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Abstract

We study how a continuum of agents learn about disseminated information

in a dynamic beauty contest model when they do not observe aggregate vari-

ables, such as prices or quantities, but randomly observe each other’s actions.

We solve for the market equilibrium and find that the average learning curve

is S-shaped: learning is slow initially, intensifies rapidly and finally converges

slowly to the truth. We show that increasing public information always slows

down learning in the long run. Under some conditions, even if agents have

no coordination motive, it also reduces welfare. Lastly, optimal diffusion of

information requires that agents “strive to be different”: agents need to be

rewarded for choosing actions away from the population average.
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1 Introduction

How does information diffuse in a population when there are no prices or quantities

that aggregate the private information dispersed in the marketplace? What, if any,

is the impact on diffusion dynamics and welfare of increasing public information?

This paper addresses these questions in a dynamic beauty contest model based on

two key assumptions. First, agents interact in a decentralized fashion and second,

they cannot observe any endogenous aggregate.

We assume that, at the beginning of time, each of a continuum of agents receives

both a private and a public signal about the state of the world. Every subsequent

period, agents choose their actions to maximize a payoff which depends on i) the

state of the world and ii) the average action in the population at the time. This

dependence on population play directly creates a coordination motive. At the end

of the period, every agent noisily observes the action of another randomly chosen

agent. Because actions reflects current information, our continuum of agents pro-

gressively learn about the state of the world by randomly observing each others.

This is the mechanism through which the initial private signals endogenously diffuse

in the population.

We show that there exists an equilibrium where agents eventually learn all private

information. The average belief in the population about the state of the world thus

converges to the truth, but it does so along an S-shape curve as illustrated by the

upper panel of Figure 1 and discussed further in Section 3.3. The learning curve is

initially convex because of an information snowballing effect: agents learn from the

learning of others. The learning curve is concave at the end because convergence to

the truth implies that learning eventually slows down. In addition, because agents

learn independently from one another, their learning histories are increasingly het-

erogeneous. This implies that the cross-sectional variance of beliefs increases at the

beginning, as illustrated by the lower panel of Figure 1. This variance eventually

converges to zero as agents learn the truth.

Asymptotically, we show that the public information ends up crowding out private

information: better public information at the beginning of time always slows down
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Figure 1: The distribution of beliefs over time.

learning in the long run. This follows from an information externality. Indeed,

with an increase in the precision of public information, an agent finds it optimal to

load his action more heavily on the public signal than on his private information.

The presence of observational noise implies that now it is harder for others to infer

an agent’s private information from his action. This effect slows down information

diffusion. Note that, because of our continuum-of-players assumption, an agent has

no incentive to take this effect into account when choosing his action.

Can it be possible then that better public information reduces welfare? By an-

alyzing a continuous-time limit of the discrete-time model, we prove that a given

marginal increase in the precision of the initial public signal is always welfare re-

ducing if agents are sufficiently patient and their actions are not too strategic sub-

stitutable. In particular, the result encompasses the case when the agents have no

coordination motive at all. Hence, differently from Morris and Shin (2002)), even in

the absence of a payoff externality better public information can be welfare reducing.

In the last part of the paper we study the problem of a planner who seeks to

maximize social welfare by telling agents what action to take as a time-varying affine
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function of their private beliefs. In the decentralized equilibrium, agents do not take

into account the impact on aggregate learning of their actions and hence a learning

externality appears. The planner internalizes this externality and would like agents

to take actions more sensitive to their private beliefs. We show that this sensitivity

changes non-monotonically over time. At the beginning, when information is very

dispersed in the population, there is not much to learn from observing someone else’s

action and the planner prescribes a low sensitivity of actions to private information.

After a while, learning has increased each agent’s private information, and the plan-

ner finds it optimal to prescribe a high sensitivity. Eventually, agents know almost

all the information. Then again, there is not much to learn from observing someone

else’s actions, and the planner prescribes a low sensitivity. Finally, we show that, in

some cases, the planner’s solution can be decentralized, in a beauty context spirit, by

rewarding agents for taking actions away from the population play. In other words,

agents should be rewarded for being different.

The results may apply to a broad range of economic interactions. For instance,

in the macro economy, information is typically dispersed because households and

firms know more about their local markets than about the economy as a whole. In

addition, agencies collect and release macroeconomic information with long lags. In

the meantime, firms and households learn about the state of the economy by inter-

acting among each others.1 One may also relate our setup to micro-level markets in

which trade is typically bilateral and transaction prices are not released in real time.

This is the case, for instance, for some over-the-counter asset markets (see Edwards,

Harris, and Piwowar (2004) for a study of the corporate-bond market).

Literature Review

Our work is related to the recent literature on the social value of public information

(see Morris and Shin (2002), Hellwig (2005), and Angeletos and Pavan (2005)). In

1This is the premise of Lucas (1972) and Phelps (1969). One may argue that asset prices
efficiently aggregate private information. However, even asset prices appear to react to the release
of macro information.
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these models, public information may reduce welfare because a static payoff exter-

nality creates a coordination motive. Our contribution is to identify an alternative

dynamic mechanism based on an information externality: in our model public infor-

mation crowds out the diffusion of public information in the population.

Information externalities have been studied in the social learning literature (see,

among many others, Vives (1993), Chamley and Gale (1994), and Vives (1997)). The

maintained assumption of these models is that agents learn from public signals. The

present paper makes the opposite assumption that, aside from the first period, agents

do not observe any public signal. The two assumptions end up having strikingly

different implications. Indeed, when agents learn from public signals, the learning

speed is decreasing over time. This key implication is reversed in our model because

agents learn from the learning of others, which creates an information snowballing

effect: initially, learning speed increases over time. This implies that information

diffuses along a S-shape, a pattern documented by a number of empirical studies of

social learning (see Chapter 9 of Chamley (2004), and the reference therein). Recent

work on social learning focused on learning in networks: Bala and Goyal (1998),

Gale and Kariv (2003), Smith and Sorensen (2005) study deterministic networks

with finite number of agents, Banerjee and Fudenberg (2004) provide a continuum-

of-agents setup (see also DeMarzo, Vayanos, and Zwiebel (2003) for a network of

boundedly rational agents). Because they lack tractability, these models end up

focusing almost exclusively on the question of convergence to the truth. Our model

of a random network with a continuum of agents can be solved in closed form, which

allows us to take the learning-in-network literature a step further, with an analysis

of transitional dynamics, welfare, and the impact of public information.

In Wolinsky (1990) seminal random-matching model of learning, information dif-

fuses at the individual level but stays constant at the aggregate level: indeed, agents

leave the economy after trading and uninformed agents continuously enter the econ-

omy. The issue of convergence when information diffuses on the aggregate has been

subsequently addressed in Green (1991), Blouin and Serrano (2001), and in the in-

dependent work of Duffie and Manso (2006). Wallace (1997), Katzman, Kennan,

and Wallace (2003), and Araujo and Shevchenko (2006) address learning about the
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money supply in Trejos and Wright (1995) random-matching model. For tractability,

they assume that the money supply becomes public after either one or two periods.

Araujo and Camargo (2006) relax this assumption in a Kiyotaki and Wright (1989)

model, and study the government incentives to expand the money supply. Our setup

is somewhat simpler than these models because agents do not learn from trading

but from observing the action of others. The benefit of this simplification is that we

can explicitly characterize the transitional dynamics of beliefs and study the welfare

impact of public information.

The rest of the paper is organized as follows. Section 2 introduces the setup.

Section 3 provides the transitional dynamics of the beauty contest equilibrium, and

studies the impact on welfare and diffusion of a marginal increase in public informa-

tion. Section 4 studies optimal information diffusion and section 5 concludes.

2 Setup: A Dynamic Beauty Contest

In this section we introduce the dynamic beauty contest. Our economy is populated

by analysts who, every period, prepare a forecast of the state of the world. With

some probability, at the end of every period, all analysts publicly announce their

forecast, the state of the world is revealed, and an analyst’s payoff is a function of

how far his announced forecast is from i) the actual state of the world, and ii) the

average forecast in the population. With the complementary probability, the state

of the world is not revealed, each analyst gets to observe the forecast of a randomly

chosen colleague up to some noise, and the economy moves to the next period.

The formal model is as follows. Time discrete and possibly runs to infinity. The

economy is populated by a continuum of analysts indexed by i ∈ [0, 1]. The state of

the world is summarized by a parameter θ ∈ R, that all analysts take to be normally

distributed with mean θ̄ and variance σ2
0 (they share a common prior).2 However,

analysts immediately become asymmetrically informed about θ: at the beginning of

time, each analyst receives a signal zi1 = θ + wi1, where wi1 is normally distributed

2One can interpret the common prior θ̄ as a public signal, as in Morris and Shin (2002). Namely,
at time t = −1, analysts have completely diffuse prior and observe θ̄ = θ + vt, for some vt that is
normally distributed with mean zero and variance σ2

0
.
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with mean zero and variance s2
1. Signals are idiosyncratic in that the random variable

wi1 is pairwise independent across analysts.

The timing of a period is as follows. At the start of each period t ∈ {1, 2, . . .},
every analyst prepares his forecast ait ∈ R for the period. At time t + 1, with

probability 1− β, the game ends and, following Morris and Shin (2002), the analyst

receives a payoff equal to:

Uit = −(ait − θ)2 − b

1− b
(Lit − L̄t), (1)

where b ∈ (−∞, 1) and

Lit =

∫ 1

0

(ajt − ait)
2 dj (2)

L̄t =

∫ 1

0

Lit di. (3)

An analyst trades off the distance of his announcement to the payoff-relevant pa-

rameter θ against the distance from the average announcement in the population.

The parameter b captures the strength of the beauty contest: larger b means that

an analyst worries more about staying close to average announcement. Lastly, the

beauty contest is a zero-sum game. Indeed, the cross-sectional sum
∫ 1

0
(Lit− L̄) di of

analysts’ beauty-contest losses is equal to zero.

If θ is not revealed, then the game continues and every analyst observes the an-

nouncement of some other randomly chosen analyst, up to some noise. In particular,

analyst i observes

ajt + εjt,

where j is drawn randomly according to a uniform distribution, independently across

analysts and over time. Likewise, the noise is normally distributed with mean zero

and variance σ2
ε , and is idiosyncratic across analysts and over time.

Equilibria

The history for analyst i at time t is given by hit = {wi1, aj1 +εj1, . . . , ajt +εjt}. The

strategies are mappings from the set of all possible histories at every time to possible

announcements. The market solution is taken to be the Bayesian equilibrium of
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the dynamic game. At any point in time, given his beliefs, and taking as given the

strategies of all other analysts, an analyst’s strategy maximizes his expected payoff

of the current period. This follows because a particular analyst’s action is negligible

by the continuum-of-agents assumption. In particular, let ai(hit) be the strategy of

agent i with history hi. Then it has to be the case that

ai(hit) = (1− b)E(θ |hit) + bE

(
∫ 1

0

aj(hjt) dj

∣

∣

∣

∣

hit

)

, (4)

which, together with the common prior assumption, implies that equilibrium strate-

gies are symmetric.

3 Linear Equilibrium

In this section we characterize a Bayesian equilibrium of this beauty-contest game.

We show that the learning curve is S-shaped and that a marginal increase in public

information speeds up learning in the short run but slows it down in the long-run.

In some case, when agents are sufficiently patient, it also reduces welfare.

3.1 Preliminary

We start by describing the analysts learning dynamics, under the three following

hypotheses (which we verify hold in an equilibrium in the next subsection).

Hypothesis H1: at the beginning of each period t ∈ {1, 2, . . .}, an analyst i ∈ [0, 1]

has observed a sequence zi1, . . . , zit of signals, where zit = θ + wit, for some normal

random variables wit with mean zero and variance s2
t .

Hypothesis H2: the sequence wi1, wi2, . . . is independent from θ for all i ∈ [0, 1].

Hypothesis H3: the random variables wit are almost surely independent across

time and independent from wi1, wi2, . . . , wit−1. Moreover, for all j ∈ [0, 1], wit is

almost surely independent from wj1, wj2, . . . , wjt.

We now provide a recursive characterization of the learning dynamics implied by

Hypotheses (H1)-(H3). At the beginning of each period t ∈ {0, 1, 2, . . .}, the prior of
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analyst i ∈ [0, 1] is that θ is normally distributed with mean θ̂it ≡ E [θ | zi1, . . . , zit]

and variance σ2
t . Remember, the prior at the beginning of time (before receiving

the first signal) is θ̂i0 = θ̄ and σ2
0. We refer to the conditional expectation θ̂it as the

“belief” of the analyst. We guess and verify in the proof of Proposition 1 that the

cross-sectional distribution of these beliefs can be written

θ̂it = (1− xt)θ̄ + xtθ + uit, (5)

where xt ∈ [0, 1] is some constant, and uit is a normal random variable with mean

zero and variance τ 2
t , that is independent from θ. In words, equation (5) says that,

conditional on the true value θ, the cross-sectional distribution of θ̂it is normally

distributed with mean (1 − xt)θ̄ + xtθ and variance τ 2
t . The initial conditions are

x0 = 0 and τ0 = 0. The following Proposition applies standard linear-projection

results (see for instance chapter 4 of Luenberger (1969)) in order to derive a recursive

characterization of {xt, σ
2
t , τ

2
t }∞t=0.

Proposition 1 (Learning dynamics). For a given sequence {s2
1, s

2
2, ...} of vari-

ances and under hypothesis (H1)-(H3), at each time t ∈ {0, 1, . . . , }, an analyst

believes that θ is normally distributed with mean θ̂it and variance σ2
t , where

θ̂it+1 = θ̂it + kt+1(zit+1 − θ̂it) (6)

σ2
t+1 = (1− kt+1)σ

2
t (7)

where kt+1 ≡ σ2
t /(σ

2
t + s2

t+1), and σ2
0 is given. In addition, the parameters governing

cross-sectional distribution (5) of θ̂it are

xt+1 = 1− σ2
t+1

σ2
0

(8)

uit+1 = (1− kt+1)uit + kt+1wit+1 (9)

τ 2
t+1 = σ2

0xt+1(1− xt+1). (10)

Proof. In the appendix.

Note that xt is the reduction in the variance of an analyst’s posterior relative to

his initial belief. The following result will prove useful,
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Lemma 1. For a given sequence {s2
1, s

2
2, . . .} of variances, and under hypotheses

(H1)-(H3), the variance reduction xt follows the recursion

xt+1 = 1− (1− xt)
s2

t+1/σ
2
0

s2
t+1/σ

2
0 + (1− xt)

, (11)

for all t ∈ {1, 2, . . .} and with x1 = σ2
0/(s

2
1 + σ2

0).

Proof. To obtain the recursion for xt, divide both sides of equation (7) by σ2
0. The

result follows by plugging the value of kt+1 and using equation (8).

So far in this section we have characterized the learning dynamics under hy-

potheses (H1)-(H3), and given a sequence {s2
1, s

2
2, . . .} of variances. To obtain that

sequence and to verify the validity of our hypotheses, we need to solve for the actions

taken by the analysts in equilibrium. The next section proceeds to construct such

an equilibrium.

3.2 A Linear Equilibrium

In this subsection we characterize an equilibrium in which an analyst’s announcement

is affine.

Suppose that the announcement of analyst j ∈ [0, 1] at time t ∈ {1, 2, . . .} can be

written as a linear combination of his time 0 prior and his current beliefs Ftθ̄+ Gtθ̂jt,

for some (Ft, Gt) ∈ R
2
+ to be determined. Note that, because all analysts are using

the same linear coefficients at any time t, their different histories affect their actions

only through their posterior beliefs. Substituting (5) we have that

ajt = Ftθ̄ + Gt

(

(1− xt)θ̄ + xtθ + ujt

)

. (12)

The recursion (9) implies that, for all j ∈ [0, 1], ujt is a linear combination of

wj1, wj2, . . . , wjt. Then, by the induction hypothesis (H3), the ujt are almost surely

independent across analysts. Therefore, given that the ujt have zero mean given

θ, an informal application of the Law of Large Numbers shows that the average

announcement is
∫ 1

0

ajt dj = Ftθ̄ + Gt

(

(1− xt)θ̄ + xtθ
)

. (13)
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This implies that an analyst with history hit expects the average announcement to

be

E

[
∫ 1

0

ajt dj

∣

∣

∣

∣

hit

]

= Ftθ̄ + Gt

(

(1− xt)θ̄ + xtθ̂it

)

.

Hence, equation (4) shows that analyst i’s best reply is

ait = (1− b)θ̂it + b
[

Ftθ̄ + Gt

(

(1− xt)θ̄ + xtθ̂it

)]

. (14)

Identifying with the coefficients of (12) and (14) shows that, in a linear equilibrium

Ft =
b(1− xt)

1− bxt

(15)

Gt =
1− b

1− bxt

. (16)

In particular Ft = 1 − Gt, implying that an analyst’s forecast can be written θ̄ +

Gt

(

θit − θ̄
)

. If b = 0 there is no beauty contest and Gt = 1, meaning that the

equilibrium analyst’s strategy is simply to announce his belief θ̂it. If b ∈ (0, 1) then

Gt ∈ (0, 1) implying that analysts underweight their belief θit relative to the common

prior θ̄: analysts strive to look alike. Conversely if b < 0, then Gt > 1 and analysts

strive to look different.

The last thing to do in order to complete our characterization of an equilibrium,

is to verify that our maintained hypotheses (H1)-(H3) hold, and to determine the

sequence s2
t+1. Equation (12) implies that observing the announcement of a randomly

chosen agent j ∈ [0, 1] up to some noise εjt amounts to observing

zit+1 = θ +
ujt

xt

+
εjt

Gtxt

≡ θ + wit+1, (17)

where

wit+1 ≡ ujt/xt + εjt/(Gtxt), (18)

which verifies hypothesis (H1). Hypothesis (H2) and (H3) are verified because of the

following intuitive reason. Random matching with a continuum of analysts implies

that any two analysts have almost surely observed different colleagues at any previous

time. Also, any of those colleagues have almost surely observed different colleagues
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previously, and so on. This together with the normality and the linear strategies,

imply that conditional on θ, the signals received by observing others analysts are

normally distributed, independent through time and across analysts. The formal

statement is as follows.

Proposition 2 (Existence). There exists a linear equilibrium in which hypotheses

(H1)-(H3) hold. The coefficients Ft and Gt of the linear strategy are given by (15)

and (16). The variance of wit+1 is

s2
t+1 = σ2

0

xt(1− xt) + α(1− bxt)
2/(1− b)2

x2
t

(19)

and the “variance reduction” xt evolves according to

xt+1 = H(xt, α, b) ≡ xt +
x2

t (1− xt)
2

xt(1− x2
t ) + α(1− bxt)2/(1− b)2

(20)

for all t ∈ {1, 2, . . .}, where α ≡ σ2
ε/σ

2
0 and with initial condition x1 = σ2

0/(s
2
1 + σ2

0).

Proof. In the appendix.

3.3 Information Aggregation Dynamics

We first study the dynamics of the “variance reduction” variable xt.

Proposition 3 (Asymptotic revelation). If x1 = 0, then xt = 0 for all t ∈
{1, 2, . . .}. Otherwise, if x1 6= 0, then the variance reduction goes to 1 as t goes to

infinity.

Proof. The function H( · , α, b) is continuous and such that i) H(x, α, b) > x for all

x ∈ (0, 1) and ii) H(0, α, b) = 0 and H(1, α, b) = 1.

If x1 = 0, there is nothing to learn and an analyst’s belief stays the same forever. If

x1 > 0 then, asymptotically, an analyst’s belief converges to the truth. The following

Proposition shows that time path of the cross-sectional distribution (5) of beliefs has

the two following qualitative features:
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Proposition 4 (S-shaped average, Hump-shaped variance). The average belief

θ̂t ≡
∫ 1

0
θ̂it di converges to θ along a S-shaped curve. Namely, there is some time

ts ≥ 0 such that |θ̂t+1 − θ̂t| is increasing if and only if t ≤ ts. The variance τ 2
t of the

cross-sectional belief distribution converges to zero following a hump-shaped curve.

Namely, there is some time th ≥ 0 such that τ 2
t+1 − τ 2

t ≥ 0 if and only if t ≤ th.

Proof. The first point requires some brute force in the appendix. The second point

follows from (10).

The results of the Proposition are illustrated by the numerical calculations of

Figure 2. The associated parameter values, used in all the numerical examples of

this paper, are summarized in Table 1. The upper panel shows the time path of the

average belief θ̂t, assuming that the state of the world is θ = 3. The lower panel

shows the time path of the variance τ 2
t of the cross-sectional belief distribution.

Table 1: Parameter Values.

Parameter Value

Variance of the prior σ2

0
1

Variance of the observational noise σ2

ε
1

Implied noise to signal ratio α 1

Variance of the private signal noise s2
1

199
Implied initial variance reduction x1 0.005

Initial belief θ̄ 2
Beauty contest intensity b 0
Probability of continuing β 0.7

The learning curve is convex at the beginning for the following reason. By

observing a random colleague, an analyst effectively observes the average belief

θ̂t ≡ (1 − xt)θ̄ + xtθ up to two noises: a “sampling” noise ujt and an exogenous

observational noise εjt. However, as analysts learn, the average belief θ̂t loads more

and more on the state of the world θ. This mitigates the negative impact on learning

of the two noises and initially accelerates learning. Note that, because of convergence
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Figure 2: Aggregate Learning Dynamics.

to the true value, learning cannot accelerate forever. Hence, at the end, the learning

curve must be concave.

Lastly, note that if x1 is large enough then ts = 0. In that case, learning immedi-

ately start in the upper branch of the S, and learning speed is decreasing over time.

The condition that x1 is large enough is met when s2
1/σ

2
0 is small. In other words,

when information is not too dispersed so that analysts learn a great deal from their

initial private information, then there is no information snowballing effect.

The hump-shape of the cross-sectional variance follows because analysts have

independent learning histories that lead them to learn the same thing. Namely, at

time zero, analysts’ beliefs are all the same and the initial signals θ + wi1 create

heterogenous beliefs. This implies that the distribution of beliefs fans out (τ1 > τ0 =

0). By continuity, if the distribution of beliefs remains concentrated (τ1 ≃ 0), then

then the distribution continues to fan out (τ2 > τ1). Asymptotically analysts agree

again, implying that τt must converges to zero.

The next proposition shows the intuitive results that reducing σ2
ε , or reducing

b leads to faster learning: indeed, analysts learn more from each others if the ob-
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servational noise is smaller, or if other analysts make announcements that are more

sensitive to their current beliefs.

Proposition 5 (A comparative static). Consider (σ2
ε(1), σ2

ε(2)) ∈ R
2
+ such that

σ2
ε(1) < σ2

ε(2), let x1(k) = x1 and xt+1(k) = H(xt(k), σ2
ε(k)/σ2

0, b) for k ∈ {1, 2}.
Then, xt(1) > xt(2) for all t ∈ {2, 3, . . .}. Similarly, consider (b(1), b(2)) ∈ (−∞, 1)2

such that b(1) < b(2), let x1(k) = x1 and xt+1(k) = H(xt(k), α, b(k)) for k ∈ {1, 2}.
Then, xt(1) > xt(2) for all t ∈ {2, 3, . . .}.

Proof. Follows from the fact that H(x, α, b) is strictly decreasing in both α and b.

The following Proposition characterizes the asymptotic learning speed.

Proposition 6 (Asymptotic learning speed). The sequence of σ2
t admits the

following asymptotic expansion

σ2
t =

σ2
ε

t
− σ2

ε

(

2 +
σε2

(1− b)σ2
0

)

log(t)

t2
+ O

(

1

t2

)

, (21)

where O(1/t2) is a sequence bounded by M/t2, for some M ∈ R+.

Proof. In the appendix.

This tells us two things. First, to a first order approximation, learning occurs at

speed σ2
ε/t, as if each analyst were receiving a signal θ + εit every period. So, in

our setup with independent learning histories, social learning resembles single-agent

learning in the limit. This is in sharp contrast with the setup of Vives (1997) in which

analysts share a common learning history. The second message of the Proposition is

that public information has a negative impact on learning in the long run.

Corollary 1 (Short- and long-run impacts of public information). Consider

(σ2
0(1), σ2

0(2)) such that σ2
0(1) < σ2

0(2). Let x1(k) = σ2
0(k)/(s2

1 + σ2
0(k)), xt+1(k) =

H(xt(k), σ2
ε/σ

2
0(k), b), and σ2

t (k) = σ2
0(k)(1 − xt(k)). Then, there exists some 1 ≤

Ts < Tℓ such that, σ2
t (1) < σ2

t (2) for all t ∈ {1, . . . , Ts} and σ2
t (1) > σ2

t (2) for all

t ∈ {Tℓ, Tℓ + 1, . . .}.

Proof. The result for t ∈ {1, . . . , Ts} follows from (7). For t ∈ {Tℓ, Tℓ + 1, . . .}, it

follows from Proposition (6).
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Imagine that, at time zero, analysts receive some public information regarding the

state of the world. This decreases σ2
0, and therefore speeds up learning in the short

run. However, Corollary 1 shows that it slows learning down in the long run. Indeed,

with better public information, an analyst’s forecasts puts a higher weight on the

common prior θ̄, and a lower weight on their belief θit. Together with the observa-

tional noise, this implies that analysts have less to learn from observing each others,

and slows down learning.

3.4 The Welfare Cost of Public Information

This subsection shows that, in our setup, public information can reduce welfare. Our

finding holds even when b = 0. Hence, in contrast with Morris and Shin (2002), the

negative impact on welfare of public information does not rely on analysts having a

coordination motive.

3.4.1 Utilitarian Welfare

We take our welfare criterion to be the equally weighted sum of analysts’ expected

utility. By the Law of Large Number, this criterion coincides with the ex-ante utility

of a representative analyst

− E

[

∞
∑

t=1

(1− β)βt−1 (at(hit)− θ)2

]

(22)

where (1 − β)βt−1 is the probability that the game ends at time t ∈ {1, 2, . . .}.
Because at(hit) = θ̂it, the criterion becomes

−
∞

∑

t=1

(1− β)βt−1σ2
t . (23)

Corollary 1 shows that public information increases the variance σ2
t in the long run.

Hence, because (23) is simply the present value of these variances, it is natural to

conjecture that, as long as β is close enough to 1, public information reduces welfare.

This result, however, is not a trivial consequence of the Corollary. Indeed, because

σ2
t converge to zero, the flow welfare losses of public are vanishingly small. Moreover,

Proposition 6 indicates that the flow welfare loss of public information converges to
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zero in order log(t)/t2. So, even when the planner has a discount rate of one, the

sum of these flow losses is finite, and might be smaller than the initial welfare gain.

Theorem 1 confirms these intuitions. It shows that, even when b ∈ [−1, 1) and in

particular when analysts have no coordination motive, then if β is close enough to 1

a marginal increase in public information reduces welfare. If b < −1 then, in some

cases, this result is reversed.

3.4.2 A Continuous-time Approximation

This subsection proposes a continuous-time approximation of our setup which greatly

facilitates welfare analysis. The approximation is obtained by letting the observa-

tional noise grow very large while, at the same time, letting analysts observe each

others more and more frequently. Formally, let ∆ be the amount of time between

periods, and let us index the economy by ∆.

Assumption 1. The observational variance σ2
ε(∆) is such that, as ∆ goes to zero,

∆σ2
ε(∆) goes to some σ̃2

ε ∈ R+.

In order to obtain a proper continuous time limit, we also require that the probability

1− β(∆) of ending the game goes to zero in order ∆.

Assumption 2. The probability β(∆) of continuing the game is such that, as ∆

goes to zero, (1− β(∆))/∆ goes to some r ∈ R+.

In other words, in the limit as ∆ goes to zero, the game ends at some Poisson arrival

time with intensity r. Under these two assumptions, the evolution equation for the

variance reduction is

xt+∆ − xt

∆
=

x2
t (1− xt)

2

xt(1− x2
t )∆ + ∆σ2

ε(∆)/σ2
0(1− bxt)2/(1− b)2

which, by informally taking the limit as ∆ goes to zero, becomes

ẋt =
σ2

0

σ̃2
ε

(1− b)2 x2
t (1− xt)

2

(1− bxt)
2 (24)
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The Welfare criterion (23) is

−
∞

∑

k=1

(1− β) βkσ2
k∆ = −

∞
∑

k=1

(r∆ + o(∆)) e−(r+o(1))k∆σ2
k∆

which, by informally taking the limit as ∆ goes to zero, becomes

W (σ2
0) = −r

∫ ∞

1

σ2
t e−r(t−1)dt = −r

∫ ∞

1

σ2
0(1− xt)e

−r(t−1)dt, (25)

with initial condition x1 = σ2
0/(σ

2
0 + s2

1).
3 We now derive a closed-form solution for

the integral (25), which intuitively follows from guessing that W (σ2
0) = J(x1), where

the function J( · ) solves the Hamilton-Jacobi-Bellman equation

rJ(x) = −rσ2
0(1− x) + J ′(x)

σ2
0

σ̃2
ε

(1− b)2 x2
t (1− xt)

2

(1− bxt)
2 .

Direct integration of this ODE with the change of variable y = (1− b)x/(1− x) and

given the boundary condition J(1) = 0 provides a

Lemma 2 (closed-form Solution). Let G(y) ≡ y + 2 log(y) − 1/y and f(y) ≡
(1 + y)2/y2/(1− b + y). Then, we have

W (σ2
0) = −rσ̃2

ε

∫ 1

y1

f(y)e
−rσ̃2

ε/s2
1

G(y)−G(y1)
y1 dy, (26)

where y1 = (1− b)σ2
0/s

2
1.

Proof. In the appendix.

Based on formula (26), we show:

Theorem 1 (Welfare Cost of Public Information). If s2
1 + (1 − b2)σ2

0 > 0,

then for all σ2
0 the exists some η > 0 such that, for all rσ̃ε < η, W ′(σ2

0) > 0. If

s2
1 + (1− b2)σ2

0 ≤ 0, then for all σ2
0, W ′(σ2

0) < 0.

Proof. In the appendix.

3We cannot provide an approximation theorem stating that the learning dynamics in the con-
tinuous time limit is indeed the limit of discrete-time learning dynamics as the time ∆ between
period goes to zero. We conjecture as much, and proceed. In appendix C, we provide numerical
calculations suggesting that the result of Theorem 1 also holds in discrete time.
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Figure 3: Welfare in the continuous-time model as a function of σ2
0.

Theorem 1 implies that if b ∈ [−1, 1), then for any level σ2
0 of information, a marginal

increase in public information reduces welfare as long as the intensity r of finishing

the game is low enough. Hence, in contrast with Morris and Shin (2002), an increase

in public information can reduce welfare even if b = 0 and analysts’ payoffs induce

no coordination motives.

If on the other hand b < −1, then the negative impact on welfare of public infor-

mation depends on s2
1. If s2

1 is small enough, then a marginal increase in public infor-

mation always increases welfare. Intuitively, in that case private information is not

very dispersed, agents have not much to learn from each other, and the information

externality is weak. On the other hand if s2
1 is large enough, then public information

can reduce welfare. Indeed, because private information is very dispersed, analysts

have a lot to learn from one another, and the information externality is strong.

The Theorem does not imply, however, that W (σ2
0) can be monotonically increas-

ing in σ2
0. Indeed, revealing the state of the world would clearly improve welfare. By

continuity, one might expect that a sufficiently large release of public information

would also improve welfare. This intuition is confirmed by the numerical calculation

of Figure 3: it shows that the function W ( · ) is non-monotonic. It first decreases but

eventually increases if σ2
0 is large enough.
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4 Optimal Information Diffusion

Our dynamic beauty contest exhibits an information externality. Namely, in an equi-

librium, an analyst does not internalize that his announcement constitutes valuable

information for the analyst who is spying on him. This section addresses this exter-

nality by studying a problem of optimal information diffusion, subject to the learning

technology. The tradeoff faced by the planner is as follows: in a static world (only

one period) it would be efficient for the analysts to announce their beliefs. How-

ever, because of the dynamic nature of the problem, future analysts learn from the

announcements made today, and hence a planner would like the analysts to make

announcements that are even more sensitive to their beliefs. This generate a loss in

case that the analysts announcement will be far from the actual parameter value.

On the other hand, this improves the dissemination of information tomorrow in case

that the game continues.

We show that the planner requires that analysts strive to be different: they should

make their forecast more sensitive to their private beliefs than in the static optimum.

In addition, the optimal sensitivity varies non-monotonically over time. It is small

at the beginning, large in the middle, and small again at the end.

4.1 The Planning Problem

A planner chooses functions at( · ) mapping histories ht into announcements, in order

to maximize the ex-ante utility of a representative analyst:

−
∞

∑

t=1

(1− β)βt−1

∫

(at(hit)− θ)2 Pt(dhit, dθ), (27)

where Pt is the joint probability distribution over histories hit and the state of the

world θ. The planner is constrained by the learning technology which means that, at

each time t ∈ {2, 3, . . . , }, the probability distribution Pt is obtained by an application

of Bayes’ rule given Pt−1 and given that analyst i ∈ [0, 1] observes the announcement

a(hjt) + εjt of some randomly chosen analyst j 6= i.

In this section, we follow Vives (1997) and restrict attention to the class of time-

varying affine announcements, whereby an analyst’s announcement is restricted to
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be

ait = Ftθ̄ + Gtθ̂it, (28)

for some time-varying constants Ft and Gt and where, as before, θ̂it is an analyst

expectation of θ conditional on his history hit−1. In words, equation (28) means that

an analyst announcement must be an affine function of his conditional expectations

θ̂it. Although the existence of a linear equilibrium makes it natural to study affine

announcements, we could not prove that an unrestricted optimum is indeed affine.

In section 4.3, we illustrate one virtue of an optimal affine announcements: as long as

Gt is not too large, it can be implemented by letting analysts play a beauty contest

game with an appropriately chosen weight b ∈ (−∞, 1).

Given our restriction (28), we can solve for the learning dynamics exactly as in

the previous section. In particular, the results of Proposition 1 hold, with s2
t+1 =

σ2
0/x

2
t (xt(1− xt) + α/G2

t ). Plugging this back into (11) and rearranging gives the

transition function

xt+1 = xt

(

1 +
G2

t xt(1− xt)
2

G2
t xt(1− x2

t ) + α

)

≡ g(xt, G
2
t ). (29)

Let’s now turn to the planner’s objective. We first note that, by the Law of Iterated

Expectations, E(θ̂it) = θ̄. By definition, V (θ − θ̂it) = σ2
t . Lastly, because θ̂it is

a conditional expectation, if follows that θ̂it is orthogonal to θ − θ̂it. Therefore

V (θ) = σ2
0 = V (θ̂it)+V (θ− θ̂it), implying that V (θ̂it) = σ2

0 −σ2
t . One can also verify

these results by working directly on equation (5) for the cross-sectional distribution

of θ̂it. Taken together, these remarks imply that the planner’s flow utility is

−E
[

(ait − θ)2
]

= −θ
2
(Ft + Gt − 1)2 − σ2

0(Gt − 1)2xt − σ2
0(1− xt).

Note that the control Ft does not enter the transition function (29). Hence, max-

imizing the objective with respect to Ft reduces to a static quadratic optimization

problem, whose solution is Ft = 1 − Gt. Replacing into the objective and ignoring

the constants we can let the planner’s flow utility be xt(Gt−G2
t /2). Lastly, note that

we can restrict attention to positive Gt. Indeed, if Gt < 0, then applying −Gt yields

a higher flow utility and leaves xt+1 unchanged. Hence, we can make the change of

variable γt ≡ G2
t and let Gt =

√
γt.
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4.2 Striving to be Different

An admissible control is a positive sequence c = {γt}∞t=1. The set of admissible

controls is denoted by C. Given an admissible control c, the state xc
t evolves according

to the difference equation xc
t+1 = g(xc

t , γt), for all t ≥ 1, where xc
1 = x1 is given. The

planner’s inter-temporal utility is

U(x1, c) =
∞

∑

t=1

(1− β)βt−1u(xc
t , γt) ,

where u(x, γ) = x(
√

γ − γ/2). The planner’s problem in sequence form is then

W (x1) = sup
c∈C

U(x1, c). (30)

Our first result in this section is to show that W ( · ) is strictly increasing: the higher

the precision of analysts’ beliefs, the higher the value to the planner:

Proposition 7 (Monotonicity). The value function W ( · ) is strictly increasing.

In addition, for every x ∈ (0, 1), there exists some m ∈ R+ and some ε ∈ R+ such

that 0 < x′ − x < ε implies that W (x′)−W (x) > m(x′ − x).

Proof. In the appendix.

The second part of the proposition shows that the welfare gains from increasing x

are (at least) of first-order. We study the following Bellman operator

T (f)(x) = sup
γ∈R+

{(1− β)u(x, γ) + β f ◦ g(x, γ)} . (31)

We apply standard dynamic programming arguments in the following Banach space.

Given (k, η) ∈ R+, we let X(k, η) be the set of continuous functions f : [0, 1]→ R+

such that f(0) = 0, bounded above by 1/2 and such that, for all 0 < x < x′ < η,

f(x′)− f(x) ≤ k(x′ − x). (32)

Clearly, X(k, η) is a Banach space when equipped with the sup norm.4

4One might wonder what makes condition (32) useful: indeed, it is not needed for applying the
Contraction Mapping Theorem, nor to show that the solution of the Bellman equation coincides
with the planner’s value function. The condition turns out to be useful for establishing properties
of the planner’s policy function. We come back to this remark when discussing the results of
Proposition 9.
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Lemma 3. The following holds,

(i) For every f ∈ X(k, η), the suppremum on the right-hand side of (31) is achieved.

(ii) For every f ∈ X(k, η), Tf is continuous and bounded.

(iii) There exists (k, η) ∈ R
2 such that if f ∈ X(k, η) then Tf ∈ X(k, η).

Proof. In the appendix.

This leads to the following Proposition

Proposition 8. The operator T is a contraction mapping X(k, η) into itself. There-

fore it has a unique fixed point W ( · ). Also, the function W ( · ) is the value of the

planner’s optimal control problem: it satisfies (30).

Proof. The contraction follows by noticing that T satisfies Blackwell sufficient con-

ditions for a contraction. Hence, the Contraction Mapping Theorem applies to (31).

Lastly, given that the flow utility is bounded above, we can apply the Bellman Prin-

ciple, implying that the function W ( · ) is indeed the value of the planner’s. (See

Theorems 3.2, 3.3, and 4.3 in Stokey and Lucas (1989)).

The static planning problem (β = 0) is to maximize u(x, γ) with respect to γ ≥ 0.

Its solution is to set γ = 1. In other words, the planner prescribes analysts to

announce their belief θ̂it. This result no longer holds in the dynamic problem under

consideration when β > 0, because increasing γt speeds up learning. Indeed, (29)

shows that, as long as α > 0, xt+1 increases with γt. This is a symptom of the

externality we seek to study and follows because analysts observe noisy observation

of each others’ announcements, of the form (1 − √γt)θ̄ +
√

γt θ̂jt + εjt. Therefore,

increasing γt increases the signal-to-noise ratio and hence the informativeness of the

announcement. Note however that if α = 0, then there is no noise and an analyst

conditional expectation can be inferred perfectly from his action. In that case, γ has

no impact on the dynamics of xt and the planning solution is to let γt = 1 at each

time.
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One might guess from this discussion that the planner finds it optimal to let

γt > 1 at each time because this allows the planner to increase xt+1. This intuition

is confirmed in the following Proposition:

Proposition 9. Let Γ : [0, 1]→ [0,∞) be the maximum correspondence of (31) when

f = W . Then,

(i) For all x ∈ (0, 1), Γ(x) ⊂ (1,∞)

(ii) In an optimal solution, x∗
t goes to 1 as time goes to infinity.

(iii) Any optimal control is such that γ∗
t goes to one as time goes to infinity.

(iv) For any sequence xk → 0 and any γk ∈ Γ(xk), we have that γk → 1 as k →∞.

Proof. Part (i) In the appendix.

Part (i) of the Proposition tells that the planner finds it optimal to internalizes the

information externality by prescribing γ > 1. Indeed, because u(x, γ) is maximized

at γ = 1, the welfare loss of increasing γ above one is of second order. On the

other hand, Proposition 7 implies that the welfare gain of increasing xt+1 are (at

least), of first order. Part (ii) of the Proposition tells that, asymptotically in the

planner’s solution, there is full revelation of the state of the world: the variance of

beliefs goes to zero. Part (iii) says that an optimal control converges to 1 as time

goes to infinity: there is nothing to learn in the limit, and the control approaches

the static solution. This follows from point (ii), together with the fact that the

maximum correspondence is upper hemi-continuous and satisfies Γ(1) = {1}. Part

(iv) tells that any selection of the maximum correspondence Γ( · ) is not monotonic.

Specifically, the planner prescribes γ ≃ 1 for x close to zero, γ ≃ 1 for x close

to 1, and γ > 1 for x bounded away from 0 and 1. That is, the social optimum

(approximately) coincides with the private optimum at the boundaries x ∈ {0, 1}.
In between, the planner speeds up information diffusion by prescribing γ > 1. Some

intuition goes as follows. If no signal is revealed or if all information is revealed,

everybody has the same posterior. This implies that analysts have nothing to learn

from observing their colleagues’ announcements. As a result, the dynamic optimum
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must coincide with the static optimum. By continuity, close to those extremes, the

dynamic optimum almost coincides with the static optimum.

The main difficulty of Proposition 9 is to prove part (iv). One might think that

it follows from upper hemi-continuity at zero: in fact, because Γ(0) = R, upper

hemi-continuity at zero imposes no restriction on the behavior of the maximum

correspondence for x close to zero. Another approach is to take first-order conditions

in equation (31) and write

(1− β)
∂u

∂γ
+ β

dW

dx
◦ g(x, γ)× ∂g

∂γ
(x, γ) = 0.

Now, as x goes to zero, we have that ∂g/∂γ also goes to zero, meaning that there is

and less gain from increasing γ above one. Thus, one might expect that γ goes to

one as x goes to zero. This argument runs into two difficulties. First, as x goes to

zero, the loss ∂u/∂γ of increasing γ also goes to zero. And second, the value function

needs not be differentiable, as our problem does not satisfy the convexity conditions

required for an application of the Benveniste and Scheinkman (1979) Theorem. The

second difficulty can be circumvented using property (32), which shows that the slope

of the value function is bounded above for x close to zero.

4.3 Numerical Example

In this section we provide a numerical illustration of our results. We solve the

planning problem on Matlab with a standard value-function-iteration algorithm

(see, e.g., Chapter 12 of Judd (1999)). Figure 4 shows that the value function

is indeed increasing in the variance reduction x and appears to be strictly quasi-

concave but not concave. Figure 5 confirms that the maximum correspondence is

not monotonic. Lastly, the upper panel of Figure 6 confirms that information diffuses

faster under the planning solution.

The lower panel of Figure 6 provides a numerical answer to the following imple-

mentation question: is there a sequence of beauty-contest games implementing the

planning solution? In other words, can we pick sequence {bt}∞t=1 of beauty-contest

parameters such that, at each time, analysts announcements are socially optimal.
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Figure 5: Policy Function.

One easily sees that this amounts to pick some bt such that

√
γt =

1− bt

1− btxt

. (33)

Since the planner prescribes γt > 1, it must be that bt < 0, meaning that the planner

gives monetary reward for making announcements away from the population average.

What might prevent implementation is that, in a beauty-contest equilibrium, the

weight (1− b)/(1− bxt) that an analyst puts on his own belief θ̂it is bounded above

by 1/xt. Therefore, the planning solution can be implemented in a beauty-contest

game if and only if, for every x ∈ [0, 1], there is some γ ∈ Γ(x) such that γ ≤ 1/x2.

This property clearly holds when x ≃ 0 because, in that region, every γ ∈ Γ(x) is

close to 1. Unfortunately, we are not able to prove that this property holds for all

x ∈ [0, 1]. The calculations shown in the lower panel of Figure 6 suggest however that,

for some parameter values, the social optimum can be implemented in a sequence of

beauty-contest games.
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5 Conclusion

This papers studies how private information diffuses among a continuum of agents

who interact at random. We show that agents learn the truth along a S-shape learn-

ing curve. In particular, at the beginning there is an information snowballing effect

because agents learn from the learning and others. We show that larger public infor-

mation at the beginning always slows down the the diffusion of private information in

the economy, and sometimes reduce welfare. Further work may address the optimal

timing of public information release in this economy.
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A Appendix

A.1 Proof of Proposition 1

Standard projection formula (see, e.g., Luenberger (1969)) imply equations (6) and (7).
Substituting (5) into (6) and identifying unknown coefficients, we obtain the recursions (8)
and (9) of the Proposition. Note that, since wit+1 is independent from θ, our guess that
uit+1 is independent from θ is verified. Because uit is a linear combination of wi0, . . . , wit,
our hypothesis (H3) implies that it is independent from wit+1. Hence, taking variance on
both side of (9) implies equation (10) of the Proposition. Now, equation (8) can be written
1−xt+1 = (1− kt+1)(1−xt), and equation (7) can be written σ2

t+1 = (1− kt+1)σ
2
t . Hence,

1 − xt+1 and σ2
t+1 solve the same linear difference equation. This implies that the ratio

(1− xt)/σ
2
t stays constant over time, that is 1− xt+1 = σ2

t+1/σ
2
0 which is recursion (8) of

the Proposition. Because for kt+1 = σ2
t /(σ

2
t + s2t+1), one easily verifies that equation (7) is

equivalent to

σ2
t+1 = (1− kt+1)

2σ2
t + k2

t+1s
2
t+1. (34)

Subtracting equation (10) from equation (34) and dividing both sides by σ2
0, we find

σ2
t+1 − τ2

t+1

σ2
0

= (1− kt+1)
2σ

2
t − τ2

t

σ2
0

.

Therefore, the sequence (1 − xt)
2 and the sequence (τ2

t − σ2
t )/σ

2
0 solve the same linear

difference equation. Because, τ0 = 0, they also have the same initial condition, implying
that

σ2
t − τ2

t

σ2
0

= (1− xt)
2 =

σ4
t

σ4
0

.

Rearranging, we obtain τ2
t = σ2

0xt(1− xt), which is equation (10) of the Proposition.

A.2 Proof of Proposition 2

Equation (9) implies that ujt is a linear combination of wj1, wj2, . . . , wjt. By the induction
hypothesis, all of the wj1, . . . , wjt are independent from θ. Since εjt is also independent
from θ, our hypothesis (H2) that wit+1 is independent from θ is verified.

The last thing to verify is hypothesis (H3). First consider any s ≤ t and some ℓ ∈ [0, 1].
Since ℓ 6= j almost surely, our induction hypothesis implies that wℓs is almost surely
independent from wj1, wj2, . . . , wjt, and hence from ujt (which is a linear combination of .
Since wℓs is also independent from εjt, our hypothesis that wℓs is independent from wit+1

is verified. Now we have for any ℓ 6= i:

wℓt+1 =
1

xt

(

unt +
1

Gt
εnt

)

,

for some n ∈ [0, 1] which is almost surely different from j. Our induction hypothesis
implies that the sequences wj1, . . . , wjt and the sequences wn1, . . . , wnt are independent
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from one another, and therefore that unt is independent from ujt. Since by assumption εjt
is independent from εnt, our induction hypothesis that wℓt+1 is independent from wit+1 is
verified.

Taking the variance of both sides of (18), substituting (16), we find

s2t+1 = σ2
0

xt(1− xt) + α(1− bxt)
2/(1− b)2

x2
t

(35)

for all t ∈ {1, 2, . . .}, with α ≡ σ2
ε/σ

2
0. Plugging (35) into (11) and rearranging gives the

result. At time t = 0 we have that

σ2
1

σ2
0

=

(

1 +
σ2

0

s21

)−1

meaning that x1 = s21/(s
2
1 + σ2

0), so we can also think of x1 as a primitive.

A.3 Proof of Proposition 4

The average belief is θ̂t = (1 − xt)θ̄ + xtθ, implying that |θ̂t+1 − θ̂t| = (xt+1 − xt)|θ − θ̄|.
Now the recursion for xt can be written xt+1 = xt +h(xt). Some simple algebra shows that

∂h

∂x
=

x(1− x)2
(1− b)2(x(1− x2) + α(1− bx)2/(1− b)2)2P (x),

where

P (x) = (1− b)2x(1− 2x− x2) + 2α(1− bx)1− 2x+ bx2

1− x

≡ (1− b)2xR(x) + 2α(1− bx) T (x)

1− x.

Evidently, P (0) = 2α and P (x)→ −∞ when x→ 1. So there exists some x∗ ∈ (0, 1) such
that P (x∗) = 0. Note that R( · ) (respectively) T ( · ) has only one root xR (respectively
xT ) in the interval [0, 1]. Because R(x) < T (x), we must have xR < xT . Given that R(x∗)
and T (x∗) must have opposite signs, it follows that x∗ ∈ (xR, xT ). Now,

P ′(x∗) = (1− b)2R(x∗) + (1− b)2x∗R′(x∗)− 2αb
T (x∗)

1− x∗

+2α(1− bx∗)(1− x
∗)T ′(x∗) + T (x∗)

(1− x∗)2 .

The first three terms are negative because xR > x∗ implies that R(x∗) < 0, because
R′(x∗) < 0, and because x∗ < xT implies that T (x∗) > 0. As for the last term, we have

(1− x∗)T ′(x∗) + T (x∗) = −1 + 2bx− bx2 ≤ −1 + 2bx− b2x2 ≤ −(1− bx)2 ≤ 0,

because b ∈ (0, 1). Therefore, it follows that P ′(x∗) < 0, establishing that x∗ is the only
zero of P ( · ) over the interval [0, 1]. The above analysis shows that xt+1 − xt ≡ h(xt) is
increasing for xt ∈ (0, x∗), and decreasing for xt ∈ (x∗, 1). The time ts of the Proposition
is then largest time t such that xt ≤ ts.
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A.4 Proof of Proposition 6

The proof follows the methods of Chapter 8 of De Bruijn (1981). We start with the change
of variable πt ≡ 1/σ2

t . Then, it follows from equation (7) that

πt+1 = πt +
1

s2t+1

.

In turns, equation (19) shows that

1

s2t+1

= π0

(

1− π0

πt

)2











(

1− π0

πt

)

π0

πt
+ α

[

1− b
(

1− π0
πt

)]2

[1− b]2











−1

=
π0

α
(πt − π0)

2

{

(πt − π0)π0

α
+

[πt − b(πt − π0)]
2

[1− b]2

}−1

=
π0

α
(πt − π0)

2

{

(πt − π0)
2 + π0

[

(πt − π0)

(

1

α
+

2

1− b

)

+
π0

(1− b)2
]}−1

=
π0

α







1−
π0

[

(πt − π0)
(

2α+(1−b)
α(1−b) + π0

(1−b)2

)]

(πt − π0)2 + π0

(

(πt − π0)
2α+1−b
α(1−b) + π0

(1−b)2

)







=
π0

α

{

1− π0(2α+ 1− b)
α(1− b)

[

1

πt
+O

(

1

π2
t

)]}

,

Now, plugging back α = σ2
ε/σ

2
0 = π0/πε into the last equation, we obtain

πt+1 = πt + πε

[

1− 1

πt

(

πε +
2π0

1− b

)]

+O

(

1

π2
t

)

. (36)

We already know that πt → +∞ as t→ +∞. Hence, there is a T such that, for all t ≥ T ,

πε

[

1− 1

πt

(

πε +
2π0

1− b

)]

+O

(

1

π2
t

)

≥ πε

2
,

implying that πt+1 ≥ πt + πε/2. Summing from T to t ≥ T , we obtain that πt ≥ πT +
πε/2 (t− T ) for all t ≥ T , and therefore that 1/πt = O(1/t) as t goes to infinity. Plugging
this back into (36) gives πt+1 = πt + πε +O (1/t). Summing over times then implies that

πt = πεt+O(log(t)). (37)

Taking the inverse of (37) gives

1

πt
=

1

πεt

[

1 +O

(

log(t)

t

)]−1

=
1

πεt
+O

(

log(t)

t2

)

,

where the last equality follows because log(t)/t goes to zero as t goes to infinity. Plugging
back this last equation into (36) provides

πt+1 = πt + πε

{

1−
[

1

πεt
+O

(

log(t)

t2

])(

πε +
2π0

1− b

)}

+O

(

1

t2

)

. (38)
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Summing over times once again shows that

πt = πεt−
(

πε +
2π0

1− b

)

log(t) +O(1), (39)

where the O(1) term follows from the fact that the series 1/t2 and log(t)/t2 are absolutely
convergent. The Proposition then follows directly from inverting (39).

A.5 Proof of Lemma 2

After making the change of variable yt = (1−b)xt/(1−xt), the ordinary differential equation
(24) can be written

ẏt = γ

(

yt

1 + yt

)2

=
γ

G′(yt)
(40)

where γ ≡ (1 − b)σ2
0/σ̃

2
ε and G( · ) is the strictly increasing function G (y) ≡ y − 1/y +

2 log (y). Multiplying both sides of (40) by G′(yt) and integrating from s = 1 to s = t
shows that the solution yt of the ODE is defined implicitly by

γ(t− 1) = G (yt)−G (y1) . (41)

plugging xt = yt/(1− b+ yt) and yt = G−1 (γ(t− 1) +G(y1)) back into the integral (23),
we make the change of variable t− 1 = 1/γ(G(y)−G(y1). We obtain, after some algebra,
the formula of the Lemma.

A.6 Proof of Theorem 1

Let c ≡ 1− b and δ = σ̃2
ε/s

2
1. Because y1 = cσ2

0/s
2
1, welfare increases in σ2

0 if and only if

V (y1) = −
∫ ∞

y1

(1 + y)2

(c+ y) y2
e
−rδ

G(y)−G(y1)
y1 dy

is increasing in y1. Taking derivative,

V ′ (y1) =
(1 + y1)

2

(c+ y1) y2
1

−
∫ ∞

y1

(1 + y)2

(c+ y) y2

(

−rδ ∂

∂y1

(

G (y)−G (y1)

y1

))

e
−rδ

G(y)−G(y1)
y1 dy.

Using that
∫ ∞

y1
rδG′(y)

y1
e
−rδ

G(y)−G(y1)
y1 dy = 1, we get

V ′ (y1) =

∫ ∞

y1

{

(1 + y1)
2

(c+ y1) y2
1

G′ (y)

y1
− (1 + y)2

(c+ y) y2

(

− ∂

∂y1

(

G (y)−G (y1)

y1

))

}

rδe
−rδ

G(y)−G(y1)
y1 dy.

So

V ′ (y1) =

∫ ∞

y1

Φ(y, y1)
G′ (y)

y1
rδe

−rδ
G(y)−G(y1)

y1 dy,
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where

Φ (y, y1) =
(1 + y1)

2

(c+ y1) y2
1

− (1 + y)2

(c+ y) y2

1

G′ (y)

G (y)−G (y1)

y1
− (1 + y)2

(c+ y) y2

G′ (y1)

G′ (y)
.

Note that G′ (y) = (1+y)2

y2 , which now implies that

Φ (y, y1) =
(1 + y1)

2

(c+ y1) y2
1

− G (y)−G (y1)

(c+ y) y1
− G′ (y1)

c+ y
,

or, equivalently

Φ (y, y1) =
(1 + y1)

2

(c+ y1) y2
1

− y

(c+ y) y1
+

1

(c+ y) yy1
− 2

y1

log (y)

c+ y
+
G (y1) /y1 −G′ (y1)

c+ y
.

Some Properties of Φ( · , · )
We first note that

lim
y→∞

Φ(y, y1) =
(1 + y1)

2

(c+ y1) y2
1

− 1

y1
.

This limit is positive if and only if

(1 + y1)
2

(c+ y1) y2
1

− 1

y1
≥ 0 ⇔ 1 + (2− c)y1 ≥ 0

⇔ s21 +
(

1− b2
)

σ2
0 ≥ 0. (42)

We now study the sign of Φ(y, y1) for y ∈ [y1,∞). We fist note that Φ(y1, y1) = 0. The
partial derivative of Φ with respect to y is

∂Φ

∂y
(y, y1) = −−2y2 + 2yy1 + y1c+ 2yy1c+ y2y1c− 2y2y1 log(y) + 2y2y1 log(y1)

y2y2
1(y + c)2

. (43)

So ∂Φ/∂y(y1, y1) < 0. For y > y1, we study the numerator

N(y, y1) ≡ 2y2 − 2yy1 − y1c− 2yy1c− y2y1c+ 2y2y1 log(y)− 2y2y1 log(y1)

of ∂Φ/∂y. Note that the dominant term is y2 log(y) implying that N(y, y1) is positive for
y large enough. We also have

∂N

∂y
(y, y1) = 2(2y − y1 − cy1 + yy1 − cyy1 − 2yy1 log(y1) + 2yy1 log(y)),

so that

N(y, y1) = 0⇒ 2yy1 log(y)− 2yy1 log(y1) = −2y + 2y1 +
y1c

y
+ 2y1c+ yy1c.

Plugging this back into ∂N/∂y, we find that if N(y, y1) = 0, then

∂N

∂y
(y, y1) = y1 + yy1 +

y1c

y
+ y1c > 0.

This implies that there is at most one ỹ such that N(ỹ, y1) = 0. Taken together, these
results mean that N(y, y1) starts negative and eventually becomes positive. Therefore,
Φ( · , y1) is decreasing for y < ỹ and increasing thereafter. In particular, if (42) does not
hold, then Φ(y, y1) < 0 for all y ∈ (y1,∞).

32



Concluding the Proof

If (42) does not hold, then Φ(y, y1) < 0 for all y ∈ (y1,∞), implying that V ′(y1) < 0. If
(42) holds, then there exists some ε > 0 and some y∗ ∈ (y1,∞) such that Φ(y, y1) > ε for
all y ≥ y∗. Then we can write

V ′(y1) =

∫ y∗

y1

Φ(y, y1)
G′(y)

y1
rδe

−rδ
G(y)−G(y1)

y1 dy

+

∫ ∞

y∗

Φ(y, y1)
G′(y)

y1
rδe

−rδ
G(y)−G(y1)

y1 dy

≥
∫ y∗

y1

Φ(y, y1)
G′(y)

y1
rδe

−rδ
G(y)−G(y1)

y1 dy

+ε

∫ ∞

y∗

G′(y)

y1
rδe

−rδ
G(y)−G(y1)

y1 dy

Now remember that δ = σ̃2
ε/s

2
1 and take the limit as rσ̃2

ε goes to zero, to find that

lim
rσ̃2

ε→0

∫ y∗

y1

Φ(y, y1)
G′(y)

y1
rδe

−rδ
G(y)−G(y1)

y1 dy = 0, (44)

after noticing that |Φ(y, y1)| is continuous and hence bounded for over [y1, y
∗], with y1 > 0.

On the other hand, the second term is

ε

∫ ∞

y∗

G′(y)

y1
rδe

−rδ
G(y)−G(y1)

y1 dy = εe
−rδ

G(y∗)−G(y1)
y1

[

−e−rδ
G(y)−G(y∗)

y1

∣

∣

∣

∣

∞

y∗

]

= εe
−rδ

G(y∗)−G(y1)
y1 ≥ 0. (45)

Taken together, (44) and (45) imply that

lim
rσ̃2

ε→0
V ′(y1) ≥ ε > 0

and we are done.

A.7 Proof of Proposition 7

Taking derivatives shows that

∂u

∂x
=
√
γ − γ/2 (46)

∂u

∂γ
= x

(

1

2
√
γ
− 1

2

)

(47)

∂g

∂x
=

α2 + x(1− x)
[

2αγ(2− x) + 2γ2x(1− x)
]

[α+ γx(1− x2)]2
(48)

∂g

∂γ
= α

x2(1− x)2
[α+ γx(1− x2)]2

(49)
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∂u

∂x

∂g

∂γ
− ∂u

∂γ

∂g

∂x
(50)

=
1

D

(

(
√
γ − γ/2)αx2(1− x)2 (51)

−x/2(1/
√
γ − 1)(α2 + x(1− x)(2αγ(2− x) + 2γ2x(1− x))

)

,

where D =
[

α+ γx(1− x2)
]2

. Given that
√
γ − γ/2 ≥ √γ − γ, a sufficient condition for

(50) to be strictly positive is
(

1√
γ
− 1

)

(

γαx2(1− x)2 − x/2(α2 + 2αγx(1− x)(2− x) + 2γ2x(1− x))
)

> 0

⇔
(

1√
γ
− 1

)

(

γαx(1− x)
(

x− x2 − 2x+ x2
)

− x/2(α2 + 2γ2x(1− x))
)

> 0

⇔
(

1− 1√
γ

)

(

γαx2(1− x) + x/2(α2 + 2γ2x(1− x))
)

> 0 (52)

Now let’s consider an initial condition x1 ∈ (0, 1) together with some optimal control c.5

The associated sequence of state is {xc
t}t≥1. Let’s also consider some other initial condition

x̂1 > x1. We have

W (x̂1)−W (x1) = W (x̂1)− U(x1, c) ≥ U(x̂1, ĉ)− U(x1, c), (53)

for any admissible control ĉ. We pick ĉ such that U(x̂1, ĉ) > U(x1, c), as follows: we let
γ̂t = 1 as long as g(x̂c

t , 1) ≥ g(xc
t , γt). At the first time τ such that g(x̂c

τ , 1) < g(xc
τ , γτ ), we

choose the γ̂τ solving g(x̂τ , γ̂τ ) = g(xc
τ , γτ ). Thereafter, for all t > τ , we let γ̂t = γt. To

summarize, for all t < τ , γ̂t = 1 and x̂c
t ≥ xc

t . For t = τ , 1 < γ̂τ ≤ γτ and x̂c
τ ≥ xc

τ . For
t > τ , γ̂t = γt and x̂c

t = xc
t . Therefore, we have

U(x̂1, ĉ)− U(x1, c)

1− β =
τ−1
∑

t=1

βt (u(x̂c
t , 1)− u(xc

t , γt)) + βτ (u(x̂c
τ , γ̂τ )− u(xc

t , γt)) . (54)

The first τ − 1 terms are all strictly positive because maxγ≥0 u(x, γ) = u(x, 1) = x/2
which is increasing in x. Because x̂c

τ+1 = xc
τ+1, the time-τ term can be written v(x̂c

τ ) −
v(xc

τ ) where v(x) = u(x, ψ(x)) and ψ(x) solves g(x, ψ(x)) = xc
τ+1. An application of

the Implicit Function Theorem (see, e.g. Taylor and Mann (1983)) shows that ψ′(x) =
−(∂g/∂x)/(∂g/∂γ) < 0. Hence

v′(x) =
∂u

∂x
− ∂u

∂γ

∂g/∂x

∂g/∂γ
.

Because ∂g/∂γ > 0, this shows that v′(x) > 0 if and only if

∂u

∂x

∂g

∂γ
− ∂u

∂γ

∂g

∂x
> 0. (55)

5Existence of an optimal control follows from the dynamic programming argument of Proposition
8
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Now we note that, by construction, ψ(x̂c
t) > 1. Because ψ( · ) is decreasing, ψ(x) > 1 for all

x ∈ [xc
τ , x̂

c
τ ]. Using (55) and (52), one can see that v′(x) > 0 for all x ∈ [xc

τ , x̂
c
τ ]. Therefore,

the time-τ term of (54) is also strictly positive. This shows that the value function is
strictly increasing.

For the second part of the proof, we note that if τ > 1 in equation (54), then (53)
shows that

W (x̂1)−W (x1)

1− β ≥ u(x̂1, 1)− u(x1, γ1) ≥ u(x̂1, 1)− u(x1, 1) =
1

2
(x̂1 − x1) , (56)

where the second inequality follows because u(x, · ) is maximized at γ = 1. If, on the other
hand, τ = 1 in equation (54), then (53) implies that

W (x̂1)−W (x1)

1− β ≥ v(x̂1)− v(x1) ≥
v′(x1)

2
(x̂1 − x1), (57)

for x̂1 close enough to x1, and where v( · ) is the function defined above. Letting m ≡
(1− β)min{v′(x1)/2, 1/2} completes the proof.

A.8 Proof of Lemma 3

Part (i) We have

(1− β)u(x, γ) + βf ◦ g(x, γ)
≤ (1− β)u(x, γ) + β/2 = (1− β)x(

√
γ − γ/2) + β/2. (58)

This means that, given some x ∈ (0, 1], for γ ≥ γ̄, the left-hand side of (58) is negative.
Since the right-hand side of (31) is positive at γ = 0, it follows that the suppremum over R+

is equal to the suppremum over the compact [0, γ̄]. Because of continuity, the supremum
is achieved.

Part (ii). Continuity of Tf follows from the Theorem of the Maximum (see Theorem
3.6 in Stokey and Lucas (1989)). Lastly, because u(x, γ) ≤ x/2 ≤ 1/2, we have Tf ≤ 1/2.

Part (iii) In this paragraph we show how to pick some (k, η) ∈ R
2
+ such that, if f

satisfies the Lipschitz property (32), then Tf also satisfies it. Consider some (k, η) ∈ R
2
+

and pick some x ∈ (0, η). Let γ be a maximizer of (31) at x. For any γ′ < γ, we have

(1− β)u(x, γ)− (1− β)u(x, γ′) + βf ◦ g(x, γ)− βf ◦ g(x, γ′) ≥ 0

⇒ (1− β)u(x, γ)− (1− β)u(x, γ′) + βk(g(x, γ)− g(x, γ′)) ≥ 0

⇒ (1− β)
∂u

∂γ
(x, γ) + βk

∂g

∂γ
(x, γ) ≥ 0

⇒ (1− β)
x

2

(

1√
γ
− 1

)

+ βk
αx2(1− x)2

[α+ γx(1− x2)]2

⇒ (1− β)
x

2

(

1√
γ
− 1

)

+
β

α
kx2(1− x)2 ≥ 0 (59)

⇒ γ ≤ 1− β
[1− β − 2βk/αx(1− x)2]2 ≡ φ(k, x), (60)
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for η small enough. In the above, the first line follows because γ is a maximizer of (31),
the second line follows from (32) together with the fact that g(x, γ) is increasing in γ, the
third line follows from dividing both side by γ − γ′ ≥ 0 and letting γ′ → γ, the fourth line
follows by substituting in the expression (46) and (49) for the partial derivatives, the fifth
line follows from α+ γx(1− x2) ≥ α, and the last line from rearranging, noting that x > 0
and that, if η is small enough, then 1 − β − 2β/αkx(1 − x)2 is positive for all x ∈ (0, η).
Now consider 0 < x < x′ < η. Let γ and γ′ the respective maximizers of (31). We have

Tf(x′)− Tf(x)

= (1− β)u(x′, γ′) + βf ◦ g(x′, γ′)− (1− β)u(x, γ)− βf ◦ g(x, γ)
= (1− β)u(x′, γ′)− (1− β)u(x, γ′) + βf ◦ g(x′, γ′)− βf ◦ g(x, γ′)

+(1− β)u(x, γ′) + βf ◦ g(x, γ′)− (1− β)u(x, γ)− βf ◦ g(x, γ)
≤ (1− β)u(x′, γ′)− (1− β)u(x, γ′) + βf ◦ g(x′, γ′)− βf ◦ g(x, γ′) (61)

≤ (1− β)(x′ − x)
(

√

γ′ − γ′/2
)

+ βk
(

g(x′, γ′)− g(x, γ′)
)

(62)

≤ (1− β)(x′ − x)/2 + βk
∂g

∂x
(x′′, γ′)

(

x′ − x
)

. (63)

where x′′ ∈ [x, x′]. In the above, inequality (61) follows because γ maximizes (31) at x,
inequality (62) follows because of (32), and inequality (63) follows because

√
γ−γ/2 < 1/2

together with a first-order Taylor expansion of g( · , γ′). Hence, it follows from (63) that a
sufficient condition for the Lipschitz condition (32) to hold for Tf is

(1− β)/2 + βk
∂g

∂x
(x′′, γ′) ≤ k

⇔ k(1− β ∂g
∂x

(x′′, γ′)) ≥ (1− β)/2. (64)

Now we also have

∂g

∂x
(x′′, γ′) =

α2 + 2x′′(1− x′′)
(

αγ(2− x′′) + γ2x′′(1− x′′)
)

[α+ γ′x′′(1− x′′2)]2
≤ 1 + 2x′′(1− x′′)

[

γ′/α(2− x′′) + γ′2/α2x′′(1− x′′)
]

≤ 1 + 2x′′(1− x′′)
[

φ(x′, k)/α(2− x′′) + φ(x′, k)2/αx′(1− x′)
]

≡ ψ(x′, x′′, k),

where φ(x, k) is the function defined in equation (60). Therefore, a sufficient condition for
(64) to hold is that

k
(

1− βψ(x′, x′′, k)
)

≥ (1− β)/2 (65)

for all (x′, x′′) ∈ [0, η]2. Now let k = 1. Then, because ψ(0, 0, k) = 1, (65) is satisfied when
x′ = x′′ = 0 with a strict inequality. By continuity, there exists η > 0 such that, (65) holds
for all (x′, x′′) ∈ [0, η]2. This completes the proof.
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A.9 Proof of proposition 9

[i] Γ(x) ⊆ (1,∞) for x ∈ (0, 1). Take some x ∈ [0, 1] and consider the function

w(γ) ≡ (1− β)u(x, γ) + βW ◦ g(x, γ). (66)

Note that W ( · ) and g(x, · ) are both strictly increasing functions. Since u(x, · ) is increas-
ing for γ ∈ [0, 1), it follows that w( · ) is strictly increasing in γ ∈ [0, 1), implying that
Γ(x) ⊆ [1,∞).

Then, for γ > 1 and close enough to 1, we have

w(γ)− w(1) = (1− β)u(x, γ)− (1− β)u(x, 1) + βW ◦ g(x, γ)− βW ◦ g(x, 1)

≥ (1− β)u(x, γ)− (1− β)u(x, 1) + βm (g(x, γ)− g(x, 1)) ,

for some m > 0 given by the second part of Proposition 7. Dividing both sides of the
equation by γ − 1, and letting γ go to 1 shows that

lim
γ→1

w(γ)− w(1)

γ − 1
= 0 + βm

∂g

∂γ
(x, 1) > 0,

which shows that γ = 1 cannot maximize w(γ). Therefore, Γ(x) ⊂ (1,∞).

[ii]. Convergence of the state We already know that, when γ = 1 for all t, the
state x1

t converges towards one as t goes to infinity. Suppose that the planner chooses an
optimal control γ∗t ∈ Γ(x∗t ). Because γ∗t ∈ [0, 1] and because g is decreasing in γ, we have
x∗t+1 ≥ g(x∗t , 1). By induction, this implies that 1 ≥ x∗t ≥ x1

t . Therefore, x∗t goes to 1 as
time goes to infinity.

[iii]. Convergence of the control Suppose x1 = 1. Then, xt+1 = xt = 1 for all time:
at each time, the planner has to solve a static optimization problem whose unique solution
is γt = 1. This shows in turns that Γ(1) = {1}. Now suppose that the planner chooses
an optimal control γ∗t ∈ Γ(x∗t ). Because γ∗t ∈ [0, 1] it has a converging subsequence γ∗tk .
Since x∗tk goes to one, and since (by the Theorem of the Maximum) the correspondence Γ is
upper hemicontinuous, we know that lim ρ∗tk ∈ Φ(1) = {1}. Hence, the only accumulation
point of the sequence γ∗t is 1. Therefore, the sequence γ∗t goes to one.

[iv]. Non-monotonicity Equation (60) shows that, for all x ∈ (0, η), γ ∈ Γ(x) implies
that γ ≤ φ(x, k). Since φ(0, k) = 1 and γ ≥ 1, this implies that Γ(x) goes to 1 as x goes to
1. Namely, for all sequence xk → 1 and all γk ∈ Γ(xk), we have γk → 1.

B Learning without Observational Noise

This appendix solves for information diffusion and welfare when agents can observe each
others’ action without the exogenous informational noise. Equation (20) shows that, when
α = σ2

ǫ /σ
2
0 = 0,

1− xt+1 =
1− xt

1 + xt
,
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for t ∈ {1, 2, . . .}. Since σ2
t = σ2

0(1− xt), we obtain

σ2
t+1 =

σ2
t

2− σ2
t /σ

2
0

.

Now, with the change of variable πt = 1/σ2
t , we obtain that πt+1 = 2πt − π0. Therefore,

πt+1 = π0 +2t (π1 − π0). Plugging back the initial condition that π1 = π0 +1/s21, we obtain
that

σ2
t =

σ2
0s

2
1

s21 + 2t−1σ2
0

, (67)

for t ∈ {1, 2, . . .}. Taken together, these calculations imply

Lemma 4. If σ2
ε = 0, then, asymptotically σ2

t ∼ s21/2t. Let’s consider σ0(1)2 < σ0(2)2 and

denote the subsequent sequence of variances be {σ2
t (k)}∞t=1. Then, for all t ∈ {1, 2, . . .}, we

find that σ2
t (1) ≤ σ2

t (2).

One can easily verify that, without informational noise, the time path of the distribution of
beliefs also has a S-shaped mean and a hump-shaped variance. However, two other features
of the learning dynamics are sharply different than with informational noise. First, analysts
learn much faster, at the geometric rate 1/2t instead of the linear rate 1/t. Second, the
impact of public information is unambiguous: it never slows down the diffusion of private
information and always improves welfare.

C Welfare Cost in Discrete Time
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Figure 7: Welfare in the discrete-time model as a function of σ2
0.
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This appendix provides numerical calculations suggesting that the properties of the
continuous-time model of section 3.4 also holds in the discrete-time model that we study in
the rest of the paper. The parameters are chosen in the spirit of our continuous-time limit:
namely, we choose a large observational noise σ2

ǫ = 100 and a discount factor β = 0.995
that is close to one. We also set s21 = 199 as in our previous numerical examples. Figure 7
shows the discrete-time social welfare as a function of σ2

0. Its shape turns out to be similar
to that of the continuous-time social welfare of Figure 3. This suggests in particular that
the non-monotonicity property of Theorem 1 also holds in discrete time.

39



References

Angeletos, G.-M., and A. Pavan (2005): “Efficient Use of Information and Wel-

fare Analysis in Economies with Complementarities and Asymmetric Information,

Working Paper,” . 4

Araujo, L., and B. Camargo (2006): “Information, Learning, and the Stability

of Fiat Money,” Journal of Monetary Economics, Forthcoming. 6

Araujo, L., and A. Shevchenko (2006): “Price Dispersion, Information and

Learning,” Journal of Monetary Economics, Forthcoming. 5

Bala, V., and S. Goyal (1998): “Learning from Neighbours,” Review of Economic

Studies, 65, 595–621. 5

Banerjee, A., and D. Fudenberg (2004): “Word-of-mouth learning,” Game and

Economic Behavior, 46, 1–22. 5

Benveniste, L. M., and J. A. Scheinkman (1979): “On the Differentiability of

the Value Function in Dynamic Models of Economics,” Econometrica, 47, 727–732.

25

Blouin, M. R., and R. Serrano (2001): “A Decentralized Market with Common

Values Uncertainty: Non-Steady States,” Review of Economic Studies, 68, 323–

346. 5

Chamley, C. (2004): Rational Herds. Cambridge University Press, Cambridge. 5

Chamley, C., and D. Gale (1994): “Information Revelation and Strategic Delays

in a Model of Investment,” Econometrica, 62, 1065–1085. 5

De Bruijn, N. G. (1981): Asymptotic Methods in Analysis. Dover Books in Math-

ematics, New York. 30

DeMarzo, P., D. Vayanos, and J. Zwiebel (2003): “Persuasion Bias, Social

Influence, and Uni-Dimensional Opinions,” Quaterly Journal of Economics, 118,

909–968. 5

40



Duffie, D., and G. Manso (2006): “Information Diffusion in Large Population,”

. 5

Edwards, A. K., L. E. Harris, and M. S. Piwowar (2004): “Corporate Bond

Market: Transparency and Transaction Costs, Working Paper,” . 4

Gale, D., and S. Kariv (2003): “Bayesian Learning in Social Networks, Working

Paper,” . 5

Green, E. J. (1991): “Eliciting Traders’ Knowledge in “Frictionless” Asset Markets,

Working Paper,” . 5

Hellwig, C. (2005): “Heterogeneous Information and the Welfare Effects of Public

Information Disclosures, Working paper,” . 4

Judd, K. L. (1999): Numerical Methods in Economics. MIT Press, Boston. 25

Katzman, B., J. Kennan, and N. Wallace (2003): “Output and Price Level

Effects of Monetary Uncertainty in a Matching Model,” Journal of Economic The-

ory, 108, 217–255. 5

Kiyotaki, N., and R. Wright (1989): “On Money as a Medium of Exchange,”

Journal of Political Economy, 97, 927–954. 6

Lucas, R. E. (1972): “Expectations and the neutrality of money,” Journal of

Economic Theory, 4, 103–124. 4

Luenberger, D. G. (1969): Optimization by Vector Space Methods. Wiley, John

and Sons, New York. 9, 28

Morris, S., and H. S. Shin (2002): “The Social Value of Public Information,”

American Economic Review, 92, 1521–1534. 3, 4, 6, 7, 16, 19

Phelps, E. S. (1969): Microeconomic Fundations of Employment and Inflation

Theory. Norton, New York. 4

41



Smith, L., and P. Sorensen (2005): “Rational Social Learning by Random Sam-

pling, Working Paper,” . 5

Stokey, N. L., and R. E. Lucas (1989): Recursive Methods in Economic Dy-

namics. Harvard University Press, Cambridge. 23, 35

Taylor, A. E., and R. W. Mann (1983): Advanced Calculus. Wiley, John and

Sons, New-York. 34

Trejos, A., and R. Wright (1995): “Search, Bargaining, Money, and Prices,”

Journal of Political Economy, 103(1), 118–141. 6

Vives, X. (1993): “How Fast do Rational Agents Learn?,” Review of Economic

Studies, 60, 329–347. 5

(1997): “Learning from others: a Welfare Analysis,” Games and Economic

Behavior, 20, 177–200. 5, 15, 20

Wallace, N. (1997): “Short-Run and Long-Run Effects of Changes in Money in a

Random-Matching Model,” Journal of Political Economy, 6, 1293–1307. 5

Wolinsky, A. (1990): “Information Revelation in a Market with Pairwise Meet-

ings,” Econometrica, 58, 1–23. 5

42


