standard RBC model: after a positive technology shock, hours

worked decrease. For researchers that use the SVAR approach, this evidence suggests to abandon

the RBC model in favor of models with important (real) frictions and (nominal) rigidities.

This paper shows that DSVAR poorly identifies the impulse responses of hours and suggests another

way to evaluate structural model. Using an indirect approach (Indirect Inference), we show that a

Kydland–Prescott type model matches indirectly very well impulse responses of DSVAR. Moreover,

the estimated technology shock account for a large part of output growth fluctuations. Finally, the

model encompasses LSVAR and DSVAR models.
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Appendix

A Proof of Proposition 1

We consider the estimation of a VAR(1) model with data generated by the structural model of section 1 (see equations
(3)–(5)). The VAR(1) model has the form:

(
∆xt

∆nt

)
=

(
a11 a12

a21 a22

)(
∆xt−1

∆nt−1

)
+

(
ε1,t

ε2,t

)

The OLS regression from the first equation yields:

(
â11

â12

)
=

(
V (∆xt) Cov(∆xt,∆nt)

Cov(∆xt,∆nt) V (∆nt)

)
−1 (

Cov(∆xt,∆xt−1)
Cov(∆xt,∆nt−1)

)

whereas the OLS regression from the second equation yields

(
â21

â22

)
=

(
V (∆xt) Cov(∆xt,∆nt)

Cov(∆xt,∆nt) V (∆nt)

)
−1 (

Cov(∆nt,∆xt−1)
Cov(∆nt,∆nt−1)

)

The variances and covariances that enter in the B matrix are given by V (∆xt) = σ2
z + 2σ2

χ(1 − α)2/(1 + ρχ),
V (∆nt) = 2σ2

χ/(1 + ρχ), Cov(∆xt,∆nt) = −2(1 − α)σ2
χ/(1 + ρχ), Cov(∆xt,∆xt−1) = −(1− ρχ)(1− α)2σ2

χ/(1 + ρχ),
Cov(∆xt,∆nt−1) = (1−ρχ)(1−α)σ2

χ/(1+ρχ), Cov(∆nt,∆xt−1) = (1−ρχ)(1−α)σ2
χ/(1+ρχ) and Cov(∆nt,∆nt−1) =

−(1 − ρχ)σ2
χ/(1 + ρχ). The OLS estimator Â of A is then deduced:

Â1 =

(
0

(1−ρχ)(1−α)
2

0 − 1−ρχ

2

)

The residuals of each equation are given by;

ε1,t = ∆xt −
(1 − ρχ)(1 − α)

2
∆nt−1

ε2,t = ∆nt +
1 − ρχ

2
∆nt−1

and the associated covariance matrix is

Σ =

(
σ2

z +
(3−ρχ)(1−α2)

2 σ2
χ − (3−ρχ)(1−α)

2 σ2
χ

− (3−ρχ)(1−α)
2 σ2

χ
3−ρχ

2 σ2
χ

)

We thus compute the long–run covariance matrix

((
I2 − Â

)
−1

)
Σ

((
I2 − Â

)
−1

)
′

=

(
1

(1−ρχ)(1−α)
3−ρχ

0 2
3−ρχ

) (
σ2

z +
(3−ρχ)(1−α2)

2 σ2
χ − (3−ρχ)(1−α)

2 σ2
χ

− (3−ρχ)(1−α)
2 σ2

χ
3−ρχ

2 σ2
χ

)

(
1 0

(1−ρχ)(1−α)
3−ρχ

2
3−ρχ

)

=

(
σ2

z + 2(1−α)2

3−ρχ
σ2

χ − 2(1−α)
3−ρχ

σ2
χ

− 2(1−α)
3−ρχ

σ2
χ

2
3−ρχ

σ2
χ

)

The matrix C(1) is the Choleski decomposition of the long–run covariance matrix

C(1) =




(
σ2

z + 2(1−α)2

3−ρχ
σ2

χ

)1/2

0

− 2(1−α)σ2
χ

(3−ρχ)
(

σ2
z+

2(1−α)2

3−ρχ
σ2

χ

)1/2

(
2σ2

zσ2
χ

(3−ρχ)
(

σ2
z+

2(1−α)2

3−ρχ
σ2

χ

)

)1/2
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The IRF for labor productivity and hours are then deduced from C(L)

C(L) = (I2 − ÂL)−1(I2 − Â)C(1)

The response at the impact of employment to a technology shock is negative:

− (1 − α)σ2
χ

(
σ2

z + 2(1−α)2

3−ρχ
σ2

χ

)1/2

and the response at horizon k of the level of employment is:

− (1 − α)σ2
χ

(
σ2

z + 2(1−α)2

3−ρχ
σ2

χ

)1/2

k∑

j=0

(
−

(
1 − ρχ

2

))j

When k → ∞, the IRF of hours is:

−
(

2

3 − ρχ

)
(1 − α)σ2

χ
(
σ2

z + 2(1−α)2

3−ρχ
σ2

χ

)1/2
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Figure 1: IRF of hours
(a) iid preference shock (ρχ = 0)
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Figure 2: The Binding Function and Indirect Estimation
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B Indirect Inference Weighting Matrix

This appendix describes how were computed the impulse response functions and their asymptotic confidence intervals.
It is convenient to define

Π′ =
(

A1 A2 · · · Aℓ

)

Q = E







zt−1

zt−2

...
zt−p







zt−1

zt−2

...
zt−p




′


Now let Π̂ and Σ̂ denote the empirical estimates of Π and Σ, respectively. We regroup the VAR parameters in the
vector β :

β = (vec(Π)′, vech(Σ)′)′, β̂ = (vec(Π̂)′, vech(Σ̂)′)′,

where vec (·) is the operator transforming an (n × n) matrix into an (n2 × 1) vector by stacking the columns, vech (·)
is the operator transforming an (n × n) matrix into an (n (n + 1) /2 × 1) vector by vertically stacking those elements
on or below the principal diagonal. For later purpose, define m = n (nℓ + (n + 1) /2), so that β is an (m × 1) vector.
Following Hamilton (1994) (proposition 11.2, page 301), it can be shown that

√
T (β̂ − β) ∼

a
N

((
0

0

)
,Σβ

)
,

where T is the sample size and

Σβ =

(
Σ ⊗ Q−1 0

0 Σ22

)
,

with Σ22 defined as
Σ22 = 2

(
D+

n

)
(Σ ⊗ Σ)

(
D+

n

)
′

.

Here D+
n is the unique matrix such that vech(Σ) = D+

n vec(Σ). In practice, we replace Σ and Q in the above formula
with their empirical counterparts

Σ̂ =
1

T

T∑

t=1

ǫ̂tǫ̂
′

t

Q̂ =
1

T

T∑

t=1

xtx
′

t

We assume that the canonical innovations are linear combinations of the structural shocks ηt, i.e.

εt = Sηt,

for some non singular matrix S. We impose an orthogonality assumption on the structural shocks, which combined
with a scale normalization implies Eηtη

′

t = In. Now, let us define

B (L) = (In − A1L − · · · − ApL
p)−1

C (L) = B (L)S

Now, let us define the vector collecting the dynamic response of the components of zt to a technology/supply shock
η1,t

θk =
∂zt+k

∂η1,t

.

Formally, θk is the first column of Ck, where Ck is the k-coefficient of C (L). In the sequel, we define θ as

θ = vec([θ0,θ1, . . . ,θk]′).

Recall that Ck = BkS, where Bk is the upper leftmost (n × n) block of Fk (Hamilton, 1994, p. 260), where

F
(np×np)

=




A1 A2 A3 · · · Ap−1 Ap

In 0n×n 0n×n · · · 0n×n 0n×n

0n×n In 0n×n · · · 0n×n 0n×n

...
...

... · · ·
...

...
0n×n 0n×n 0n×n · · · In 0n×n




29



In practice, we use this formula with Σ̂, Â1,..., and Âp substituted for Σ, A1,..., and Ap to estimate the θk. In the

sequel, we let θ̂k denote the empirical estimates of θk and θ̂ denote the empirical estimate of θ. To compute the
confidence intervals of θ̂, we resort to the δ-function method. It can be shown that θ is an implicit function of β.
Then, we obtain the formula

√
T (θ̂ − θ) ∼

a
N

(
0,

∂θ(β)

∂β′
Σβ

∂θ(β)′

∂β

)
.

In practice, the derivatives ∂θ(β)/∂β′ are computed numerically at the point estimate β̂.
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Figure 3: IRF of hours

(a) NFB sector data (b) B sector data
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Table 1: Results from DSVARs

NFB sector B sector Mixed NFB sector Mixed B sector

b 0.8367 0.8563 0.8482 0.8816
(0.2106) (0.2100) (0.2806) (0.1678)

σz 0.0256 0.0228 0.0126 0.0137
(0.0079) (0.0065) (0.0020) (0.0017)

ρχ 0.6855 0.6837 0.7004 0.6507
(0.2981) (0.3073) (0.4016) (0.2636)

σχ 0.0255 0.0287 0.0270 0.03381
(0.0281) (0.0367) (0.0422) (0.0433)

J − stat 11.82 6.23 9.88 9.13
[100] [100] [100] [100]

V (∆y/εz) (in %) 91.2 88.8 71.4 73.9

V (n/εz) (in %) 30.7 22.3 8.4 8.2

Note: standard–errors in parentheses; P–values in brackets
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Figure 4: IRF of hours (NFB sector data)
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Figure 5: IRF of hours (B sector data)
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Figure 6: IRF of hours (mixed NFB sector data)
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Figure 7: IRF of hours (mixed B sector data)
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Figure 8: IRF of hours in LSVAR (NFB sector data)
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Table 2: Results from SVARs

DSVAR LSVAR DSVAR–LSVAR

b 0.8367 0.9323 0.9469
(0.2106) (0.0154) (0.0125)

σz 0.0256 0.0600 0.0376
(0.0079) (0.0107) (0.0043)

ρχ 0.6855 0.5597 0.5153
(0.2981) (0.0669) (0.0399)

σχ 0.0255 0.0633 0.0760
(0.0281) (0.0143) (0.0184)

J − stat 11.82 4.25 32.87
[100] [100] [100]

Q6 16.26 26.67 –
[17.9] [0.9] –

Q11 23.28 39.10 –
[38.6] [1.37] –

Q21 61.38 80.27 –
[2.70] [0.03] –

V (∆y/εz) (in %) 91.2 97.7 95.0

V (n/εz) (in %) 30.7 44.4 21.1

Note: standard–errors in parentheses; P–values in brackets
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Figure 9: IRF of hours in DSVAR and LSVAR (estimations from DSVAR)

G−SVAR, Hours: Tech. Shock
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Figure 10: IRF of hours in DSVAR and LSVAR (estimations from LSVAR)
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Figure 11: IRF of hours in DSVAR and LSVAR (estimations from DSVAR and LSVAR)

G−SVAR, Hours: Tech. Shock

0 5 10 15 20

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Empirical IRF
Simulated IRF
Theoretical IRF

G−SVAR, Hours: Non−Tech. Shock

0 5 10 15 20

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

CEV−SVAR, Hours: Tech. Shock

0 5 10 15 20

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

CEV−SVAR, Hours: Non−Tech. Shock

0 5 10 15 20

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

41


