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1 Introduction

Discrete choice dynamic structural models have proven useful tools for the assessment of

public policy initiatives (Wolpin, 1996). These econometric models have been applied to

the evaluation of different economic policies, both factual and counterfactual, like welfare

policies (Sanders and Miller, 1997, Keane and Moffit, 1998, and Keane and Wolpin, 2000),

unemployment insurance (Ferrall, 1997), social security and retirement (Berkovec and Stern,

1991, and Rust and Phelan, 1997), patents regulation (Pakes, 1986, and Pakes and Simpsom,

1989), education policies (Eckstein and Zilcha, 1994, Eckstein and Wolpin, 1999, and Keane

and Wolpin, 2001), contraceptive choice (Hotz and Miller, 1993), regulation on labor con-

tracts (Aguirregabiria and Alonso-Borrego, 1999, and Rota, 2004), programs on child poverty

(Todd and Wolpin, 2003), scrapping subsidies (Adda and Cooper, 2000), or regulation of

nuclear plants (Rust and Rothwell, 1995).

A common feature of the econometric models in these applications is the parametric spec-

ification of structural functions like utility functions, technology, transition probabilities of

state variables, and the probability distribution of unobservable variables.1 These parametric

models contrast with the emphasis on robustness and nonparametric specification that we

find in other approaches to evaluate public policies. In particular, the literature on evaluation

of treatment effects has emphasized the importance of a nonparametric specification of the

distribution of unobservables to obtain robust results (see Heckman and Robb, 1985, Manski,

1990, and more recently Heckman and Smith, 1998, and Heckman and Vyltacil, 1999 and

2005). Though robustness is an important argument in favor of this reduced form approach,

these methods have important limitations to evaluate counterfactual policies, to estimate

welfare effects, to incorporate transitional dynamics, and to allow for general equilibrium

effects.

In this paper we show that it is possible to use nonparametrically specified dynamic

structural models to evaluate the effects of counterfactual policy interventions. The con-

tribution of this paper is threefold. First, we show that agents’ behavior, before and after

the policy intervention, and the change in agents’ utility are nonparametrically identified.

Second, based on this identification result we propose a nonparametric method to estimate

the behavioral and welfare effects of counterfactual policy interventions in this class of mod-

1Two exceptions are the semiparametric models in Taber (2000) and Heckman and Navarro (2004), where
utilities are parametrically specified but the distribution of unobservable variables is nonparametric.
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els. And third, we apply this method to evaluate hypothetical reforms in the rules of a

public pension system using data of male blue-collar workers in Sweden. This application

illustrates how the method can be used to obtain precise estimates of welfare effects, and

the transitional dynamics of these effects, which do not rely on any parametric assumption

on the primitives of the model.

The parametric specification of dynamic structural models is justified for the sake of

parsimony, simplicity, and efficiency in the estimation. However, the economic content of

dynamic structural models does not rest on the choice of a particular family of parametric

functions for the primitives but on specification assumptions such as: the selection of the

relevant decision and state variables; independence assumptions between unobservable vari-

ables and some observables; the stochastic structure of the transition probabilities of the

state variables (e.g., which variables follow exogenous transitions, and which variables are

endogenous and how); monotonicity and concavity assumptions of some primitive functions;

specification of individual heterogeneity; or the equilibrium concept that is used.

As shown by Rust (1994) and Magnac and Thesmar (2002), the differences between the

utilities of two choice alternatives cannot be identified in dynamic decision models even when

the researcher "knows" the time discount factor, the probability distribution of the unob-

servables, and the transition probabilities of the state variables. This under-identification

result contrasts with the identification of utility differences in static (i.e., not forward look-

ing) decision models (see Matzkin, 1992). This paper takes a different look at the problem

of nonparametric identification of dynamic decision models. Instead of looking at the non-

parametric identification of the utility function we consider the identification of the behav-

ioral and welfare effects of counterfactual policy changes. More specifically, we prove the

identification of agents’ choice probability functions and surplus functions associated with

hypothetical policy interventions. We show that knowledge of the current utility function or

of utility differences is not necessary to identify these counterfactual functions. These coun-

terfactuals depend on the distribution of unobservables and on the difference between the

present value of choosing always the same alternative and the value of deviating one period

from that behavior. We show that these objects are identified under similar conditions as

in static models. Therefore, though agents’ preferences cannot be identified, we can identify

the behavioral and welfare effects associated with changes in these preferences.

The rest of the paper is organized as follows. In section 2 we set up the model, the basic
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assumptions and the type of counterfactual policy experiments that we want to evaluate.

Section 3 presents the identification results. In section 4 we describe the estimation proce-

dure. The empirical application is presented in section 5. We summarize and conclude in

section 6. Proofs of propositions are in the appendix.

2 Model

2.1 Framework and basic assumptions

Time is discrete an indexed by t. Consider an agent who has preferences defined over a

sequence of states of the world from period t = 0 to t = T . A state of the world has two

components: a vector of state variables st that is predetermined before period t; and a discrete

decision at ∈ A = {0, 1, ..., J} that the agent chooses at period t. The decision at period

t affects the evolution of future values of the state variables. The agent’s preferences over

possible sequences of states of the world can be represented by a utility function
PT

j=0 β
j

Ut(at+j, st+j), where β ∈ [0, 1) is the discount factor and Ut(at, st) is the current utility

function at period t. The agent has uncertainty about future values of state variables. His

beliefs about future states can be represented by a sequence of Markov transition probability

functions Ft(st+1|a, s). These beliefs are rational in the sense that they are the true transition
probabilities of the state variables. Every period t the agent observes the vector of state

variables st and chooses his action at ∈ A to maximize the expected utility

E
³XT

j=0
βj Ut(at+j, st+j) | at, st

´
. (1)

Let αt(st) and Vt(st)be the optimal decision rule and the value function at period t, respec-

tively. By Bellman principle of optimality the sequence of value functions can be obtained

using the recursive expression:

Vt(st) = max
a∈A

©
Ut(a, st) + β

R
Vt+1(st+1) dFt(st+1|a, st)

ª
(2)

For the rest of the paper we adopt a notation that omits the time subindex from functions

and variables. We can include the time period t as a state variable of the model and therefore

we can omit it as an index in the structural functions, in the optimal decision rule and in the

value function. Note that a finite-horizon dynamic decision problem can be represented as

an infinite-horizon problem if we just make the utility functions equal to zero for any state
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with t > T . We also omit the time subindex in the decision and state variables and use (a, s)

to represent current values of these variables, and (a0, s0) for next period values.

From the point of view of the observing researcher there are three types of state variables.

That is, s = (x, ω, ε) where: the vector x is observable to the researcher; the vector ε is

unobservable; and the vector ω is unobservable but it can be inferred by the econometrician

using data of a vector of outcome variables y and estimating the system of outcome equations:

y = h (a, x, ω) (3)

where y is a q × 1 vector of variables and h (., ., .) is a vector of q functions. For instance,

in a model of firm behavior the researcher may observe a component of the profit function

such as output, revenue or the wage bill. If y is firm’s output then h (a, x, ω) would be a

production function and ω a productivity shock. In a model of individual behavior where

individuals maximize a utility that depends on consumption and leisure, the econometrician

may observe individual earnings. In that case h (a, x, ω) would be an earnings function and

ω is a shock in earnings.

Without loss of generality we can write the one-period utility as the sum of two compo-

nents:

U(a, x, ω, ε) = u(a, x, ω) + ε(a, x, ω), (4)

where u(a, x, ω) ≡ E (U(a, x, ω, ε) | a, x, ω) and ε(a, x, ω) ≡ U(a, x, ω, ε)−u(a, x, ω). For the
sake of notational simplicity we use ε(a) instead of ε(a, x, ω), and the vector ε to represent

{ε(a) : a ∈ A}. By definition, the random variables in ε have zero mean and are mean

independent of x and ω.

We consider the following assumptions on the joint distribution of the state variables.

ASSUMPTION 1: The cumulative transition probability of the state variables factors as:

F (s0|a, s) = Fω(ω
0|ω) Fε(ε

0|x0) Fx(x
0|a, x) (5)

where Fω(.|ω), Fε(.|x) and Fx(.|a, x) are distribution functions. That is: (a) ω follows an
exogenous Markov process; (b) future ε0smay depend on future values of x (e.g., hetero-

cedasticity) but not on current values of a or x; and (c) future values of x depend on

current values of x and current actions but not on current values of ω and ε. Furthermore:

(d) Fε(.|x) is continuously differentiable and strictly increasing with support the Euclidean
space; and (e) ω is a vector of continuous random variables and for any ω0, ω1 and w0 with

ω0 < ω1, we have that Fω(ω
0|w0) ≥ Fω(ω

0|w1).
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Assumption 1 is based on Rust’s conditional independence assumption (Rust, 1994),

but it is more general than Rust’s because it allows for the unobservable ω. Under this

assumption the optimal decision rule α(x, ω, ε) can be described as:

α(x, ω, ε) = argmax
a∈A

{ v(a, x, ω) + ε(a) } (6)

where v(a, x, ω) is the present value of current and future utilities when current choice is a.

That is,

v(a, x, ω) ≡ u(a, x, ω)+β

Z
max
j∈A

{ v(j, x0, ω) + ε0(j) } Fω(dω
0|ω) Fε(dε

0|x0) Fx(dx
0|a, x) (7)

The functions v(0, x, ω), v(1, x, ω), ..., v(J, x, ω) are called conditional choice value functions.

The optimal decision rule represents individuals’ behavior. Individuals’ welfare is given by

the value function V (x, ω, ε) = maxa∈A { v(a, x, ω) + ε(a) }.
For our econometric analysis it is convenient to define versions of these functions which

are integrated over the unobservables in ε. The optimal choice probability function is defined

as:

P (a|x, ω) ≡
Z

I{α(x, ω, ε) = a} Fε(dε|x) (8)

The integrated valued function (Rust, 1994) S(x, ω) is defined as:

S(x, ω) ≡
Z

V (x, ω, ε) Fε(dε|x) =
Z
max
a∈A

{ v(a, x, ω) + ε(a) } dFε(ε|x) (9)

To complete the model structure we should establish the relationship between the out-

come variables in y and the utility function. Assumption 2 establishes that that the utility

function u (a, x, ω) is additive in the outcome variables and in other component that does

not depend on the outcome variables.

ASSUMPTION 2: The utility function u(a, x, ω) has the following form:

u(a, x, ω) = ψ(x) y + c(a, x) (10)

where ψ(.) is a 1× q vector of positive valued functions, i.e., ψ(x) = (ψ1(x), ..., ψq(x)) with

ψj(x) > 0 for any j and any x ∈ X; y is the q× 1 vector of outcome variables that we have
defined in equation (3); and c(., .) is a real valued function.

The set of structural functions that define the model is {ψ, h, c, β, Fω, Fε, Fx}. This is
the so called model structure. This paper concentrates in binary choice models, though our

identification results and the estimation method can be generalized to the multinomial case.

Consider the binary choice case where a ∈ {0, 1}. For notational simplicity we use P (x, ω)
to denote P (1|x, ω).
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2.2 An example: A model of retirement behavior

In this section we present a model of retirement behavior similar that follows Rust and

Phelan (1997) and Karlstrom, Palme and Svensson (2004). Individuals have a utility function

that is additively separable in consumption (Ct) and leisure (Lt). The marginal utilities of

consumption and leisure may depend on individual characteristics such as age, marital status,

family size, health status, etc. Some of these demographic variables are observable to the

researcher (i.e., they are in the vector xt) but some of them are unobservables (i.e., they are

in εt). More specifically,

Ut = ψC(xt) UC(Ct) + ψL(xt, εt) UL(Lt) (11)

where the functions ψC(xt) and ψL(xt, εt) capture individual heterogeneity in marginal util-

ities.

Every month t the individual decides whether to continue working (at = 1) or to retire

from the labor force (at = 0). If the individual works, his hours of leisure are equal to

T (xt)−H(xt) and his monthly earnings (Yt) are equal to labor earnings (Wt). If the individual

decides to retire, then his hours of leisure are T (xt) and earnings are equal to retirement

benefits (Bt). Thus, we can write Lt = T (xt)− at H(xt) and monthly earnings as:

Yt = at Wt + (1− at) Bt (12)

Labor earnings during the month are uncertain to the individual when he decides whether

to retire. Suppose that Wt = exp{w(xt) + ωt+1}, such that: w(.) is a function, and ωt is a

variable that follows a Markov process ωt+1 = κ(ωt) + et+1 where κ(.) is a function and et+1

is the innovation of the process. The individual knows xt and ωt but he does not know the

innovation et+1 when he makes his decision.

Retirement benefits depend on retirement age (rat) and on pension points (ppt): Bt =

B(rat, ppt). The form form of the function B(., .) depends on the rules of the pension system.

For instance, a very standard structure is:

Bt =

⎧⎨⎩ 0 if rat < ramin
ppt (1 + τ 1 (rat − ra∗)) if ramin ≤ rat < ra∗
ppt (1 + τ 2 (rat − ra∗)) if rat ≥ ra∗

(13)

where ramin, ra∗, τ 1 and τ 2 are policy parameters that characterize the function b(., .). More

specifically: ramin is the minimum retirement age; ra∗ is the "normal" retirement age; τ 1
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is a permanent actuarial reduction in benefits per month of early retirement; and τ 2 is a

permanent actuarial increase in benefits per month of delayed retirement. In Sweden, the

values of these parameters are ramin = 60 year, ra∗ = 65 years, τ 1 = 0.5% and τ2 = 0.7%.

Pension points are a deterministic function of past earnings history. However, it turns out

that for most systems the transition rule of pension points can be very closely approximated

by a Markov process. For instance, that is the case for social security pensions in US (see

Rust and Phelan, 1997, and Rust et al, 2000), for Germany (see Knaus, 2002), and for

Sweden (see Karlstrom, Palme and Svensson, 2004). The variables rat and ppt are part of

the vector of observable state variables in xt.

Since the individual has uncertainty about current labor earnings, the relevant current

utility is the expected utility Et(Ut) where the information set at period t is (at, xt, ωt, εt).

Suppose that consumption is proportional to earnings, with a proportionality constant that

may depend on the state variables in xt: i.e., Ct = λ(xt) Yt. And suppose that the function

UC(.) is known. For instance, consider a constant relative risk aversion utility function

UC(Ct) = Cγ
t , where the parameter γ is known to the researcher. Then, we can write the

utility function as:

Et(Ut) = ψC(xt) Et (λ(xt)
γ Y γ

t ) + ψL(xt, εt) UL (T (xt)− at H(xt)) (14)

Define the functions ψ(xt) ≡ ψC(xt) λ(xt)
γ, ψ̄L(xt) ≡ E(ψL(xt, εt)|xt), and c(at, xt) ≡

ψ̄L(xt) UL(T (xt) − atH(xt)). And define also the variables εt(at) ≡
¡
ψL(xt, εt)− ψ̄L(xt)

¢
UL(T (xt)− atH(xt)) and yt ≡ Et (Y

γ
t ). Then, we can write current utility as:

EtUt = ψ(xt) yt + c(at, xt) + εt(at) (15)

To show that this utility conforms to Assumptions 1 and 2, we still have to show that yt is

observable to the econometrician, and that we can write yt as a function h(at, xt, ωt). Suppose

that the econometrician observes labor earnings for those individuals who are working, and

potential retirement benefits for every individual, working or not. Individuals do not have

uncertainty about current benefits. Therefore, yt is observable to the researcher if and only

if Et(W
γ
t ) is observable for every individual, working or not. We have that:

Et(W
γ
t ) = exp {γ w(xt) + γ κ(ωt) + δ} (16)

with δ ≡ ln (E (exp{γet+1})). We know describe how w(.), κ(.) and δ can be nonparamet-

rically identified. Given that lnWt = w(xt) + κ(ωt) + et+1, and ωt = lnWt−1 − w(xt−1), we
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can write:

lnWt = w(xt) + κ (lnWt−1 − w(xt−1)) + et+1 (17)

The innovation et+1 is unknown to the individual when he makes his decision. Therefore,

et+1 is independent of at, and it is also independent of xt, xt−1 and Wt−1. The orthogonality

conditions E (et+1|at = 1, xt, xt−1,Wt−1) = 0 provide moment conditions that allow us to

estimate nonparametrically the functions w(.) and κ (.). Then, we can use the residuals of

et+1 to obtain an estimate of the parameter δ, i.e., δ̂ = ln ((1/n)
Pn

i=1 exp{γêi,t+1}).

2.3 Policy interventions

We want to evaluate the behavioral and welfare effects of an hypothetical policy interven-

tion that modifies the current utility function. More specifically, we are interested in the

evaluation of policies that modify the outcome functions such as the new (counterfactual)

outcome functions become h∗(a, x, ω). That is,

h∗(a, x, ω) = h(a, x, ω) + τ(a, x, ω) (18)

where h and h∗ are the outcome functions before and after the policy intervention, respec-

tively. The function τ represents the policy intervention and it is known to the researcher.

Note that τ may depend on choice and state variables in a completely unrestricted way. We

provide several examples to illustrate how general is this class of policy interventions.

EXAMPLE 1: Consider the retirement model in section 2.2. The outcome variable in this

model is individual earnings. The type of policies that we can evaluate includes: policies

that modify retirement benefits such as changes in the minimum and normal retirement age

or changes in the discount for early retirement; policies that affect labor earnings such as a

wage tax; or an hypothetical change in the relative risk aversion parameter.

EXAMPLE 2: Individual earnings are also an observable outcome in a model of educational

choice. Some examples of policies that we can evaluate in this model are a change in returns

to schooling, or a change in the costs of schooling.

EXAMPLE 3: Consider a dynamic model of firm input demand where the researcher observes

firm output. In this model we can evaluate hypothetical changes in the production function

parameters.

When we assume that the weighting function ψ(x) is constant (i.e., ψ(x) = 1), then the

class of counterfactual policies that we can evaluate using the method in this paper becomes
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more general. While this assumption seems quite strong for models of individual behavior,

it can be more plausible for models of firm behavior where firms are assumed to maximize

profits. Under this assumption, we provide identification results for any counterfactual policy

intervention such that u∗(a, x, ω) = u(a, x, ω) + τ(a, x, ω), where the function τ is known to

the researcher, though the functions u and u∗ are unknown.

Let P ∗ be the optimal choice probability function associated with the counterfactual

structure. The difference between the functions P ∗ and P represents the behavioral effects

of the policy from the point of view of the econometrician. Similarly, the difference be-

tween the functions S∗(x, ω) and S(x, ω) represents the welfare effects of the policy, where

S∗(x, ω) is the integrated value function after the policy intervention. We are interested in

the nonparametric estimation of the functions P ∗ and S∗ − S.

3 Identification

Suppose that we have a random sample of individuals with information on the variables

{at, at+1, xt, xt+1, yt, yt+1} at some period t. As usual, we study identification with a very

large (i.e., infinite) sample of individuals. Furthermore, we assume that the sample has

variability over the whole support of the observable variables: A×X2×Y 2. This assumption

of full-support variation is needed to identify the reduced form of the model. We assume that

the outcome function h(., ., .) is identified without having to estimate the decision model.

There are different conditions under which one can consistently estimate wage equations or

production functions using instrumental variables or control function approaches which do

not require the estimation of the complete structural model. We have provided an example

of this in the retirement model in previous section 2.3.

ASSUMPTION 3: The outcome function h(a, x, ω) is a real valued function such that: (a) it

is identified; (b) it is invertible with respect to ω, such that we can get ω = h−1(y, x, ω); (c)

ω is a continuous random variable with support Ω; (d) the function h̃(x, ω) ≡ h(1, x, ω) −
h(0, x, ω) is strictly increasing in ω; and (e) for any x ∈ X there exits ω ∈ Ω such that

h̃(x, ω) + c̃(x) = 0, where c̃(x) ≡ c(1, x)− c(0, x).

It is clear that we can identify the transition probability function Fx on A × X2 from

the transition probabilities Pr(xt+1|at, xt) in the data. Under Assumptions 3(a) and 3(b)
the values of ω can be consistently estimated and we can treat ω as (indirectly) observable.
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Therefore, Fω is also identified on Ω × Ω. It is also clear that we can identify the choice

probability function P (x, ω) on X ×Ω from the probabilities Pr(at = 1|xt, ωt) in the data.

However, without further restrictions, we cannot identify the structural functions {ψ,
c, Fε}. This is the case both in decision models where agents are forward looking (i.e.,
β > 0) and in models where agents are myopic (i.e., β = 0). In this paper we are not

interested in the identification of {ψ, c, Fε} but in the functions P ∗ and S∗ − S associated

with a counterfactual policy intervention that modifies the outcome function from h to h∗.

We show that, under Assumptions 1 to 3, these functions are identified. For the sake of

presentation, we start showing identification in a myopic version of the model.

3.1 Myopic model

Suppose that agents are not forward looking, i.e., β = 0. Then, the counterfactual choice

probability function is:

P ∗(x, ω) = Pr ( ψ(x) h∗(1, x, ω) + c(1, x) + ε(1) ≥ ψ(x) h∗(0, x, ω) + c(0, x) + ε(0) | x, ω)
= Fε̃

³
h̃∗(x, ω) + c̃(x) | x

´
(19)

where h̃∗(x, ω) ≡ h∗(1, x, ω) − h∗(0, x, ω), c̃(x) ≡ (c(1, x) − c(0, x))/ψ(x), and Fε̃(.|x) is
the CDF of the random variable ε̃ ≡ (ε(0) − ε(1))/ψ(x) conditional to x. Equation (19)

illustrates that the identification of P ∗(.) requires one to identify the functions Fε̃ and c̃.

The relationship between these functions and the factual reduced form probability function

P is:

P (x, ω) = Fε̃

³
h̃(x, ω) + c̃(x) | x

´
(20)

Proposition 1 establishes the nonparametric identification of the functions Fε̃ and c̃ and

therefore of the counterfactual probability function P ∗.

PROPOSITION 1: Let ũ(X×Ω) ⊆ R be the space of real values that the function h̃(x, ω)+

c̃(x) can take. Under Assumptions 1 to 3, β = 0, and median(ε̃|x) = 0 we have that:

(a) the function c̃(.) is identified on X; (b) the function Fε̃(.|.) is identified over the set
ũ(X × Ω) ×X; and (c) the counterfactual choice probability function P ∗ is identified over

the set (X ×Ω)∗ =
n
(x, ω) ∈ X ×Ω : h̃∗(x, ω) + c̃(x) ∈ ũ(X ×Ω)

o
.

The counterfactual probability function is identified on the set (X×Ω)∗ that is included in
X×Ω. There are different cases in which (X×Ω)∗ = X×Ω. Case 1: ũ(X×Ω) = R. This is
the case when the range of variation of the function h̃(., .), or of the function c̃(.), is the whole
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real line. Then, ũ(X×Ω) = R and this implies that (X×Ω)∗ = X×Ω. Case 2: ũ(X×Ω) is

unbounded from above (below) and h̃∗ − h̃ is positive (negative) valued. This is the case in

applications where the outcome variable y has a lower bound at zero (e.g., output, earnings,

revenue), and we consider a counterfactual policy that increases (decreases) the outcome

variable for any possible value of (x, ω). For instance, a increase in the returns to schooling.

Case 3: ũ(X × Ω) ⊂ R but h̃∗ − h̃ is such that sup{h̃∗(x, ω) + c̃(x)} ≤ sup{h̃(x, ω) + c̃(x)}
and inf{h̃∗(x, ω) + c̃(x)} ≥ inf{h̃(x, ω) + c̃(x)}. That is, the policy that we want to evaluate
is such that it reduces (increases) the utility differential in states where this differential is

large (small).

Proposition 2 establishes the identification of the welfare effect function ∆(x, ω) ≡
(S∗(x, ω)− S(x, ω)) /ψ(x).

PROPOSITION 2: Under the conditions in Proposition 1 the welfare effect function ∆ is

nonparametrically identified. We can obtain this function as:

∆(x, ω) = τ(0, x, ω) +G (P ∗(x, ω), Fε̃|x)−G (P (x, ω), Fε̃|x) (21)

where G (P, Fε̃|x) is McFadden’s surplus function:

G (P,Fε̃|x) = P F−1ε̃ (P |x)−
R F−1ε̃ (P |x)
−∞ ε̃ dFε̃(ε̃|x) (22)

and F−1ε̃ (.|x) is the inverse function of Fε̃(.|x).

3.2 Dynamic model

We now consider the identification of counterfactual choice probabilities when agents are

forward looking, i.e., when β > 0. The factual choice probability function is:

P (x, ω) = Fε̃ (ṽ(x, ω) | x) (23)

where ṽ(x, ω) ≡ (v(1, x, ω)− v(0, x, ω))/ψ(x) is the differential value function. The counter-

factual choice probability function is P ∗(x, ω) = Fε̃(ṽ
∗(x, ω)|x), where ṽ∗ is the differential

value function after the policy change. We show in this section that the functions Fε̃, ṽ∗ and

P ∗ are identified under the same conditions as in Proposition 1.

There is a main difference between the static and the dynamic models in the identification

of behavioral effects. In the dynamic model we cannot identify current utility differences or
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any other function that depends only on preferences and not on agent’s beliefs. That is, we

cannot separate agents’ preferences and agents’ beliefs. Despite this under-identification of

preferences, we can identify counterfactual choice probabilities.

For the sake of clarity, it is useful to describe our identification results in two steps. First,

we show the identification of P ∗ when the function Fε̃ is known. Second, we prove the joint

identification of Fε̃ and ṽ∗.

3.2.1 Identification of behavioral effects when Fε̃ is known

Suppose that the function Fε̃ is known to the researcher. Then, it is clear that the function

ṽ is identified from the factual choice probabilities: i.e., ṽ(x, ω) = F−1ε̃ (P (x, ω)|x). However,
in contrast to the static case, knowledge of the function ṽ is not enough to identify the

counterfactual ṽ∗. The reason is that ṽ∗ is not just a function of ṽ and h∗−h as in the static

case. To obtain ṽ∗ we need more information than just the factual value difference ṽ. We

show here that we can identify separately two components of ṽ. Given this decomposition we

can construct the counterfactual function ṽ∗. Proposition 3 provides a characterization of the

choice probability function that will be useful to identify and to estimate the counterfactuals.

PROPOSITION 3: The optimal choice probability function P is the unique fixed point of

the mapping Ψ(P ), where

Ψ(P )(x, ω) ≡ Fε̃

³
ϕ̃(x, ω) + δ̃(x, ω, P )

´
(24)

and (1) ϕ̃(x, ω) = ϕ(1, x, ω)−ϕ(0, x, ω), where ϕ(a, x, ω) is the value of choosing alternative
a today and then select alternative 0 forever in the future; and (2) δ̃(x, ω, P ) = δ(1, x, ω, P )−
δ(0, x, ω, P ), where δ(a, x, ω, P ) is the value of behaving optimally in the future minus the

value of choosing always alternative 0, given that the current choice is a. These functions

are recursively defined as follows:

ϕ(a, x, ω) =
u(a, x, ω)

ψ(x)
+ β

Z
ϕ(0, x0, ω0) dFω(ω

0|ω) dFx(x
0|a, x) (25)

and

δ(a, x, ω, P ) = β
R
( G (P (x0, ω0), Fε̃|x0) + δ(0, x0, ω0, P ) ) dFω(ω

0|ω) dFx(x
0|a, x) (26)

where G (P, Fε̃|x) has the same definition as in Proposition 2.

Proposition 3 establishes that we can decompose additively the value function ṽ in two

functions : ϕ̃ and δ̃. These two functions are not arbitrary. In particular, we show below

12



that we can identify the function ϕ̃ and δ̃ and that these functions, together with Fε̃ are all

what we need to construct the counterfactuals ṽ∗ and P ∗.

We now prove the identification of the function ϕ̃ when the distribution Fε̃ is known.

First, given Fε̃ it is clear from that the surplus function G (., Fε̃) is identified. Second, for

any vector of probabilities P , equation (26) defines implicitly δ as the unique fixed point of

a contraction mapping. Given G and β, this contraction mapping is known and therefore

δ is also identified. And third, the optimal choice probability function is the only function

that solves the functional equation: P (x, ω) = Fε̃(ϕ̃(x, ω) + δ̃(x, ω, P )). Given that Fε̃ is

invertible and that δ̃(., ., P ) = δ(1, ., ., P )− δ(0, ., ., P ) is known, we can identify ϕ̃ as:

ϕ̃(x, ω) = F−1ε̃ (P (x, ω) | x)− δ̃(x, ω, P ) (27)

The functions δ, and ϕ̃ depend on agents’ preferences and beliefs. Can we separately

identify preferences and beliefs? No, without further restrictions. An assumption that

identifies the utility function is the "normalization" u(0, x, ω) = 0 for any (x, ω). Under this

assumption we have that ϕ̃(x) = u(1, x, ω). This type of "normalization" is innocuous in

static models because it does not affect the estimation of counterfactual probabilities, which

only depend on utility differences and not on utility levels. However, this normalization is not

innocuous in dynamic models. In dynamic models, the counterfactual choice probabilities

depend on utility levels and not only on utility differences.

Proposition 4 shows that given the distribution function Fε̃ we can identify the counter-

factual choice probability function.

PROPOSITION 4: Suppose that the discount factor β, the distribution function Fε̃, and the

optimal choice probability function P are known. Then, the counterfactual choice probability

function P ∗ is identified. In particular, P ∗ is the unique fixed point of the mapping Ψ∗(P ),

where

Ψ∗(P )(x, ω) ≡ Fε̃

³
ϕ̃(x, ω) + T (1, x, ω)− T (0, x, ω) + δ̃(x, ω, P )

´
(28)

The functions ϕ̃ and δ̃ are the same ones as in the "factual" mapping Ψ(P ) and they are

identified from the factual choice probabilities. The function T only depends on the policy

intervention and it can be obtained using the expression:

T (a, x, ω) = h∗(a, x, ω)− h(a, x, ω) + β

Z
T (0, x0, ω0) dFω(ω

0|ω) dFx(x
0|a, x) (29)

13



3.2.2 Identification of behavioral effects when Fε̃ is unknown

Under Assumptions 2 and 3 we can decompose the function ϕ in two components, ϕ(a, x, ω) =

Y (a, x, ω) + C(a, x) where the functions Y and C are implicitly defined by the recursive

expressions:

Y (a, x, ω) = h(a, x, ω) + β

Z
Y (0, x0, ω0) dFω(ω

0|ω) dFx(x
0|a, x)

C(a, x) = c(a, x) + β

Z
C(0, x0) dFx(x

0|a, x)
(30)

Therefore, the fixed point mapping Ψ(P ) can be written as:

Ψ(P )(x, ω) ≡ Fε̃

³
Ỹ (x, ω) + C̃(x) + δ̃(x, ω, P ) | x

´
(31)

where Ỹ (x, ω) = Y (1, x, ω)− Y (0, x, ω) and C̃(x) = C(1, x, ω)− C(0, x, ω). It is clear that,

given the identification of h, the function Ỹ is identified. If the function δ̃ were known the

proof of identification of the probability distribution Fε̃ would be very similar to the one in

Proposition 1 for the static model. However, δ̃ depends on Fε̃ that is the object that we want

to identify. Therefore, we have a "chicken-egg" problem we need to know δ̃ to identify Fε̃

but we need Fε̃ to obtain δ̃. If this problem has a unique fixed point, then the distribution

of unobservable state variables is nonparametrically identified.

To show that Fε̃ is identified we proceed in the following way. First, we show that the

differential value function ṽ can be described as the unique fixed point of a mapping that

depends only on the data and the discount factor β. This fixed point mapping Λ(ṽ) is defined

as:

Λ(ṽ)(x, ω) = Ỹ (x, ω)− Ỹ (x, ω̄(x)) + δ̃ (x, ω, P, ṽ)− δ̃ (x, ω̄(x), P, ṽ) (32)

The function ω̄(x) is the value of ω that solves the equation ṽ(x, ω) = 0. Since the median

of ε̃ is zero, we have that Fε̃(ṽ(x, ω̄(x))|x) = 0.5 and P (x, ω̄(x)) = 0.5. Therefore, we can

obtain ω̄(x) by solving the equation P (x, ω) = 0.5 with respect to ω. Note that the function

δ̃ now has as arguments the functions P and ṽ. This is because this function is based on a

representation of the surplus function in terms of he functions P and ṽ. More specifically,

G(x, ω, P, ṽ) = P (x, ω) ṽ(x, ω)−
Z ω

−∞
ṽ(x, u)

∂P (x, u)

∂ω
du (33)

Proposition 5 shows that the mapping Λ is identified given Ỹ and P and that it is a con-

traction mapping. This Proposition also establishes that the functions ν̃, Fε̃ and ϕ̃ are

nonparametrically identified.
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PROPOSITION 5: Suppose that Assumptions 1 to 3 hold and that the discount factor β,

the function Ỹ , and the choice probability function P are known. Then, the mapping Λ is

identified and it is a contraction mapping. It follows that the functions ṽ and ϕ̃ are identified

on X × Ω, and that the probability distribution Fε̃ is identified on ν̃(X × Ω) × X, where

ν̃(X ×Ω) ≡ {ν̃(x, ω) : (x, ω) ∈ X ×Ω}.

Proposition 6 shows that the counterfactual probability function is nonparametrically

identified and describes the procedure to compute this function.

PROPOSITION 6: Suppose that Assumptions 1 to 3 hold and that the discount factor β,

the function Ỹ , and the choice probability function P are known. Then, the counterfactual

probability function P ∗ is identified. More specifically, P ∗ is the unique fixed point of the

mapping Ψ∗ defined in Proposition 4, where the functions ϕ̃ and Fε̃ that appear in the

definition of this mapping have been identified as we describe in Proposition 5.

Proposition 7 establishes the identification of the welfare effect function∆ ≡ (S∗ − S) /ψ.

PROPOSITION 7: Under the conditions in Proposition 6 the welfare effect function ∆ ≡
(S∗ − S) /ψ is identified. We can get this function as:

∆(x, ω) = T (0, x, ω) + δ(0, x, ω, P ∗)− δ(0, x, ω, P ) +G (P ∗(x, ω), Fε̃|x)−G (P (x, ω), Fε̃|x)
(34)

4 Estimation method

This section presents a nonparametric procedure for the estimation of counterfactual choice

probabilities that is based on the previous identification results. Suppose that we have a

random sample of the agents’ decisions, state variables and outcome variable at two consec-

utive periods. We use the subindex i to represent an observation for agent i. The sample

size is n. We describe here a nonparametric procedure for the estimation of the functions

P ∗ and ∆.

Step 1: Estimation of the outcome function h and the transition probabilities Fω and Fx.

Once we have estimated h, we can obtain the value of ω as residuals: ωi = h−1(yi, ai, xi).

We use these residuals at the two consecutive periods to estimate the transition probability

function Fω using a kernel method. Similarly, we estimate the transition function Fx.
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Step 2: Estimation of the choice probability function P . We use a estimator that guarantees

the smoothness and monotonicity of the estimator with respect to ω. In particular, we use

the isotonic-smooth (IS) kernel estimator proposed by Mukerjee (1988) and Mammen (1991)

and extended by Mukerjee and Stern (1994) to models with multiple explanatory variables.

The estimator can be defined in two steps. Suppose that the observations have been sorted

with respect to the variable ω, such that ω1 ≤ ω2 ≤ ... ≤ ωn. The first step is an isotonic

regression for {ai} on {ωi}:

P̂I(xi, ωi) = max
s≤i

min
t≥s

Pt
j=s aj

t− s+ 1
(35)

The second step introduces smoothing by using a Nadaraya-Watson kernel estimator where

the dependent variable is the isotonic regression {P̂I(xi, ωi)} and the explanatory variable is
ω.

P̂IS(x, ω) =

Xn

i=1
K

µ
ω − ωi

bn

¶
P̂I(xi, ωi)Xn

i=1
K

µ
ω − ωi

bn

¶ (36)

where bn is the bandwidth. This estimator was first proposed by Mukerjee (1988). This

estimator is always a smooth function and, when the kernel function is symmetric with

maximum at zero, it is necessarily a non-decreasing function. It is consistent, asymptoti-

cally normal and first order asymptotically equivalent to the Nadaraya-Watson estimator.

Therefore, the monotonicity restriction does not improve the first order asymptotics of the

estimator. Mammen (1991) derived a second order approximation to the variance and bias of

this estimator and showed that imposing the monotonicity restriction does reduces the finite

sample variance and bias. Different Monte Carlo experiments have also found very significant

gains in the finite sample performance (see Mammen, 1991, Dette et al., 2003, Gjbels, 2004,

Aguirregabiria and Vicentini, 2005). These experiments show also that the isotonic-smooth

estimator typical has better finite sample properties than the smooth-isotonic estimator in

which we reverse the order of the kernel and isotonic regressions. Based on the experiments

in Aguirregabiria and Vicentini (2005), we use cross validation for choice of bandwidth,

where the cross-validation function is defined as if the dependent variable were the isotonic

regression {P̂I(xi, ωi)}.

Step 3: Estimation of the function ω̄. The function ω̄, from X into Ω, is defined as the value

of ω that solves the equation P (x, ω) = 0.5. Given our estimate P̂IS of P , we use Newton’s
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method to find ω̄(x). Strict monotonicity of our estimator P̂IS(x, .), implies that ω̄(x) is

unique and Newton’s method always converges to this unique value.

Step 5: Estimation of the mapping Λ and the function ṽ. The mapping Λ is defined in

equation (32). Given our estimates in Steps 1 to 3, we can construct a consistent estimate

of this mapping. This estimate is also a contraction mapping and its unique fixed point is a

consistent estimator of the value function ṽ.

Step 6: Estimation of the distribution function Fε̃. Our estimator of the function ṽ is

continuous and strictly increasing in ω. Therefore, there is an inverse function ṽ−1(x, v) such

that, for any (x, v) ∈ X × ṽ(X × Ω), we have that ṽ(x, ṽ−1(x, v)) = v. The model implies

that P (x, ω) = Fε̃(ṽ(x, ω)). Therefore, it is clear that for any (x, v) ∈ X × ṽ(X ×Ω) we can

obtain Fε̃(v|x) as P (x, ṽ−1(x, v)). Thus, our estimator of Fε̃ is:

F̂ε̃ (v | x) = P̂IS(x, ṽ
−1(x, v)) (37)

where ṽ−1(x, v) is our estimator of the inverse function of ṽ. For every value of x, the value

ṽ−1(x, v) can be easily obtained using Newton’s method. Again, the strict monotonicity of

v̂(x, .) guarantees that Newton’s method always converges to ṽ−1(x, v).

Step 7: Estimation of the functions δ̃, C̃ and ϕ̃. Given ṽ and F̂ε̃, we have just to follow the

definition of δ̃ to obtain an estimator of this function. We know that ϕ̃(x, ω) = Ỹ (x, ω) +

C̃(x). By definition of ω̄(x), we have that C̃(x) = −Ỹ (x, ω̄(x))− δ̃(x, ω̄(x)). Therefore, our

estimator of the function C̃ is just the application of this formula using our estimates of Ỹ ,

ω̄ and δ̃. Then, the estimator of ϕ̃ is Ỹ+ Ĉ, where Ĉ is the estimator of C̃.

Step 8: Estimation of the mapping Ψ∗ and the functions P ∗ and ∆. Given our estimate

of ϕ̃, δ̃ and Fε̃ we can construct a consistent estimator of the mapping Ψ∗ that we defined

in Proposition 3. This mapping is a contraction and its unique fixed point is a consistent

estimator of P ∗. Finally, we apply the formula that defines the function ∆ is Proposition 7

to obtain a consistent estimator of the welfare effect function.

The main computational cost in this procedure comes from the computation of the fixed

points of the contraction mappings Λ̂ and Ψ̂∗. This cost is equivalent to solving the dynamic

programming problem twice. It is of the same order of magnitude as estimating a parametric

version of the model using the two-step method in Hotz and Miller (1993), or the nested

pseudo likelihood algorithm in Aguirregabiria and Mira (2002). The Monte Carlo experi-

ments in the next section provide an idea of the simplicity of this method. For a model with
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two state variables, 10, 000 cells in the state space, and 1, 000 observations, the CPU time

of the whole method was less than six seconds using a program written in GAUSS language

and an Intel Pentium processor of 2.2MHz. Though the computational cost increases expo-

nentially with the number of cells in the state space, it is clear that we can use this method

for any dynamic programming model that we can solve once in a reasonable amount time.

We do not derive in this paper the asymptotic distribution of our estimator of P ∗. How-

ever, this estimator is consistent and asymptotically normal under standard regularity con-

ditions. The Nadaraya-Watson estimator of P is consistent, and the estimators in steps 3

to 8 are continuous and differentiable functions of the estimator P̂IS. Therefore, all these

estimators are consistent. The derivation of the rate of convergence of (P̂ ∗ − P ∗) is a more

complicated problem that we do not consider in this paper. In any case, the computation

of a consistent estimator of the asymptotic variance using a delta method is a complicated

task. Furthermore, it is likely that this asymptotic variance is not a good approximation to

the finite sample variance. In this context, a bootstrap method could be a most convenient

and precise method to estimate the variance of this estimator.

5 An application

This section presents an application of this methodology to evaluate the effects of hypo-

thetical reforms in the social security pension system in Sweden. The main purpose of this

application is to illustrate the implementation of the method and to show that it can provide

meaningful results in relevant contexts. There are several reasons that have motivated the

choice of this particular application. The dataset has been used before by Karlstrom, Palme

and Svensson (2004, KPS hereinafter) to estimate a parametric dynamic structural model

of retirement. We consider a nonparametric version of their model. This previous study

provides a useful benchmark to compare our results. Furthermore, the dataset is publicly

available and it can be download from the web page of the Journal of Applied Econometrics.

Therefore, interested readers can replicate our results.

The model is the one described in section 2.2. The data come from Longitudinal Individ-

ual Panel (LINDA).It is a subsample from LINDA with information on blue-collar workers in

Sweden who were born between 1927 and 1931. The observation period is 1983 to 1997. The

sample in KPS includes cohorts from 1927 to 1940. However, we have preferred to include

only those cohorts for which most individuals are already retired by 1997. Our working
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sample has 1,063 individuals and 12,081 observations. Table 1 presents summary statistics

for the variables that we use in this paper. Table 2 contains the empirical distribution of

retirement age, including the percentage of censored observations.

TO BE COMPLETED

6 Summary and Conclusions

This paper presents a nonparametric approach to evaluate the behavioral and welfare effects

of counterfactual policies using dynamic discrete structural models. The computational cost

of this method is equivalent to solving the dynamic programming problem twice (i.e., before

and after the policy change), and it applies both to finite horizon and infinite horizon decision

processes. We have applied this method to evaluate the effects on individuals’ retirement

behavior of an hypothetical reform that changes the minimum retirement age to receive a

social security pension. Our method can be also applied to test a parametric model. More

specifically, this testing procedure tests whether the parametric assumptions in the model,

as a whole, introduce a significant bias in our estimates of the effects of a policy.
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APPENDIX

PROOF OF PROPOSITION 1.

[1] The factual choice probability function is:

P (x, ω) = Fε̃

³
h̃(x, ω) + c̃(x) | x

´
The function P (., .) is identified on X×Ω. Furthermore, by Assumptions 1(d) and 3(d), this

probability function is strictly monotonic in ω. Define the function ω∗(x, u) fromX×ũ(X×Ω)
into Ω such that ω∗(x, u) is the value of ω that solves the equation h̃(x, ω) + c̃(x) = u.

Assumption 3(d) implies that ω∗(., .) exits is a well-defined function on X × ũ(X × Ω).

Assumption 3(e) implies that, for any x ∈ X, the pair (x, 0) belongs to X× ũ(X×Ω). Since

median(ε̃|x) = 0, we have that P (x, ω∗(x, 0)) = 0.5. Identification and invertibility of P (., .)
implies that ω∗(x, 0) is identified for any x ∈ X. Given ω∗(x, 0) we can identify c̃(x) as:

c̃(x) = −h̃(x, ω∗(x, 0))

Therefore, the function c̃(.) is identified on X.

[2] Now, we prove the identification of Fε̃. Given that we know c̃(.), we can obtain ω∗(x, u)

as the value of ω that solves the equation:

h̃(x, ω) = u+ h̃(x, ω∗(x, 0))

Then, by construction we have that for (x, u) ∈ X × ũ(X ×Ω),

Fε̃ (u | x) = P (x, ω∗(x, u))

Thus, Fε̃ is identified on X × ũ(X ×Ω).

[3] The counterfactual choice probability function is P ∗(x, ω) = Fε̃

³
h̃∗(x, ω) + c̃(x) | x

´
.

Given that h∗ is known and Fε̃ and c̃ are identified, it is clear that P ∗(x, ω) is identified at

any pair (x, ω) such that h̃∗(x, ω) + c̃(x) ∈ ũ(X ×Ω).
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PROOF OF PROPOSITION 2. Using the definition of the integrated value function,

we have that the welfare effect function is:

∆(x, ω) =
1

ψ(x)

Z
max
a∈A

{ u∗(a, x, ω) + ε(a) } dFε(ε|x)−
1

ψ(x)

Z
max
a∈A

{ u(a, x, ω) + ε(a) } dFε(ε|x)
= τ(0, x, ω)

+

Z
max

n
h̃∗(x, ω) + c̃(x)− ε̃ ; 0

o
dFε̃(ε̃|x)−

Z
max

n
h̃(x, ω) + c̃(x)− ε̃ ; 0

o
dFε̃(ε̃|x)

Now,Z
max

n
h̃(x, ω) + c̃(x)− ε̃ ; 0

o
dFε̃(ε̃|x) = P (x, ω) E

³
h̃(x, ω) + c̃(x)− ε̃ | x, ε̃ ≤ h̃(x, ω) + c̃(x)

´
= P (x, ω)

³
h̃(x, ω) + c̃(x)

´
−
Z h̃(x,ω)+c̃(x)

−∞
ε̃ dFε̃(ε̃|x)

And given that the optimal choice probability function P (x, ω) is Fε̃(h̃(x, ω) + c̃(x)|x) and
that Fε̃(.|x) is invertible, we have that:Z

max
n
h̃(x, ω) + c̃(x)− ε̃ ; 0

o
dFε̃(ε̃|x) = P (x, ω) F−1ε̃ (P (x, ω)|x)−

Z F−1ε̃ (P (x,ω)|x)

−∞
ε̃ dFε̃(ε̃|x)

= G (P (x, ω), Fε̃|x)

Thus,

∆(x, ω) = τ(0, x, ω) +G (P ∗(x, ω), Fε̃|x)−G (P (x, ω), Fε̃|x)

21



PROOF OF PROPOSITION 3. For notational simplicity we use z to denote the pair

(x, ω) and the function F (z0|a, z) to represent Fω(ω
0|ω)Fx(x

0|a, x).

[1] Given the definition of the surplus function G(P, Fε̃|z), we have that:

1

ψ(x)

Z
max {v(0, z) + ε(0) ; v(1, z) + ε(1)} dFε(ε|z) =

v(0, z)

ψ(x)
+G(P (z), Fε̃|z)

Solving this expression in equation (7) that defines the conditional choice value function

v(a, z), we have that:

v(a, z)

ψ(x)
=

u(a, z)

ψ(x)
+ β

Z
v(0, z0)

ψ(x0)
dF (z0|a, z) + β

Z
G(P (z0), Fε̃|z0) dF (z0|a, z)

We can apply the same decomposition to the value v(0, z0)/ψ(x0) that appears in this ex-

pression. If we do this, we get:

v(a, z)

ψ(x)
=

u(a, z)

ψ(x)
+ β

Z
u(0, z0)

ψ(x0)
dF (z0|a, z) + β2

Z
v(0, z00)

ψ(x00)
dF (z00|0, z0) dF (z0|a, z)

+ β

Z
G(P (z0), Fε̃|z0) dF (z0|a, z) + β2

Z
G(P (z00), Fε̃|z00) dF (z00|0, z0) dF (z0|a, z)

If we continue applying the decomposition to v(0, z00)/ψ(x00), v(0, z000)/ψ(x000), and so on, we

get:

v(a, z)

ψ(x)
=

u(a, z)

ψ(x)
+
X∞

j=1
βj
∙Z

u(0, zj)

ψ(xj)

³Yj

i=2
dF (zj|0, zj−1)

´
dF (z0|a, z)

¸
+

X∞

j=1
βj
∙Z

G(P (zj), Fε̃|zj)
³Yj

i=2
dF (zj|0, zj−1)

´
dF (z0|a, z)

¸
The first two terms in the right hand side provide the present value of choosing alternative

a today and then alternative 0 forever in the future given that the current state is z. The

third term in the right hand side is the difference between the value of behaving optimally

in the future and the value of choosing always alternative 0. Then, given the definitions

of ϕ(a, z) and δ(a, z) in the enunciate of this Proposition, it is clear that v(a, z)/ψ(x) =

ϕ(a, z) + δ(a, z, P ) where:

ϕ(a, z) =
u(a, z)

ψ(x)
+
X∞

j=1
βj
∙Z

u(0, zj)

ψ(xj)

³Yj

i=2
dF (zj|0, zj−1)

´
dF (z0|a, z)

¸
and

δ(a, z, P ) =
X∞

j=1
βj
∙Z

G(P (zj), Fε̃|zj)
³Yj

i=2
dF (zj|0, zj−1)

´
dF (z0|a, z)

¸
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Given these expressions, it is straightforward to show that we can obtain ϕ(a, z) and δ(a, z, P )

recursively as:

ϕ(a, z) =
u(a, z)

ψ(x)
+ β

Z
ϕ(0, z0) dF (z0|a, z)

and

δ(a, z, P ) = β
R
( G(P (z0), Fε̃|z0) + δ(0, z0, P ) ) dF (z0|a, z)

[2] Thus, v(a, z)/ψ(x) = ϕ(a, z) + δ(a, z, P ). This implies that the expression P (z) =

Fε̃(ṽ(z)|z) can be rewritten as:

P (z) = Fε̃(ϕ̃(z) + δ̃(z, P ))

Therefore, the optimal choice probability function P is a fixed point of the mapping Ψ(P )

where Ψ(P )(z) ≡ Fε̃(ϕ̃(z) + δ̃(z, P )). This is a particular case of the fixed point probability

mapping in Aguirregabiria and Mira (2002). Proposition 1(i) in Aguirregabiria and Mira

(2002) shows that this mapping has a unique fixed point.
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PROOF OF PROPOSITION 4. By Proposition 3, the counterfactual probability func-

tion P ∗ is the unique fixed point of the mapping Ψ∗(P ), where

Ψ∗(P )(x, ω) ≡ Fε̃

³
ϕ̃∗(x, ω) + δ̃

∗
(x, ω, P )

´
where ϕ̃∗ and δ̃

∗
are the functions associated with the counterfactual utility function u∗(a, x, ω).

[1] Identification of δ̃
∗
. By the definition of δ in Proposition 3, we can see that this function

depends on the probability distribution Fε̃ and on the discount factor β. Since these two

functions are invariant in our policy experiment, we have that δ̃
∗
(x, ω, P ) = δ̃(x, ω, P ) and

this function is identified.

[2] Identification of ϕ̃∗: Taking into account the definition of ϕ in the proof of Proposition

3 we have that:

ϕ∗(a, z) =
u∗(a, z)

ψ(x)
+
X∞

j=1
βj
∙Z

u∗(0, zj)

ψ(xj)

³Yj

i=2
dF (zj|0, zj−1)

´
dF (z0|a, z)

¸
Given that u∗(a, z)/ψ(x) = u(a, z)/ψ(x) + τ(a, z) we have that:

ϕ∗(a, z) =
u(a, z)

ψ(x)
+
X∞

j=1
βj
∙Z

u(0, zj)

ψ(xj)

³Yj

i=2
dF (zj|0, zj−1)

´
dF (z0|a, z)

¸
+ τ(a, z) +

X∞

j=1
βj
∙Z

τ(0, zj)
³Yj

i=2
dF (zj|0, zj−1)

´
dF (z0|a, z)

¸
= ϕ(a, z) + T (a, z)

where T (a, z) is the term associated with the present value of the function τ . Therefore,

ϕ̃∗(x, ω) = ϕ̃(x, ω) + T (1, x, ω)− T (0, x, ω)

The function T can be obtained as the fixed point of the contraction mapping:

T (a, z) = τ(a, z) + β

Z
T (0, z0) dF (z0|a, z)

Since the function τ is known, it is clear that T is identified.

[3] Identification of P ∗. P ∗ is the unique fixed point of the mapping Ψ∗(P ), where:

Ψ∗(P )(x, ω) ≡ Fε̃

³
ϕ̃(x, ω) + T (1, x, ω)− T (0, x, ω) + δ̃(x, ω, P ) | x

´
We have shown that the functions ϕ̃, T and δ̃ are identified. Thus, given Fε̃, the counterfac-

tual probability function is identified.
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PROOF OF PROPOSITION 5. The proof proceeds in three steps. First, we show that

the surplus function can be written in terms of the arguments ṽ(x, ω) and P , instead of the

arguments P (x, ω) and Fε̃. Second, we show that the function ṽ is the unique fixed point of

a contraction mapping that depends only on the identified functions Ỹ and P . Finally, we

show that given ṽ, Ỹ and P we can identify Fε̃ and ϕ̃.

[1] An alternative representation of the surplus function. The surplus function for

this binary choice model is G(x, ω) =
Z
max {ṽ(x, ω)− ε̃ ; 0} dFε̃(ε̃). This function depends

on ṽ(x, ω) and Fε̃. Given the one-to-one relationship between ṽ and P , we have shown that

G(x, ω) can be written in terms of P (x, ω) and Fε̃. Now, we show that the function can be

written in terms of ṽ(x, ω) and the functions ṽ and P .

G(x, ω) = P (x, ω) ṽ(x, ω)−
Z ω

−∞
ṽ(x, u)

∂P (x, u)

∂ω
du

To emphasize the dependence with respect to ṽ and P we write this function as G(x, ω, P, ṽ).

Associated with this surplus function we can redefine the function δ̃ as δ(1, x, ω) −
δ(1, x, ω) where:

δ(x, ω) = β
R
( G(x0, ω0) + δ(0, x0, ω0) ) dFω(ω

0|ω) dFx(x
0|a, x)

We also write δ̃(x, ω, P, ṽ) to emphasize that this function depends on ṽ and P .

[2] Fixed point mapping for ṽ. The function ṽ solves the functional equation ṽ(x, ω) =

ϕ̃(x, ω) + δ̃(x, ω, P, ṽ). However, we cannot use this representation to identify ṽ because

this fixed point mapping depends on ϕ̃ that is unknown. Now, we define ṽ as the fixed

point of a different mapping that is identified. Define the function ω̄(x) is the value of ω

that solves the equation ṽ(x, ω) = 0. Since the median of ε̃ is zero, Fε̃(ṽ(x, ω̄(x))|x) = 0.5
and P (x, ω̄(x)) = 0.5. Therefore, we can obtain ω̄(x) by solving the equation P (x, ω) =

0.5 with respect to ω. Therefore, ω̄(x) is identified on X × ṽ(X × Ω). Remember that

ṽ(x, ω) = Ỹ (x, ω) + C̃(x) + δ̃(x, ω). Therefore, by definition of ω̄(x), we have that C̃(x) =

−Ỹ (x, ω̄(x))− δ̃(x, ω̄(x)). Taking this into account we can write:

ṽ(x, ω) = Ỹ (x, ω)− Ỹ (x, ω̄(x)) + δ̃(x, ω, P, ṽ)− δ̃(x, ω̄(x), P, ṽ)

The right hand side of this equation is the mapping Λ evaluated at function ṽ and point

(x, ω), i.e., Λ(ṽ)(x, ω).
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Now, we show that Λ is a contraction mapping and therefore it has a unique fixed point.

To prove this we use Blackwell’s sufficient conditions for a contraction (see Theorem 3.3 in

Stockey and Lucas, 1989). These sufficient conditions are monotonicity and discounting.

(a) Monotonicity: We should prove that for any two functions ṽ0 and ṽ1 such that

ṽ1(x, ω) − ṽ0(x, ω) ≥ 0 for any (x, ω) ∈ X × Ω, then Λ(ṽ1)(x, ω) − Λ(ṽ0)(x, ω) ≥ 0 for any
(x, ω) ∈ X × Ω. Using the definition of the mapping Λ above, a sufficient condition for the

second inequality is that G(x, ω, P, ṽ1) − G(x, ω, P, ṽ0) ≥ 0 for any (x, ω) ∈ X × Ω. Note

that:

G(x, ω, P, ṽ1)−G(x, ω, P, ṽ0) = P (x, ω)
¡
ṽ1(x, ω)− ṽ0(x, ω)

¢
−
R ω
−∞
¡
ṽ1(x, u)− ṽ0(x, u)

¢ ∂P (x, u)
∂ω

du

Solving by parts the integral, it is straightforward to show that:

G(x, ω, P, ṽ1)−G(x, ω, P, ṽ0) =
R ω
−∞ P (x, u)du ≥ 0

(b) Discounting: We should prove that the exists some constant λ ∈ [0, 1) such that
for any function ṽ, any constant c, and any (x, ω) ∈ X × Ωwe have that Λ(ṽ + c)(x, ω) ≤
Λ(ṽ)(x, ω) + λc. We start obtaining G̃(x, ω, P, ṽ + c).

G(x, ω, P, ṽ + c) = P (x, ω) (ṽ(x, ω) + c) −
R ω
−∞ (ṽ(x, u) + c) ∂P (x,u)

∂ω
du

= G(x, ω, P, ṽ) + c P (x, ω)− c
R ω
−∞

∂P (x,u)
∂ω

du = G(x, ω, P, ṽ)

Therefore, there is discounting in the surplus function. Furthermore, given the definition of

Λ, it is clear that Λ(ṽ + c)(x, ω) = Λ(ṽ)(x, ω), i.e., there is discounting in the mapping Λ.

[3] Identification of ṽ. The mapping Λ is identified and it is a contraction. Therefore, its

unique fixed point ṽ is identified on ṽ(X ×Ω).

[4] Identification of Fε̃. The function ṽ is continuous and strictly increasing in ω. There-

fore, there is an inverse function ṽ−1(x, v) such that, for any (x, v) ∈ X× ṽ(X×Ω), we have

that ṽ(x, ṽ−1(x, v)) = v. The model implies that P (x, ω) = Fε̃(ṽ(x, ω)). Therefore, it is clear

that for any (x, v) ∈ X × ṽ(X × Ω) we can obtain Fε̃(v|x) as P (x, ṽ−1(x, v)). Thus, Fε̃ is

identified.

[5] Identification of ϕ̃. We know that ϕ̃(x, ω) = Ỹ (x, ω)+ C̃(x) and we have shown above

that C̃(x) = −Ỹ (x, ω̄(x)) − δ̃(x, ω̄(x)). Given Fε̃ and ṽ, the function δ̃ is identified and

therefore C̃ and ϕ̃ are identified as well.
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PROOF OF PROPOSITION 6. By Proposition 3, P ∗ is the unique fixed point of

the mapping Ψ∗. This mapping depends on the known functions T (1, .) − T (0, .), on the

discount factor β, and on the functions ϕ̃ and Fε̃. By Proposition 5, the functions ϕ̃ and Fε̃

are identified given β, Ỹ , and P . Therefore, the mapping Ψ∗ and its unique fixed point P ∗

are identified.

PROOF OF PROPOSITION 7. By definition, we have that:

∆(x, ω) =
1

ψ(x)

Z
max
a∈A

{ v∗(a, x, ω) + ε(a) } dFε(ε|x)−
1

ψ(x)

Z
max
a∈A

{ v(a, x, ω) + ε(a) } dFε(ε|x)
= v∗(0, x, ω)− v(0, x, ω) +G (P ∗(x, ω), Fε̃|x)−G (P (x, ω), Fε̃|x)

By Proposition 3, v∗(0, x, ω)− v(0, x, ω) = T (0, x, ω) + δ(0, x, ω, P ∗)− δ(0, x, ω, P ). Thus,

∆(x, ω) = T (0, x, ω) + δ(0, x, ω, P ∗)− δ(0, x, ω, P ) +G (P ∗(x, ω), Fε̃|x)−G (P (x, ω), Fε̃|x)
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Table 1
Summary Statistics

1,063 individuals. Cohorts 1927-1931

Variable Mean Std. Dev. Min Max # Obs.

Female 0.339 0.473 0 1 1,063

Married 0.748 0.434 0 1 1,063

Retired in 1997 0.934 0.248 0 1 1,063

Retirement Age 64.16 1.82 53 69 1,063

Wage at Retirement Age 161.56 48.48 37.00 334.00 993
(in thousands of Swedish Kronas)
Pension Points at Retirement Age 3.77 1.28 0.10 6.50 993
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Table 2
Empirical Distribution of Retirement Age
1,063 individuals. Cohorts 1927-1931

Retirement Age Individuals (%) Number of Individuals
Not Retitred in1997

53 2 (0.2) 0
54 1 (0.1) 0
55 2 (0.2) 0
56 1 (0.1) 0
57 6 (0.6) 0
58 4 (0.4) 0
59 7 (0.7) 0
60 40 (4.0) 0
61 32 (3.2) 0
62 36 (3.6) 0
63 54 (5.4) 0
64 191 (19.2) 0
65 564 (56.8) 0
66 29 (2.9) 22
67 13 (1.3) 14
68 9 (0.9) 12
69 2 (0.2) 13
70 0 (0.0) 9
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