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Abstract

We study general equilibrium with nonconvexities. In these economies
there exist sunspot equilibria without the usual assumptions needed
in convex economies, and they have good welfare properties. More-
over, in these equilibria, agents act as if they have quasi-linear utility.
Hence wealth effects vanish. We use this to construct a new model of
monetary exchange. As in Lagos-Wright, trade occurs in both central-
ized and decentralized markets, but while that model requires quasi-
linearity, we have general preferences. Given our specification looks
much like the textbook Arrow-Debreu model, we think this consti-
tutes progress on the classic problem of integrating money and general
equilibrium theory. We also use the model to discuss another classic
issue: the relation between inflation and unemployment.
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1 Introduction

We study economies with nonconvexities, and in particular with some indi-

visible goods, with several goals in mind. First, extending Shell and Wright

(1993) we show that in the presence of indivisibilities there exist sunspot

equilibria without the usual assumptions needed to generate such equilibria

in convex economies, and that these equilibria have good welfare properties

because sunspots allow convexification similar to the way lotteries work in

the indivisible labor economy of Rogerson (1988).1 Second, we emphasize

something not appreciated in the existing literature on sunspots, lotteries

and nonconvexities: in these economies, as long as agents choose interior so-

lutions, in a sense to be made precise, they act as if they have quasi-linear

preferences.

It is true that it has been noted previously of the Rogerson model that,

when labor is indivisible, under certain additional assumptions that include

additive separability between consumption and leisure, agents act as if utility

is linear in leisure. But the result is far more general. The fact that for quite

general specifications agents act as if they have quasi-linear preferences is

useful for a variety of reasons. For one thing, it means that for the divisible

goods in the economy, wealth effects vanish. This has many implications,

including the law of demand (the demand for each of the divisible goods

is unambiguously decreasing in its own price). Here we will emphasize the

usefulness of the results for monetary theory, as we now explain.

1A sunspot equilibrium is one in which extrinsic uncertainty (a random variable with
no impact on preferences, endowments, or technologies) affects the allocation. In convex
economies, sunspot equilibria are necessarily inefficient, because random allocations are
dominated by the average allocation. When some goods are indivisible, however, the
average may not be feasible. For some recent papers on nonconvexities, lotteries, and
sunspots, in addition to those cited here, see the 2002 special issue of JET
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A novel model of monetary exchange with microfoundations based on

search theory has been developed recently by Lagos and Wright (2005),

hereafter LW. The LW model is tractable because gets around the problem

of having to keep track of the distribution of money holdings. It works by

giving agents periodic access to centralized markets where they can adjust

their cash positions by buying and selling other goods, in addition to the

decentralized markets where money is essential. If agents have quasi-linear

utility, given interior solutions, they all take the same amount of money out

of the centralized market, and hence the distribution in the decentralized

market is degenerate. This makes the framework quite easy to analyze, and

hence allows one to extend and apply it in a number of ways.2

Although for some questions one would obviously like to have an en-

dogenous nondegenerate distribution of money holdings, it is useful to have

a benchmark without this complication, and to this extent the LW model

is interesting. One might object, however, that quasi-linear utility is very

special. Our results show that one does not actually need quasi-linearity: for

general preferences, as long as some goods are indivisible, and again given

interior solutions, agents act as if they have quasi-linear utility in the sense

that they all take the same amount of money out of the centralized market.

Thus, we provide an alternative set of assumptions that leads to a relatively

simple model of monetary exchange with explicit microfoundations.

2LW provide examples and references to other applications. An alternative approach
is provided by Shi (1997); Faig (2004) tries to integrate the two models, and gives some
results related to those derived below. For models that are much less tractable, precisely
because one has to keep track of the relevant distribution, see Green and Zhou (1998),
Zhou (1999), Molico (1999), Camera and Corbae (1999), Taber and Wallace (1999), or
Zhu (2003,2005). Earlier search-based models, such as Kiyotaki and Wright (1989,1993),
Aiyagari and Wallace (1991), Shi (1995), or Trejos and Wright (1995), were also very
simple, but only because they avoided the issue by assuming agents could only hold m ∈
{0, 1} units of money.
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We make an effort to describe the centralized market in the model in

a fairly general way — we have few restrictions on endowments, tastes, or

technologies other than those in standard general equilibrium (GE) theory,

except that we have some indivisible goods. This generality is adopted

because it entails little cost for what we do, and also because it indicates

that modern monetary theory is not as special as one might think based

on previous presentations. In earlier discussions of the LW model, e.g., the

centralized market typically has a single consumption good, consumers are

homogeneous in terms of preferences and endowments, firms (if there are

firms at all) are homogeneous, and so on. We show that most of these

special assumptions are completely unnecessary.

Indeed, our centralized market looks very much like the textbook Arrow-

Debreu model with state-contingent commodities (Debreu 1959, ch. 7). Thus

we can appeal to some standard results in GE. Moreover, given we combine

this specification with a micro-based monetary model, one might say that we

make a little progress on the classic problem of integrating of money and GE

theory. Interestingly, we think, progress here comes not from a Procrustean

effort to force money into GE, but from bringing GE into monetary theory.

Finally, under a common interpretation in macro that labor is indivisible,

the model generates equilibrium unemployment.3 And since it is a monetary

model, we can use it to discuss another classic issue: the relation between

inflation and unemployment. We show that the model generates a long-

run Phillips curve that is either upward or downward sloping, depending on

preferences, in a simple and natural way.

3 In addition to Rogerson (1988), a sample of well-known papers in macroeconomics
adopting the indivisible labor assumption includes Hansen (1985), Cooley and Hansen
(1989), and Christiano and Eichenbaum (1992).
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The rest of the paper is organized as follows. In Section 2 we discuss

indivisibilities and sunspots in GE, without money. We show that agents

not at a corner solution act as if they have quasi-linear utility, in the sense

that their demands for divisible goods are independent of wealth, and their

indirect utility functions are linear in wealth. We also discuss conditions

to guarantee interiority. In Section 3 we consider monetary economies. We

begin with brief review of LW. Then we present our alternative model, and

compare results. In Section 4 we discuss the relation between inflation and

unemployment. In Section 5 we conclude. Some technical results are rele-

gated to the Appendix.

2 GE with Nonconvexities

2.1 Equilibrium: Definition

We begin with a static GE model.4 There is a measure space (I,Ω, α) of

consumers, where I = [0, 1], Ω a σ−algebra of subsets of I, and α the

uniform distribution over I.5 There are K firms indexed by k = 1, ...K.

There are J + 1 commodities: J standard consumption goods indexed by

j = 1, ...J , and one indivisible good. We call the indivisible good leisure,

following many examples in macro, although this label means little for now.

4By static, we do not mean the economy is timelss, since as usual we can interpret
goods as indexed by dates. We simply mean that there is a single market that convenes
before any production and consumption take place. Later we consider sequential-market
models.

5We take this specification from Aumann (1964,1966), who introduced equilibrium
with a continuum of agents. We do not actually need a continuum here, but it is adopted
because in the monetary models discussed below, as in much of the literature, when
combined with random matching it generates anonymity. It is worth mentioning that
we could get away with a finite number of agents (for the GE results, and also for the
monetary results as long as we have some other way to motivate anonymity) because we
use sunspots as opposed to lotteries; the latter generally need the law of large numbers
while the former do not (Shell and Wright 1993; Garratt, Keister and Shell 2004).
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By saying leisure is indivisible, we mean that it must either be consumed in

a single unit or not at all.

Agent i starts with 1 unit of leisure, and an arbitrary endowment of the

other goods ei ∈ RJ
+, where e

i : I → RJ
+ is I−measurable and ē =

R
eidi.

Consumer i has preferences represented by a von Neumann-Morgenstern

utility function U i(c, h), where c ∈ RJ
+ is consumption and h ∈ {0, 1} is

labor, which equals 1 minus leisure. The consumption set for each agent is

denoted C = RJ
+×{0, 1}. We assume U i is twice continuously differentiable,

strictly increasing in c, strictly decreasing in h, and strictly concave. To ease

the presentation, we Uj(c, h)→∞ as cj → 0 for all j, where Uj denotes the

partial derivative with respect to cj ; this guarantees cj > 0 in equilibrium.

Consumption goods are produced by firms using labor as the only in-

put. Firm k has a technology represented by production function fk
¡
nk
¢
=£

fk1 (n
k), ...fkJ (n

k)
¤
∈ RJ

+, where fkj (n
k) is output of good j. Assume fk

is continuously differentiable, increasing and concave. It is possible that

fkj (n
k) = 0 for all n for some j — i.e. each firm k does not necessarily pro-

duce every good — but for any good it does produce fkj is strictly increasing

and concave. Profit for firm k (defined below) is Πk, and the share of Πk

paid to consumer i is ηik ∈ R+ where
R
ηikdi = 1. Thus total dividend income

for consumer i is ∆i =
P

k η
i
kΠ

k.

Consumers are generally heterogenous, but for simplicity we assume

there are only a finite number of types T ; that is, I = ∪Tτ=1Iτ , where

U i = U τ , ei = eτ and ηik = ητk for all i ∈ Iτ . Also, for simplicity, there is

no intrinsic uncertainty: all of the fundamentals are deterministic. However,

there is extrinsic uncertainty, represented by the probability space (S,Σ, π),

where S = [0, 1] is the set of states representing “sunspot activity,” Σ the
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Borel sets on S, and π the uniform distribution over S. For what we do here,

the choice of a uniform distribution is without loss in generality (Garratt,

Keister, Qin and Shell 2002). Although the realization of s ∈ S does not

affect preferences, technology or endowments, in principle it could still affect

individual’s behavior.

Given indivisible goods, having allocations potentially depend on extrin-

sic uncertainty allows a certain convexification, which can lead to efficiency

gains over nonrandomized allocations.6 Following Shell and Wright (1993),

we formalize this by assuming complete Arrow-Debreu markets in (sunspot)

state-contingent commodities. Thus, the commodity space is the set of π-

measurable functions from S into C. Similarly, nk(s) is firm k 0s employment

rule, a π-measurable function from S into R+. Let p(s) = [p1(s), ...pJ(s)] ∈

RJ
+ be the price vector of consumption goods and w(s) ∈ R+ the price of

labor in state s.7 For all S̃ ⊂ S, e.g.,
R
S̃ pj(s)ds is the cost of a unit of good

j if event S̃ occurs. Let
£
ci(s), hi(s)

¤
give a point in commodity space for

every consumer i. Let
£
nk(s)

¤
an employment rule for every firm k.

Definition 1 An equilibrium is a list
©£
ci(s), hi(s)

¤
,
£
nk(s)

¤
, [p(s), w(s)]

ª
satisfying:

(i) given [p(s), w(s)], ∀i
£
ci(s), hi(s)

¤
solves

W i = max
ci(s),hi(s)

Z
S
U i[ci(s), hi(s)]ds (1)

6One can define competitive equilibrium without sunspots in the model. By the First
Welfare Theorem, which does not require convexity, if it exists such an equilibrium is
Pareto optimal within the set of nonrandomized allocations. It is easy to provide robust
examples, however, where it is Pareto dominated by randomized allocations, including
sunspot equilibrium allocations (Shell and Wright 1993).

7We restrict attention to price systems that have an inner-product representation (see
Stokey and Lucas with Prescott 1989 ch.15, e.g., for a discussion).
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s.t.
Z
S

£
p(s)ci(s)− w(s)hi(s)− p(s)ei −∆i

¤
ds ≤ 0; (2)

(ii) given [p(s), w(s)], ∀k nk(s) solves

Πk = max
nk(s)

Z
S

n
p(s)fk[nk(s)]− w(s)nk(s)

o
ds; (3)

(iii) ∀s ∈ S,

X
k

nk(s)−
Z
I
hi(s)di = 0 (4)Z

I
ci(s)di−

X
k

fk
³
nk
´
− ē = 0. (5)

Garratt et al. (2002, Theorem 1) show that in this kind of model, every

sunspot equilibrium allocation can be supported by prices, when adjusted for

probabilities, that are constant across states.8 Therefore, in the following,

we can set [p(s), w(s)] = (p, w) for all s ∈ S. Based on this it is immediate

that the solution to the firm problem in (3) is constant across all states

— to be more accurate, almost surely with respect to π, but to ease the

presentation we describe results as holding in all states.

Lemma 1 ∀k, nk(s) = nk ∀s ∈ S.

Proof. The result follows directly from the strict concavity of fkj in any

good j that firm k produces.

Something similar is true for consumers, except that in general we must

distinguish between states where they are employed and those where they

are not. Let Si
1 =

©
s ∈ S : hi(s) = 1

ª
be the set of states where i is employed

and Si
0 = S\Si

1, where we assume S
i
1,S

i
0 ∈ Σ. Also, let ci = π(Si

1) be the

8This is a very intuitive arbitrage-like result: since fundamentals are state-invariant,
a good delivered if s occurs better have the same price as a good delivered if s0 occurs,
given s and s0 occur with equal probability.
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probability that i is employed. Then consumer choices are constant across

states (again, almost surely) in each of these sets.

Lemma 2 ∀i, ci(s) = ci1 ∀s ∈ Si
1 and c

i(s) = ci0 ∀s ∈ Si
0.

Proof. Given [p(s), w(s)] = (p, w), we can rewrite the consumer problem

as

max

Z
S1

U i[ci1(s), 1]ds+

Z
S0

U i[ci0(s), 0]ds (6)

s.t. p
Z
S1

ci(s)ds+ p

Z
S0

ci(s)ds− wci − pei −∆i ≤ 0, (7)

where the maximization is over the sets Si
1 and Si

0, as well as c
i
1(s), which

is consumption in state s ∈ S1, and ci0(s), which is consumption in state

s ∈ S0. The result now follows from the strict concavity of U i.

Lemma 2 implies (6) can be reduced to ciU i(ci1, 1) + (1 − ci)U i
¡
ci0, 0

¢
,

and (7) to cipci1+(1−ci)pci0−wci−xi ≤ 0, where xi = pei+∆i is non-labor

income or wealth.9 Clearly, i cares only about the probability with which

he works, ci = π(Si
1), and not about which states are in Si

1. Also, note

that while ci1 does not equal c
i
0, in general, it does for some specifications.

The following result says that if some commodities enter U i separably from

h, then the demand for these commodities is the same whether or not i is

employed. As a special case, if U i(ci, h) = ui(ci) + vi(h), then ci1 = c
i
0.

Lemma 3 Suppose we can partition ci = (ĉi, c̃i), so that U i(ci, h) = ui(c̃i)+

vi(ĉi, h). Then c̃i(s) = c̃i ∀s ∈ S.

Proof. The result follows directly from strict concavity.

9 Implicitly, xi depends on p directly, and on ∆i which also depends on p.
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Given Lemmas 1 and 2, we can summarize the decisions of all firms by

(nk) and of all consumers by
¡
ci1, c

i
0, c

i
¢
, which allows us to present a much

simpler definition of equilibrium.10 First, one more piece of notation: let

I1(s) =
©
i ∈ I : hi(s) = 1

ª
= {i ∈ I : s ∈ Si

1} be the set of agents who are

employed, and I0(s) = I\I1(s) the set who are unemployed, for each state

s, where we assume I1(s), I0(s) ∈ Ω. We need to include I1(s) in our list of

equilibrium objects because we need to know who is working (and not just

the measure of the set of employed agents) in each state.

Definition 2 An equilibrium is now a list
©¡
ci1, c

i
0, c

i
¢
, (nk), (p, w), I1(s)

ª
satisfying:

(i) given (p, w), ∀i (ci1, ci0, ci) solves

W i = max
ci1,c

i
0,c

i

©
ciU i

¡
ci1, 1

¢
+ (1− ci)U i

¡
ci0, 0

¢ª
(8)

s.t. cipci1 + (1− ci)pci0 − wci − xi ≤ 0; (9)

(ii) given (p, w), ∀k nk solves

Πk = max
nk

n
pfk

³
nk
´
−wnk

o
; (10)

(iii) ∀s ∈ S, X
k

nk = α [I1(s)] (11)

ē+
X
k

fk
³
nk
´
=

Z
I1(s)

ci1di+

Z
I0(s)

ci0di; (12)

(iv) ∀i

ci = π {s : I1(s) 3 i} . (13)

10 It is simpler mainly because the firm problem has been reduced to choosing nk and
the consumer problem to choosing (ci1, c

i
0, c

i), which are finite-dimensional objects, instead
functions.
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Labor demand on the left side of (11) is constant across states; hence

so is labor supply on the right side. This means we have to construct I1(s)

so that the same measure of workers are employed for all s, and the last

consistency condition says that we need to do so in such a way that each

agent i is working with his chosen probability ci. For example, suppose

we have homogeneous consumers, so ci = c̄ for all i. Then in equilibriumP
k n

k = c̄. We have to construct I1(s) so that a fraction c̄ of consumers are

working in every state, and they are all working in a fraction c̄ of the states.

Figure 1: Set of agents working in each state.

This type of construction can be done by generalizing the method in Shell

and Wright (1993). Consider an example with two types of consumers: the

set [0, α] are type 1 and wish to work with probability c1, while the rest are

type 2 and wish to work with probability c2. Set Si
1 =

£
i
α ,

i
α + c1

¤
modulo

11



c1 for i ∈ [0, α], and Si
1 =

h
i−α
1−α ,

i−α
1−α + c2

i
modulo c2 for i ∈ (α, 1]. Figure 1

shows as the shaded area pairs (s, i) such that i is employed in state s. Then

every consumer is working with the desired probability, and the measure of

I1(s) (total employment) is αc1 + (1 − α)c2 for all s. However, there is a

simpler alternative when we have a continuum of consumers. If type τ want

to work with probability cτ , in each state s set hτ = 1 with probability

cτ , and by the law of large numbers a measure cτ will be working in each

state.11

2.2 Equilibrium: Properties

Now that we have defined equilibrium, we provide some substantive results.

First note that (11)-(12) can be rewritten after some manipulation asX
k

nk −
Z
I
cidi = 0 (14)Z

I

£
cici1 + (1− ci)ci0

¤
di− ē−

X
k

fk
³
nk
´
= 0 (15)

This suggests that our economy has a reduced form that looks like a model

with no sunspots, where agents simply trade a probability of working ci for

wages, and use it to buy consumption, in the spirit of lottery models such

as Rogerson (1986).

A particularly simple case is the one where U i(ci, hi) = ui(ci) + vi(hi)

is separable in h, since then Lemma 3 implies ci1 = c
i
0 = c

i. Witout loss in

generality, set vi(1) = 0 and vi(0) = A > 0. Then the consumer problem

can be simplified further to

W i = max
ci,ci

©
ui
¡
ci
¢
−Aici

ª
(16)

11Again, we do not need the law of large numbers for sunspot equilibrium, as one does
for lottery equilibrium, but it does simplify things.
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s.t. pci −wci − xi ≤ 0. (17)

In this case, it is as if the consumer had a utility function that was linear in ci.

Assuming an interior solution, the first-order condition for any commodity

j is uij(c
i) = Aipj/w. This immediately implies ∂cj/∂xi = 0, ∂cj/∂pj =

Aipj/wu
i
jj < 0, and ∂W i/∂xi = Ai/w. Hence, in this very special case it is

obvious that wealth effects are 0, demand curves slope downward, and the

indirect utility function is linear in xi.

We now show these results are general, in the sense that they do not

require U i to be separable in hi; all we need is interiority.

Proposition 1 Suppose ci ∈ (0, 1) and w−pci1+pci0 6= 0. Then ∂cihj/∂xi =

0 ∀i, j, and h = 0, 1.

Proof. Consider the Lagrangian

W = cU (c1, 1) + (1− c)U (c0, 0) (18)

+λ [wc+ x− cpc1 − (1− c)pc0]

where λ > 0 is the multiplier, and we leave of the index i where there is no

risk of confustion. In the Appendix we show that there is a unique solution

to this problem, and assuming c ∈ (0, 1) it uniquely satisfies the first-order

conditions:

c1 : Uj(c1, 1)− λpj = 0 ∀j (19)

c0 : Uj(c0, 0)− λpj = 0 ∀j (20)

c : U (c1, 1)− U (c0, 0) + λ (w − pc1 + pc0) = 0 (21)

λ : wc+ x− cpc1 − (1− c)pc0 = 0 (22)
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Notice that x does not appear in (19)-(21). By the Implicit Function Theo-

rem, these 2J+1 equations determine (c1, c0, λ) independently of x, as long

as ⎡⎣ H1 0 −pT
0 H0 −pT
0 0 w − pc1 + pc0

⎤⎦
is nonsingular, whereHh is the Hessian matrix with (i, j) term Uij(ch, h) and

pT is the transpose. By strict concavity of U , |Hh| < 0 and so nonsingularity

is equivalent to w − pc1 + pc0 6= 0.

In the above result we rule out the possibility w−pc1+pc0 = 0, which

is equivalent to U (c1, 1) = U (c0, 0) by (21). It is well known that this

possibility arises for a very special utlity function in the case of 1 good,

U(c, h) = u[c+ v(h)].12 More generally, consider U(c, h) = u[cJ + v(c−J , h)]

where c−J = (c1, ...cJ−1) (i.e. a concave transformation of a utility function

that is linear in some good, that we assume without loss in generality is cJ).

The first order conditions (19)-(22) still hold, but now notice that for good

J , (19) and (20) tell us

u0[c1J + v(c−J1 , 1)] = u0[c0J + v(c−J0 , 0)]⇒ c1J + v(c−J1 , 1) = c0J + v(c−J0 , 0).

(23)

Hence in this case U (c1, 1) = U (c0, 0) and (?? implies w − pc1 + pc0 = 0.

Now we cannot solve (19)-(21) for (c1, c0, λ) independently of x. Indeed,

(22) now implies pc0 = x.

However, notice (19)-(20) imply for j 6= J

u0[c1J + v(c1, 1)]vj(c1, 1) = λpj ⇒ vj(c1, 1) = pj/pJ , j = 1, 2...J − 1

u0[c0J + v(c0, 0)]vj(c0, 0) = λpj ⇒ vj(c0, 0) = pj/pJ , j = 1, 2...J − 1

12See e.g. Cooper (1987) or Rogerson and Wright (1988).
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We can solve these for c−J1 = c−J1 (p) and c−J0 = c−J0 (p). Then (23) implies

c1J − c0J = v[c−J0 (p), 0]− v[c−J1 (p), 1].

Now we can conclude two things. First, normalizing pJ = 1 with no loss in

generality,

w = p(c1 − c0) = p−J [c−J1 (p)− c−J0 (p)] + v[c−J0 (p), 0]− v[c−J1 (p), 1],

which says that w must be a particular function of p; this is nongeneric in

partial equilibrium, but can easily occur in general equilibrium.13 Second,

from pc0 = x we have

c0J = x− p−Jc−J0 ;

in this case it is c0J that adjusts with x to satisfy the budget equation, and

all other variables are independent of x.

Given we can handle the above special case, to conserve space we will

ignore it and simply assume w − pci1 + pci0 6= 0 in most of what follows.

Proposition 2 Under the conditions in Proposition 1, ∂cihj/∂pj < 0 ∀i, j

and h = 0, 1.

Proof. Exercise.

Proposition 3 Under the conditions in Proposition 1, ∂W i/∂xi = λi is

independent of xi.

13Say consumers are homogeneous, J = 1, and there is a representative firm with
f 0(0) = ∞ and f 0(1) = 0. Then c = n ∈ (0, 1) in equilibrium so w will adjust to satisfy
the relevant condition, which with J = 1 is w/p = v(0) − v(1). That is, the real wage
exactly compensates workers for lost leisure.
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Proof. We can rearrange (18) as

W = U (c0, 0) + λx− λpc0

+c [U (c1, 1)− U (c0, 0) + λ(w − pc1 + pc0)] .

By (21), the term in brackets vanishes. From Proposition 1, c0 and λ are

independent of x, and the result follows.

Consider an economy where consumers are homogeneous with respect to

preferences and wealth. Consider any equilibrium. Now change the distri-

bution of wealth across agents. Then there is an equilibrium where prices

and individual consumption are exactly the same as in the homogeneous-

wealth economy, and although individual employment probabilities may be

different, aggregate employment is the same. The only requirement is interi-

ority for ci. As we discuss at the end of this section, this can be guaranteed

in a homogeneous-wealth economy with certain assumptions on technology.

Given interiority for a homogeneous-wealth economy, we can then guarantee

interiority with heterogeneous wealth by putting bounds on the extent of the

heterogeneity.

Proposition 4 Assume U i = U ∀i. Let
n
ĉ1, ĉ0, ĉ, (n̂

k), p̂, ŵ
o
be an equilib-

rium when xi = x̂ ∀i, satisfying the conditions in Proposition 1. Give each

consumer i a transfer ti in units of the numeraire good, so that xi = x̂+ ti,

where
R
I t

idi = 0. Then there exist x > 0 and x < x, constructed in the

proof, with the following property: if xi ∈ (x, x) ∀i, then an equilibrium ex-

ists with ci ∈ (0, 1) ∀i and it has the same (p̂, ŵ) and
¡
ci1, c

i
0

¢
= (ĉ1, ĉ0) ∀i.

Although ci may differ with i,
R
I c

idi = ĉ.
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Proof. In the homogeneous-wealth economy, from the budget equation,

ĉ =
p̂ĉ0 − x̂

ŵ + p̂ĉ0 − p̂ĉ1
∈ (0, 1) (24)

by assumption. Now consider the economy with transfers, and set (p,w) =

(p̂, ŵ). From (10), nk = n̂k and Πk = Π̂k. From Proposition 1, if ci is

interior ∀i then (ci1, ci0) = (ĉ1, ĉ0). From the budget equation,

ci =
p̂ĉ0 − xi

ŵ + p̂ĉ0 − p̂ĉ1
. (25)

Integrating across agents,
R
I c

idi = ĉ. Since all aggregate quantities are the

same, markets clear.

It remains to give conditions on the distribution such that ci ∈ (0, 1) ∀i.

Suppose ŵ + pĉ0 − pĉ1 > 0. Then

ci > 0 iff xi < x = p̂ĉ0

ci < 1 iff xi > x = p̂ĉ1 − ŵ.

Now suppose ŵ + pĉ0 − pĉ1 < 0. Then

ci > 0 iff xi > x = p̂ĉ0

ci < 1 iff xi < x = p̂ĉ1 − ŵ.

Note that in both cases x > 0 and x < x. As long as xi ∈ (x, x) ∀i, then

ci ∈ (0, 1) for all i. Note that xi ∈ (x, x) ∀i is possible because x̂ ∈ (x, x) by

(24). This completes the proof.

In fact, it is easy to generalize Proposition 4 so that it holds without the

assumption of homogeneous preferences.

Corollary 1 Suppose there are T consumer types, with U i = U τ for all

i ∈ Iτ , where ∪Tτ=1Iτ = I. Suppose there is an equilibrium when xi = x̂τ
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∀i ∈ Iτ satisfying the conditions in Proposition 1. Give each consumer i a

transfer ti so that now xi = x̂τ + ti, where
R
Iτ
tidi = 0 ∀τ . Then there exist

xτ > 0 and xτ < xτ with the following property: if xi ∈ (xτ , xτ ) ∀i ∈ Iτ , ∀τ ,

then an equilibrium exists with ci ∈ (0, 1) ∀i and it has the same prices, the

same consumption, and the same total employment for every type.

Proof. Exercise.

These results say that, as long as it is not too disperse, the wealth dis-

tribution does not matter for consumption or aggregate employment. When

wealth differs across agents, rich agents will work less and poor agents more,

but nothing else changes. This is useful in the monetary economy studied

below, where it implies that even if agents enter the market with different

amounts of money, they exit with the same. To preview how this works, we

present an example where we put money in the utility function — we commit

this sin only for the sake of illustration, and in the next section the value of

money is derived from first principles.

Thus, in addition to leisure, there are two goods, c = (c, m̂), called

consumption and money. The endowment is ei = (0,mi) with
R
midi =

M (here m denotes money brought into the market and m̂ money taken

out). We normalize the price of money to 1, so p is the nominal price of

consumption. Money cannot be produced, while c is produced according to

c = Bn, so that the real equilibrium wage in units of consumption is B.14

Suppose U(c, m̂, h) = log c− v(h) + V (m̂), with v(1)− v(0) = A > 1. Since

U is separable in h, we know c0 = c1 = c and m̂0 = m̂1 = m̂. Hence the

14The fact the production function is not strictly concave here causes no problems.
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consumer problem is

W (m) = max
c,m̂,c

{log c+ V (m̂)−Ac}

s.t. c−Bc− m− m̂

p
≤ 0.

Substituting for c from the budget constraint at equality,

W (m) = max
c,m̂

½
log c+ V (m̂)− A

B

µ
c− m− m̂

p

¶¾
.

The first-order conditions for an interior solution imply c = B/A and V 0(m̂) =

A/Bp; hence, c and m̂ are ineed independent of m. Given c, the technology

implies n = c/B = 1/A ∈ (0, 1). From the budget equation,

c =
1

B

µ
c− m− m̂

p

¶
=
1

A
− (m−M)V 0(M)

A
,

after inserting market clearing, m̂ = M , and p = A/BV 0(M). Clearly, c is

decreasing in m, and c ∈ (0, 1) iff m ∈ (m,m), where

m =M − A− 1
V 0(M)

and m =M +
1

V 0(M)
.

The previous example assumes separability in h. Suppose instead that

U(c, m̂, h) = ca(1+b−h)1−a+V (m̂), where 0 < a < 1 and 0 < b < (1−a)/a.

Now we do not have c0 = c1, although we still have m̂0 = m̂1 = m̂. The

consumer problem is

W = max
©
cca1b

1−a + (1− c)ca0(1 + b)1−a + V 0(m̂)
ª

s.t. cc1 + (1− c)c0 −Bc− m− m̂

p
≤ 0.

This time, we substitute for m̂ and take the first-order conditions:

c1 : aca−11 b1−a = pV 0(m̂)

c0 : aca−10 (1 + b)1−a = pV 0(m̂)

c : ca1b
1−a − ca0(1 + b)1−a = pV 0(m̂) [c1 − c0 −B]
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These can be solved for c0 = abB/(1 − a), c1 = a(1 + b)B/(1 − a) and

V 0(m̂) = aa(1 − a)1−aBa−1/p. Again, c1, c0 and m̂ are independent of m.

Now n = a(1 + b) ∈ (0, 1). From the budget equation,

c = a(1 + b) + (M −m)a−a(1− a)aBaV 0(M),

after inserting m̂ =M and p. Hence, c ∈ (0, 1) iff m ∈ (m,m), where

m =M − aaBa(1− a− ab)

(1− a)aV 0(M)
and m =M +

a1+a(1 + b)Ba

(1− a)aV 0(M)
.

As one can see, it is easy to solve examples, and to construct (m,m) explic-

itly.

2.3 Equilibrium: Existence.

We close this section with a discussion of existence in the general model.

Define excess demand for labor and goods byX
k

nk −
Z
I
cidi = N(p, w) (26)Z

I

£
cici1 + (1− ci)ci0

¤
di− ē−

X
k

fk
³
nk
´
= Z(p, w) (27)

We claim the following is true: (i) As we show in the Appendix, even though

W i is not strictly quasi-concave, there is a unique solution to the consumer

problem (ci1, c
i
0, c

i) and it is a continuous function of (p, w). It is clear

on the firm side, profit maximization determines nk as a continuous func-

tion of (p, w). Hence, excess demand is a continuous function of (p, w).

(ii) It is clear that excess demand is homogeneous of degree 0. (iii) Inte-

grating the budget equations over agents, it is also clear that Walras’ Law

holds: wN(p, w) + pZ(p, w) = 0. (iv) Also, Z(p, w) and N(p, w) can be

bounded below as long as we bound the production function fk for all k. (v)
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max [Zj(pn, wn), N(pn, wn)] → ∞ for any sequence s.t. (pn, wn) → (p, w)

with pj = 0 or w = 0, as long as U i and fk are strictly increasing.

Properties (i)-(v) allow us to apply a standard existence result, such as

Proposition 17.C.1 in Mas-Collel, Whinston and and Green (1995). Basi-

cally, by reducing the model to something that resembles a standard GE

economy we can show an equilibrium exists using standard methods.

Proposition 5 Given the assumptions in the text, ∃(p, w) such that Z(p, w) =

0 and N(p, w) = 0.

Of course, existence does not guarantee ci ∈ (0, 1) for all i. Since many

of our results about the properties of equilibrium depend on it, it would be

good to have some additional conditions to guarantee interiority. One way

one might imagine proceeding is to put curvature restrictions on technology.

Thus, if we assume that for at least one firm k and good j, ∂fkj (n)/∂n→∞

as n → 0, then clearly aggregate labor demand satisfies c =
P

k n
k > 0

in any equilibrium. And if we assume that for every firm k and good j,

∂fkj (n)/∂n → 0 as n → n̄k where
P

k n̄
k ≤ 1, then c =

P
k n

k < 1 in any

equilibrium. However, this assumption would contradict property (v) that

we used for existence. Therefore, we take a different route. To illustrate the

logic of the argument we restrict our attention on the case with J = 1 good,

K = 1 firm, and homogeneous consumers. If n = 1 in equilibrium then the

utility of a representative consumer is U [f(1) + e, 1]. To rule-out such an

equilibrium assume

U [f(1) + e, 1] < U [f(1) + e− f 0(1), 0]. (28)

If (28) holds then a consumer would be better off choosing c = 0 instead of

c = 1. Condition (28) holds provided f 0(1) is sufficiently small. Since U(·, ·)
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is continuous, condition (28) can be restated as f 0(1) < ω̄ where ω̄ > 0 solves

U [f(1) + e, 1] = U [f(1) + e − ω̄, 0]. Hence, in a homogeneous consumer

economy, in any equilibrium c =
P

k n
k ∈ (0, 1) provided (28) holds. By

Proposition 4, if wealth is heterogeneous there is still an equilibrium where

ci ∈ (0, 1) ∀i, as long as wealth is not too heterogeneous.

One could generalize the previous reasoning to J goods as follows. Define

Ŵ (c, 1) = max
c1

U (c1, 1) s.t. pc1 − pf(1)− e = 0,

where p is a solution to c1 = f(1) + e. Define next

Ŵ (c0, 0) = max
c0

U (c0, 0) s.t. pc0 − pf(1)− e+ pf 0(1) = 0

To guarantee that n = 1 is not an equilibrium we impose that Ŵ (c, 1) <

Ŵ (c, 0) for any p such that c1 = f(1) + e. This requires pf 0(1) to be

sufficiently small.

3 Monetary Theory

3.1 The LW Model

We begin with a review of LW, to provide the basic environment, notation,

etc. There is a [0, 1] continuum of infinite-lived agents. Time is discrete, and

each period is divided into two subperiods. In the first subperiod there is a

frictionless centralized market CM. In the second subperiod there is a decen-

tralized market DM with two main frictions: a double-coincidence problem

detailed below, and anonymity, which precludes private credit arrangements.

These frictions make money essential.15

15See Kocherlakota (1998) and Wallace (2001) for formal discussions of essentiality,
especially the role of anonymity. We also emphasize that it is not important for the CM
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There is a single consumption good c in the CM. Agents have 0 endow-

ment of this good, but can produce it with technology c = h. Assume for

now that agents can only make spot trades in the CM — i.e. they cannot

move resources across periods except by carrying money between markets

— but we argue below that this is really without loss of generality. In the

DM there is also one good q. Each agent faces the following possibilities in

the DM: with probability σ ≤ 1/2 he wants to consume and derives utility

u(q); with the same probability he has the ability to produce at disutility

cost ψ(q); and with probability 1− 2σ he neither wants to consume nor can

produce. Agents who want to consume and those who can produce meet

bilaterally and anonymously in the DM, where they trade using money.16

Let q∗ be the quantity that solves u0(q) = ψ0(q); this is an important

benchmark because it is what a planner would choose — i.e. it is the efficient

DM production. Agents discount between the CM and DM at rate β1, and

between the DM and the next CM at rate β2. Let β = β1β2. There is a stock

of money that changes according to M+1 = (1 + γ)M , where the subscript

+1 indicates next period, and new money is injected (or withdrawn if γ < 0)

via lump sum transfers (or taxes) in the CM. This completes the description

of the basic environment.

An agents wealth in the CM is xi = mi+ γM , but since γM is constant

across agents we use mi as the individual state variable. Thus W (m) and

V (m) are the value functions in the CM and DM; they are not indexed by

and DM to meet sequentially; versions where they meet simultaneously, but agents cannot
be at both places at the same time, are developed by Williamson (2005), and generalized
by Telyukova and Wright (2005).

16No agent can both produce and consume, but this is easy to relax. In fact, in LW,
all agents can do both, but there are many specialized goods; so whether one consumes
or produces depends on whom one meets, and some direct barter meetings are possible.
The specification here is equivalent for our purposes, and slightly easier to present.
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i since agents are identical except for their current money balances. Then

W (m) = max
c,h,m̂

{U(c, h) + β1V (m̂)} (29)

s.t. pc+ m̂− ph−m− γM ≤ 0. (30)

The solution in general depends on m. Hence, a distribution of m across

agents entering the CM induces a distribution of m̂ across agents entering

the DM. If U(c, h) is linear in either c or h, however, LW show that m̂

is independent of m, so the distribution across agents entering the DM

is degenerate at m̂ = M(1 + γ).17 LW also show that W is linear with

∂W/∂m = 1/p.

In the DM, in each match between a consumer and producer, they bar-

gain over the quantity of goods q and amount of money d to swap, according

to the generalized Nash solution with bargaining power for the consumer θ.

The deal is constrained by d ≤ m̂. LW show that in equilibrium consumers

trade all their money, d = m̂, in exchange for q = q(m̂), where q(·) is given

by the solution to β2m̂/p+1 = g(q) with

g(q) ≡ θψ(q)u0(q) + (1− θ)u(q)ψ0(q)

θu0(q) + (1− θ)ψ0(q)
. (31)

We go into more detail on bargaining in the next subsection, where the

derivation of (31) will be clear; for now we simply note that it is the price in

the next CM, p+1, that is relevant for q in this DM.18 Given these results,

17There are two caveats: the distribution of m across agents in the CM cannot be too
disperse, since we need interior solutions; and one has to check that V is strictly concave.
LW give assumptions on primitives to guarantee both.

18Note that (31) is the solution for m only below a threshold m∗, while for m ≥ m∗ we
have (d, q) = (m∗, q∗); LW prove that m < m∗ in any equilibrium, so we can ignore this
detail. Also note that LW consider only the case β2 = 1, but this is not crucial.
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the DM value function satisfies

V (m̂) = σ {u [q(m̂)] + β2W+1 (0)} (32)

+σ {−ψ [q(M+1)] + β2W+1(m̂+M+1)}

+(1− 2σ)β2W+1(m̂)

The model is solved as follows. Given quasi-linearity, say U = u(c)− h,

substitutue h from the CM budget equation intoW , and take the first-order

condition with respect to m̂:

β1V
0(m̂) = 1/p. (33)

The envelope condition from (32) is V 0(m̂) = σu0(q)q0(m̂) + (1− σ)β2/p+1.

Or, since q0(m̂) = β2/p+1g
0(q) from the bargaining solution,

V 0(m̂) =
β2
p+1

∙
1− σ + σ

u0(q)

g0(q)

¸
. (34)

Combining (33) and (34), we have

1

p
=

β

p+1

∙
1− σ + σ

u0(q)

g0(q)

¸
. (35)

Finally, the bargaining solution implies 1/p+1 = g(q)/β2M(1+ γ) and (lag-

ging this) 1/p = g(q−1)/β2M , so (35) becomes

g(q−1) = g(q)
β

1 + γ

∙
1− σ + σ

u0(q)

g0(q)

¸
. (36)

Given a sequence or γ, any strictly positive and bounded solution to this

difference equation in q constitutes a monetary equilibrium19 If γ is constant,

it makes sense to consider a steady state where all real variables, including q,

19LW define equilibrium more formally, but it should be clear that, once one has the
path for q, one can recover all of the other endogenous variables.
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are constant. Then the inflation rate is γ, the real interest rate is ρ defined

by β = 1/(1 + ρ), and the nominal interest rate is i = (1 + ρ)(1 + γ) − 1.

Now (36) reduces to

1 +
i

σ
=

u0(q)

g0(q)
. (37)

This is the basic LW model.20

We close this section by arguing that, in any equilibrium, the assumption

of only spot trades in the CM is not restrictive. First note that no trades

can be made for delivery in any meeting of a future DM, since in this market

meetings are anonymous (hence, anyone who was supposed to deliver in this

market would simply renege). For similar reasons no trades can be made in

the CM contingent on events in any future DM (no one sees what happens

to other agents in the DM). So we are left with trades made in the current

CM for delivery in some future CM. But in equilibrium no one partakes of

these trades, for the following reason.

Suppose we open a market for Arrow securities that deliver 1 unit of

purchasing power (money) in the next CM. Let W (m, b) now be the value

function for an agent entering the CM with money m and security holdings

b, and let b̂ be a vector of assets purchased that period. Note that these

Arrow securites are not tangible assets that can be traded bilaterally in

the DM — they are simply promises of purchasing power to be delivered in

the next CM. Extending our earlier results, one can show that (m̂, b̂) is

independent of (m, b). Hence, all agents choose the same portfolio, and the

market clears at b̂ = 0. Therefore, we can shut down these asset markets.

20We do not dwell on substantive results here, except to mention the following. Under
standard assumptions, a monetary equilibrium exists iff i ≥ 0. For i > 0, q < q∗, so
equilibrium is inefficient. Welfare is maximized at the Friedman Rule, i = 0, but if θ < 1
then we have q < q∗ even at i = 0. See LW for details.
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3.2 A New Model

We now consider a model similar to LW, except for two main differences:

instead of quasi-linearity, we allow a general utility function; and we assume

indivisible labor. We also introduce some other extensions, such a general

vector of consumption goods c, arbitrary endowments e which can differ

over time, profit-maximizing firms, and so on, but we continue to assume

homogeneous preferences for now: U i = U(c, h) for all i. The key assumption

is indivisible labor, and given this, we consider sunspot equilibria. As in the

previous section, we assume only spot trades, but argue below that this is

again without loss in generality.

In terms of state-contingent commodities, the CM consumer problem is

W i = max
ci(s),hi(s),m̂i(s)

Z
S

©
U
£
ci(s), hi(s)

¤
+ β1V

i[m̂i(s)]
ª
ds

s.t.
Z
S

£
p(s)ci(s) + m̂i(s)− w(s)hi(s)− p(s)ei −mi − γM −∆i

¤
ds ≤ 0.

This is formally equivalent to the consumer problem in Definition 1, even

though money is not a standard commodity here.21 Hence we can focus on

equilibria with [p(s), w(s)] = (p, w). Then we know [ci(s), m̂i(s)] = (ci1, m̂
i
1)

for all s such that hi(s) = 1 and [ci(s), m̂i(s)] = (ci0, m̂
i
0) for all s such that

hi(s) = 0 by Lemma 1 and Lemma 2. And given m̂i and hi enter separably,

we know m̂i
1 = m̂i

0 = m̂i by Lemma 3.

Therefore the problem reduces to

W i(xi) = max
ci1,c

i
0,c

i,m̂i

©
ciU

¡
ci1, 1

¢
+ (1− ci)U

¡
ci0, 0

¢
+ β1V

i(m̂i)
ª

s.t. cipci1 + (1− ci)pci0 + m̂i − wci − xi ≤ 0,
21One detail is that one has to show that V i is well behaved, including strictly concave;

this can be done following the methods in LW.

27



where xi = pei+mi+γM+∆i. Assuming an interior solution, the first-order

conditions are:

ci1j : Uj

¡
ci1, 1

¢
− λipj = 0 ∀j (38)

ci0j : Uj

¡
ci0, 0

¢
− λipj = 0 ∀j (39)

ci : U
¡
ci1, 1

¢
− U

¡
ci0, 0

¢
+ λi

¡
w + pci0 − pci1

¢
= 0 (40)

m̂i : β1V
0(m̂i)− λi = 0 (41)

λi : wci + xi − cipci1 − (1− ci)pci0 − m̂i = 0 (42)

Observe that (38)-(40) constitute 2J + 1 equations in 2J + 1 unknowns.

Under the assumptions of Propostion 1, and in particular w−pci1+pci0 6= 0,

these equations can be solved for (ci1, c
i
0, λ

i) independently of m̂i and ci, as

a function of (p, w) but not xi. Because the only way consumers differ here

is with respect to xi, (ci1, c
i
0, λ

i) = (c1, c0, λ) is the same for all i. Given λ,

(41) can be solved for m̂i independently of ci, as a function of (p, w) but

not xi. Notice that in (41) we did not index V 0 by i, implying m̂i = m̂ for

all i; this follows from:

Lemma 4 Under the assumptions of Propostion 1, W i(xi) and V i(m̂i) de-

pend on i, but ∂W i(xi)/∂xi = λ and ∂V i(m̂i)/∂m̂i = V 0(m̂i) do not depend

on i.

Proof. Consider W i(x). We have

∂W i

∂x
= [U (c0, 0)− U (c1, 1) + λ (w + pc0 − pc1)]

∂ci

∂x
+ λ.

The first term vanishes by (40), so ∂W i/∂xi = λ, which is independent of i

and xi. We show the other result below, after we have described V i in more

detail; see (47).
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We formalize the analysis of the first-order conditions up to this point

as follows.

Lemma 5 Under the assumptions of Propostion 1, we have (ci1, c
i
0, m̂

i, λi) =

(c1, c0, m̂, λ) ∀i, independent of xi.

Proof. Follows from the discussion in the text.

Given (c1, c0, m̂, λ), (42) implies

ci =
pc0 + m̂i − xi

w + pc0 − pc1
=
pc0 +M −mi − pei −∆i

w + pc0 − pc1
, (43)

so ci is linearly decreasing in xi and hence mi. But aggregate labor supply

c̄ = c̄(p, w) =
pc0 − pē− ∆̄
w + pc0 − pc1

(44)

depends only on average real wealth, pē + ∆̄. This means that aggregate

demand for the J consumption goods,

D(p, w) = c̄(p, w)c1(p, w) +
£
1− c̄(p, w)

¤
c0(p, w),

does not depend on the wealth distribution, or on monetary considerations

at all.

On the firm side, profit maximization determines nk as a function of

(p, w). We can now define market clearing by:

D(p, w)−Σkfk[nk(p, w)]− ē = 0

N(p, w)− c(p, w) = 0 (45)

m̂(p, w)−M(1 + γ) = 0

There are J +2 equations and we only determine J +1 prices (p, w), as we

have already normalized the price of money to 1.22 Existence of a solution to
22Walras Law also holds here: integrating the budget equations over agents, that if the

goods and labor markets clear the money market clears automatically.
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(45), which can be considered a “spot market equilibrium” or an equilibrium

in the CM, taking V i as given and well behaved, is established exactly as in

Proposition 5. Additionally, notice that the CM equilibrium is determined

independently of the DM q, which does not appear in the above equations:

the model displays the neoclassical dichotomy in Aruoba and Wright (2003).

One implication of this is that monetary policy does not affect the CM, as

we discuss further below.23

To determine properties of V iwe now proceed to the DM, beginning with

bargaining. Again we use the generalized Nash solution. Consider a meeting

between agents i and i0 where the former is the consumer and the latter the

producer. For the consumer, his payoff is u(q) + β2W
i
+1(x

i
+1 − d) and his

threatpoint β2W
i
+1(x

i
+1), where x

i
+1 = p+1e

i
+1+ m̂i+ γ+1M+1+∆

i
+1 is his

wealth in the next CM if he does not trade. For the producer, his payoff is

−ψ(q)+β2W
i0
+1(x

i0
+1+d) and his threatpoint β2W

i0
+1(x

i0
+1). Given that W

i
+1

and W i0
+1 both have slope λ+1 by Lemma 4, where λ+1 is the same for all

consumers, the bargaining solution reduces to

max
q,d

[u(q)− β2dλ+1]
θ [β2dλ+1 − ψ(q)]1−θ , (46)

s.t. d ≤ m̂i.

As in LW, one can show that in any equilibrium the constraint holds

with equality. Substituting d = m̂i into (46), the first-order condition with

respect to q is

θ
£
−ψ(q) + β2m̂

iλ+1
¤
u0(q) = (1− θ)

£
u(q)− β2dm̂

iλ+1
¤
ψ0(q).

23Of course, M and γ enter the CM clearing conditions through m̂ = M + γM , but
c1, c0 and c̄ are independent of M and γ. Or, as in the previous footnote, we can ignore
money-market clearing by Walras Law.
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This can be rearranged into β2m̂
iλ+1 = g(q), where g(·) is exactly the same

as (31) from the LW model. Since m̂i = M+1 for all i, in equilibrium,

q = q(M+1) is the same in every trade. The DM value function satisfies

V i(m̂i) = σ
©
u
£
q(m̂i)

¤
+ β2W+1(x

i
+1 − m̂i)

ª
+σ

©
−ψ(q) + β2W+1(x

i
+1 +M+1)

ª
+(1− 2σ)β2W+1(x

i
+1).

Notice V i is indexed by i, because xi+1 = p+1e
i
+1+ m̂i+ γ+1M+1+∆

i
+1

can differ across individuals. However, as claimed in Lemma 4, the derivative

∂V i

∂m̂i
= σu0(q)q0(m̂i) + (1− σ)β2λ+1 =

∙
1− σ + σ

u0(q)

g0(q)

¸
β2λ+1 (47)

does not depend on i, where we get q0(m̂i) = β2λ+1u
0(q)/g0(q) from the

bargaining solution. Inserting (47) into (41), we have

λ = β

∙
1− σ + σ

u0(q)

g0(q)

¸
λ+1. (48)

Using β2m̂
iλ+1 = g(q), and market clearing m̂i =M(1 + γ), (48) becomes

g(q−1) = g(q)
β

1 + γ

∙
1− σ + σ

u0(q)

g0(q)

¸
. (49)

Observe that (49) is identical to (36). Hence, in terms of the DM, the

new model has exactly the same predictions as LW. Of course the CM differs

across the two models, because very different commodities are being traded

(and in particular, the new model generates equilibrium unemployment, as

we discuss in the next section). Still, it is the case that the assumption of

only spot trades in the CM is without loss in generality here, as in LW.

This is perhaps less clear here because, e.g., we have arbitrary endowments

across agents, so one might think they would want to borrow or lend; but
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as long as they are at an interior solution, they would just as soon increase

or decrease ci, and again asset markets are not needed.

Before closing this section, we discuss the maintained assumption ci ∈

(0, 1) for all i, using the ideas in Propostion 4. In equilibrium all agents

enter each CM with one of three values of m: m = 0 if they consumed in the

previous DM; m = 2M if they produced in the previous DM; and m =M if

they did not trade. Hence, from (43), for a given i, ci takes on one of three

values:

ci =

⎧⎪⎪⎨⎪⎪⎩
pc0+M−pei−∆i

w+pc0−pc1 if m = 0
pc0−pei−∆i

w+pc0−pc1
if m =M

pc0−M−pei−∆i

w+pc0−pc1
if m = 2M

(50)

As in the proof of Proposition 4 there are two cases: w + pc0 − pc1 > 0,

or, equivalently from (40), U
¡
ci0, 0

¢
> U

¡
ci1, 1

¢
; and w+pc0−pc1 < 0, or,

equivalently, U
¡
ci0, 0

¢
< U

¡
ci1, 1

¢
. For brevity we present only the former.24

In this case, for a given i, (50) implies:

ci > 0 ∀i iff pei +∆i < pc0 −M ∀i (51)

ci < 1 ∀i iff pei +∆i > M − w + pc1 ∀i (52)

Or, to put this in real terms, use the bargaining solution to eliminate M =

g(q−1)/β2λ and rearrange to get:

ci > 0 ∀i iff g(q−1) < β2λ(pc0 − pei −∆i) ≡ Γi1 ∀i (53)

ci < 1 ∀i iff g(q−1) < β2λ(pe
i +∆i − pc1 + w) ≡ Γi2 ∀i (54)

This yields bounds on g(q−1), Γi1 and Γ
i
2. They are independent of monetary

considerations — i.e. they take on the same values in the nonmonetary

economy where M = 0 — and are strictly positive iff ci ∈ (0, 1) in the

24The other case is similar. Again we ignore the special case U ci0, 0 = U ci1, 1 .
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nonmonetary economy. If g(q−1) < min
©
Γi1,Γ

i
2

ª
for all i, we are done.

But it is easy to see that g is increasing and q < q∗ at every date in any

equilibrium, where u0(q∗) = ψ0(q∗), exactly as in LW. Hence it is easy to

impose conditions that guarantee interiority.25

We summarize the results as follows:

Proposition 6 In the model of this section, ci ∈ (0, 1) ∀i as long as g(q∗) <

min
©
Γi1,Γ

i
2

ª
∀i, where Γi1 and Γi2 are defined in (53) and (54). Given this,

the equilibrium q sequence satisfies (49), which is exactly the same as the

LW model.

4 The Phillips Curve

Simple versions of LW-type models dichotomize: as we discussed above, one

can solve for the allocations in the CM and DM independently. A conse-

quence of this is that money does not affect aggregate production or con-

sumption in the CM, although it does affect real output since q is a real

variable (i.e. dichotomy is not neutrality). In particular, the fraction of

agents who are unemployed, 1− c̄, is independent of the money growth rate,

γ, and therefore the long-run Phillips curve is vertical.26

There are various ways to get around the dichotomy. For instance

Aruoba, Waller and Wright (2005) discuss how to proceed by generaliz-

ing the technology. Here we proceed by generalizing preferences. A key

25 Intuitively, we need to have the DM not too important, in the sense that q is not too
big, because otherwise the value of money is too high and this either forces some people
to c = 1 (those with no money trying to aquire m̂), or forces some people to c = 0 (those
with lots of money trying to spend down to m̂).

26To be accurate, money does affect the distribution of ci across agents entering the
CM with different mi, as indicated by (43); but it has no effect on aggregate employment
c̄.
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assumption in the previous section is that utility is additively separable be-

tween the CM and DM. We now assume the utility of consumption in the

DM is u(q, c, h). To ease the presentation, we assume there is only one CM

consumption good c, that the endowment of c is 0, that β1 = 1, and that

the CM technology is c = Bh, so the real wage is B and xi = mi + γM .

Also, we write CM utility as simply −v(h), with v(1) = A and v(0) = 0,

without is without loss in generality since we already have c in u(q, c, h).27

As we did earlier, we use mi as the CM state variable. The CM problem

in terms of state-contingent commodites is

W (m) = max
c(s),h(s),m̂(s)

Z
S
{−Ah(s) + V [m̂(s), c(s), h(s)]} ds

s.t.
Z
S
[pc(s) + m̂(s)− pBh(s)−m− γM ] ds ≤ 0,

where we have left off the superscript i to save space, but otherwise the only

innovation is that (m̂, c, h) is the state variable for V , since these are all

predetermined (and now also relevant) for the DM. The usual logic reduces

the CM problem to

W (m) = max cV (m̂1, c1, 1)− cA+ (1− c)V (m̂0, c0, 0)

s.t. cpc1 + (1− c)pc0 + cm̂1 + (1− c)m̂0 − pBc−m− γM ≤ 0.

First-order conditions for an interior solution are:

ch : Vc (m̂h, ch, h)− λp = 0, h = 0, 1 (55)

m̂h : Vm (m̂h, ch, h)− λ = 0, h = 0, 1 (56)

c : V (m̂1, c1, 1)− V (m̂0, c0, 0)−A = λp(c1 − c0 −B + m̂1−m̂0
p )(57)

λ : pBc+m+ γM − cpc1 − (1− c)pc0 − cm̂1 − (1− c)m̂0 = 0 (58)
27One interpretation is that the CM good c is purchased in the first subperiod but only

consumed in the second, after participating in the DM; this is not particularly important,
especially given β1 = 1.
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Given V , (55)-(57) constitute 5 equations that determine (c1, c0, m̂1, m̂0, λp),

independently of c or m; then (58) determines c. Notice that we do not get

a degenerate distribution, but a two point distribution, of money holdings,

since in general m̂1 6= m̂0. Also, notice that W 0 = λ. We still have work

ahead of us, however, since we still have to analyze V .28

We begin with bargaining. Consider a match where the buyer has some

arbitrary (m̂, c, h) and the seller (m̃, c̃, h̃). Since W 0
+1 = λ+1, generalizing

the analysis in the previous section, the generalized Nash solution is

max
q,d

[u(q, c, h)− u(0, c, h)− βλ+1d]
θ [βλ+1d− ψ(q)]1−θ

s.t. d ≤ m̂. Notice the only place m̂ enters the problem is through the

constraint, and (m̃, c̃, h̃) does not enter the problem at all. As before, the

constraint d ≤ m̂ must bind, and the first-order condition with respect to q

is:

θuq(q, ĉ, ĥ) [βλ+1m̂− ψ(q)] = (1− θ)
h
u(q, ĉ, ĥ)− u(0, ĉ, ĥ)− βλ+1m̂

i
ψ0(q)

This can be rewritten βλ+1m̂ = g(q, c, h), where

g(q, c, h) ≡ θuq(q, c, h)ψ(q) + (1− θ) [u(q, c, h)− u(0, c, h)]ψ0(q)

θuq(q, c, h) + (1− θ)ψ0(q)
.

In general, q = q(m̂, ch, h) depends on the buyer’s entire state vector, al-

though when θ = 1, g(q, c, h) = ψ(q) and q depends only on m̂. In any case,

there are two values of qh = q(m̂h, ch, h), in equilibrium, corresponding to

h = 1, 0 (consumers who were employed and unemployed).

28 In the previous section we could say a lot about the CM equilibium even before
analyzing V because the model dichotomized: recall that we could solve (38)-(40) for
(ci1, c

i
0, λ

i) independently of m̂i. The whole point of this section is to study cases which
do not dichotomize.
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Given this,

V (m̂h, ch, h) = σ [u(qh, ch, h) + βW+1(0)] (59)

+σE [u(0, ch, h)− ψ(q) + βW+1(m̂h + d)]

+(1− 2σ) [u(0, ch, h) + βW+1(m̂h)]

where the expectation in the second term is over q and d, which now depend

for producers on the type of consumer they meet. Thus,

Vm = βλ+1

∙
1− σ + σ

uq(qh, ch, h)

gq(qh, ch, h)

¸
(60)

Vc = σuc(qh, ch, h) + (1− σ)uc(0, ch, h)− σµ(qh, ch, h), (61)

where

µ(qh, ch, h) ≡
uq(qh, ch, h)gc(qh, ch, h)

gq(qh, ch, h)
.

takes into account the effect of c on q in bargaining. If θ = 1, however,

producers get 0 surplus from trade, so

V (m̂h, ch, h) = σ [u(qh, ch, h) + βW+1(0)] (62)

+(1− σ) [u(0, ch, h) + βW+1(m̂h)]

and this effect vanishes:

Vc = (1− σ)uc(0, ch, h) + σuc(qh, ch, h). (63)

Using (59)-(61) to eliminate V and the bargaining solution to eliminate
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m̂h, (55)-(57) become:

σuc(qh, ch, h) + (1− σ)uc(0, ch, h) = σµ(qh, ch, h) + λp, h = 0, 1

βλ+1

∙
1− σ + σ

uq(qh, ch, h)

ψ0(qh)

¸
= λ, h = 0, 1

λp (c1 − c0 −B) +A = σ [u(q1, c1, 1)− u(q0, c0, 0)]

+(1− σ) [u(0, c1, 1)− u(0, c0, 0)]

−λ−(1−σ)βλ+1
λ+1β

[g(q1, c1, 1)− g(q0, c0, 0)]

At this stage we look for a steady state where all real variables including

pλ are constant, which implies λ/λ+1 = 1 + γ.29 Then the above system

simplifies to:

σuc(qh, ch, h) + (1− σ)uc(0, ch, h) = σµ(qh, ch, h) + λp, h = 0, 1 (64)

uq(qh, ch, h)

ψ0(qh)
= 1 +

i

σ
, h = 0, 1 (65)

λp (c1 − c0 −B) +A = σ [u(q1, c1, 1)− u(q0, c0, 0)] (66)

+(1− σ) [u(0, c1, 1)− u(0, c0, 0)]

−(i+ σ) [g(q1, c1, 1)− g(q0, c0, 0)]

This is a relatively simple structure. Given i, (64)-(66) constitute 5 equa-

tions that can be solved for (c1, c0, q1, q0, pλ). Then aggregate employment

is simply

c̄ =
c0

B + c0 − c1
. (67)

Finally, inserting the bargaining solution βλ+1m̂h = g(qh, ch, h) into c̄m̂1 +

(1− c̄)m̂0 =M(1 + γ), we can solve for the marginal value of money

λ =
c̄g(q1, c1, 1) + (1− c̄)g(q0, c0, 0)

βM
,

29Money market clearing requires cm̂1+(1−c)m̂0 =M(1+γ). Inserting the bargaining
solution, we have [cψ(q1) + (1− c)ψ(q2)] = β2λ+1M(1 + γ). Hence, Mλ+1 is constant in
steady state, and λ (which is, after all, the marginal utility of money) falls at the rate at
which M grows.
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which pins down the nominal price level p, given we already solved for pλ. It

is obvious that this system does not dichotomize, and hence money affects

the CM allocation (c1, c0, c̄).

Thus the model is straightforward, in general. It is particularly simple

when we assume (with a slight abuse of notation) that u(q, c, h) = u(q, c),

since then c1 = c0 = c, m̂1 = m̂0 = m̂ and g(q, c, h) = g(q, c). Then

(66) immediately yields λp = A/B, and (q, c) solve the following versions of

(64)-(65):

σuc(q, c) + (1− σ)uc(0, c) = σµ(q, c) +
A

B

uq(q, c) =

µ
1 +

i

σ

¶
gq(q, c)

Consider the case θ = 1.30 Then we have

∂q

∂i
=
− [(1− σ)ucc(0, c) + σucc(q, c)]ψ

0

σD
< 0

∂c

∂i
=

ucq(c, q)ψ
0

σD
w −ucq,

where a w b means a and b are equal in sign and

D = [σucc(q, c) + (1− σ)ucc(0, c)] kψ
00

−(1− σ)uqq(q, c)ucc(0, c)− σ
£
uqq(q, c)ucc(q, c)− uqc(q, c)

2
¤
< 0.

By (67), in the case under consideration, c̄ = c/B. Then the steady-state

unemployment rate 1− c̄ depends on the i and hence inflation according to

∂(1− c̄)

∂i
w −∂c

∂i
w ucq.

30The general formulae are

∂q

∂i
=
−Vccgq(q, c)

σD̂
and

∂c

∂i
=

Vcqgq(q, c)

σD̂

where D̂ = Vcq uqc − 1 + i
σ

gqc − Vcc uqq − 1 + i
σ

gqq . In general this will involve
third derivatives of u and ψ. When θ = 1, however, g = ψ, and Vc is given by (63), so
only second derivatives of show up.
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This result is extremely intuitive. Inflation is a tax on DM activity, and as

such it unambiguously reduces q. If ucq > 0 (q and c are complements) then

inflation also reduces c and hence c̄. But if ucq < 0 (q and c are substitutues)

then inflation increases c and hence increases c̄. In the latter case, inflation

causes people to substitute out of DM goods and into CM goods, leading to

an increase in CM employment. We get a downward-sloping Phillips curve

under simple and natural conditions. Summarizing:

Proposition 7 When u(q, c, h) = u(q, c) and θ = 1 the model has a long-

run relation between inflation and unemployment that slopes down iff ucq <

0.

The case u(q, c, h) = U(c)+ u(q, h) is also fairly easy, as it again implies

c1 = c0, although not m̂1 = m̂0. Furthermore, g(q, c, h) = g(q, h). Letting

u(0, 1) = u(0, 0) = 0, to reduce notation, (64)-(66) become

U 0(c) = λp

uq(q1, 1) =

µ
1 +

i

σ

¶
gq(q1, 1)

uq(q0, 0) =

µ
1 +

i

σ

¶
gq(q0, 0)

A− λpB = σ

∙
u(q1, 1)−

µ
1 +

i

σ

¶
g(q1, 1)

¸
−σ

∙
u(q0, 0)−

µ
1 +

i

σ

¶
g(q0, 0)

¸
It is easy to derive the following:

∂qh
∂i

=
gq(qh, h)

σuqq(qh, h) + (σ + i)gqq(qh, h)

∂c

∂i
=

g(q1, 1)− g(q0, 0)

BU 00(c)
w g(q0, 0)− g(q1, 1)
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Using the fact that c̄ = c/B,

∂(1− c̄)

∂i
w g(q1, 1)− g(q0, 0),

and unemployment decreases with inflation if g(q1, 1) < g(q0, 0).

Consider the case θ = 1. Then g(q, h) = ψ(q), and it is easy to show

that g(q1, 1) < g(q0, 0) iff q1 < q0 iff uqh < 0. ∂(1− c̄)/∂i w uqh. Moreover,

when θ = 1,
∂qh
∂i

=
ψ0(qh)

σuqq(qh, h)− (σ + i)ψ0(qh)
< 0.

These results are also extremely intuitive. Inflation reduces q. Then if

uqh > 0 (q and h are complements, or q and leisure are substitutes) this

increases leisure and hence reduces c̄. But if ucq < 0 (q and leisure are

complements) then inflation reduces leisure and hence increases c̄.

Proposition 8 When u(q, c, h) = u(q, h) and θ = 1 the model has a long-

run relation between inflation and unemployment that slopes down iff uqh <

0.

5 Conclusion
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Appendix 1: Second-order conditions

Here we check the second-order conditions for a strict local maximum to

the consumer’s problem, assuming c ∈ (0, 1). The first-order conditions for

an interior solution are given by (19)-(22). The bordered Hessian evaluated

at any point where they are satisfied is

B =

⎡⎢⎢⎣
0 −cp −(1− c)p w − pc1 + pc0
−cpT cH1 0 0

−(1− c)pT 0 (1− c)H0 0
w − pc1 + pc0 0 0 0

⎤⎥⎥⎦ .
For a maximum we need the last 2J−1 leading principal minors |B3| , |B4| , ... |B2J+2|

to alternate in sign, with |B2J+2| < 0. To begin,

|B2J+2| = − (w − pc1 + pc0)2 c(1− c) |H1| |H0| < 0,

since |Hh| < 0 by the strict concavity of U . Second, consider

B1+j = c

∙
0 −pj
−pTj H1j

¸
with j ∈ {2, ...J}. Here pj = (p1, ...pj) and Hhj is the submatrix of Hh

defined by deleting all but the first j columns and rows. By the strict

concavity of U , |B1+j | has the same sign as (−1)j .

Consider next

B1+J+j =

⎡⎣ 0 −cp −(1− c)pj
−cpT cH1 0

−(1− c)pTj 0 (1− c)H0j

⎤⎦
with j ≤ J . Then

|B1+J+j | = (1− c)Ujj(c0, 0) |BJ+j |− (1− c)2p2jc(1− c) |H1| |H0j−1| .

By induction, |B1+J+j | has the same sign as (−1)J+j . To see this, note that

|BJ+2| has the same sign as (−1)J+1 and |H1| |H0j−1| has the same sign as
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(−1)J+j−1. Therefore any point that satisfies the first-order conditions is a

strict local maximum. ¥

Appendix 2. Global maximum

Here we use the results in Appendix 1 to show that a solution to the first-

order conditions constitutes the global maximum. We begin by breaking the

problem into two steps. First define

V(c) = max
c1,c0

[cU(c1, 1) + (1− c)U(c0, 0)]

s.t. cpc1 + (1− c)pc0 − cw − x ≤ 0.

Since U is strictly concave, this problem has a unique solution [c0(c), c1(c)].

By the Theorem of the Maximum, V(c) is continuous and hence achieves a

maximum over c ∈ [0, 1].

Suppose there are two local maxima. Then by continuity V(c) also has a

local minimum at some c̃ ∈ (0, 1). Then [c0(c̃), c1(c̃), c̃] is a saddle-point of

the problem in Appendix 1, which contradicts the result that any solution

to the first-order conditions is a local maximum. Hence there is a unique

maximizer of V(c), say ĉ, and [c0(ĉ), c1(ĉ), ĉ] is the unique solution to the

problem in Appendix 1. ¥

Appendix 3. Second-order conditions for monetary model

Here we check second-order conditions for a monetary economy with one

consumption good (although this is a special case of the results in Appendix

1, it may be useful to see a simple example). The first-order conditions are
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given by (38)-(42). The bordered Hessian is⎡⎢⎢⎢⎢⎣
0 −cp −(1− c)p −1 w − pc1 + pc0
−cp cU11(c1, 1) 0 0 0

−(1− c)p 0 (1− c)U11(c0, 0) 0 0
−1 0 0 V 00(m̂) 0

w − pc1 + pc0 0 0 0 0

⎤⎥⎥⎥⎥⎦
At this stage it is an exercise to check that the relevant principal minors

take the correct sign. ¥

Appendix 4. Competitive pricing in DM

We consider here a version of the model where the DM is a standard

competitive market. The price of DM goods is P . The problem of an agent

holding m̂ units of money who wants to consume is

max
q
[u(q) + β2W+1(m̂− Pq)] s.t. Pq ≤ m̂. (68)

The problem of an agent who can produce is

max
q
[−ψ(q) + β2W+1(m̂+ Pq)] . (69)

Since there is the same measure σ of buyers and sellers, market clearing

means the solution to these two problems must be the same q.

One can show the constraint Pq ≤ m̂ binds in any equilibrium, just like

under bargaining. Hence, the solution to (68) is q = m̂/P . Inserting this into

the first-order condition from (69), we have ψ0(q) = β2W
0
+1(m̂+Pq)P.Notice

from the buyer’s problem that q0(m̂) = 1/P = β2λ+1/ψ
0(q) and β2λ+1M =

ψ0(q)q. Therefore we have the equilibrium condition

ψ0(q−1)q−1
M−1

=
βψ0(q)q

M

½
1− σ + σ

u0(q)

ψ0(q)

¾
. (70)
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