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Abstract

We present a heterogeneous-agent model with incomplete markets, in
which household debt needs to be collateralized by durable holdings and
the lowest attainable labor income �ow. Labor income is risky and house-
holds decide how much non-durables to consume, on their position of
secured debt and the durable stock. Consumers value durables not only
as collateral for their debt but also derive utility from their durable stock.
We show that an interest spread between the borrowing and lending rate
implies local convexities in the policy functions for non-durable consump-
tion and especially durable holdings which are important quantitatively.
Moreover, an increase in income risk decreases average household debt
because of the bu¤er-stock saving motive.
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1 Introduction

Household debt has increased substantially in developed countries during the
last decades. This has been most dramatic in the US where household debt
as a proportion of disposable income has been 46 percentage points higher in
2003 than in 1981; and consumer debt amounted to 67% of households�dispos-
able income in 1981 (see, for example, Iacoviello, 2005). Household debt has
increased also in many European countries although starting from lower levels
(see ECRI, 2000). Thus, it is important to understand debt accumulation of
households and its determinants.
About 75% of household debt are mortgages and other credit that is secured

by collateral and cannot be defaulted upon. This motivates why we frame our
analysis in a model in which all credit needs to be collateralized. Since the
collateral consists of durables like housing or cars which generate utility, we set-
up a model in which consumers derive utility from non-durable consumption
and durable holdings.
The increase in household debt has been attributed to the contemporaneous

increase in uninsurable income risk in the recent macro-literature (see, for ex-
ample, Iacoviello, 2005). Hence, we assume that markets are incomplete and all
debt needs to be secured so that uninsurable labor income risk in�uences the
behavior of consumers in non-trivial ways.1

An important di¤erence of our model compared with the previous literature
is that we add an interest spread between the lending and borrowing rate in
�nancial markets. This generates the empirically realistic �nding that a mass
of consumers holds no �nancial assets at all.2 Such a spread has been analyzed
by Carroll (2001, section 3) in a model without durables. As Carroll (2001) we
�nd that there is only a small e¤ect of the spread on non-durable consumption
but the e¤ect on the propensity to purchase durables is sizeable. This is be-
cause durables are an alternative vehicle to transfer resources intertemporally,
especially if depreciation rates are low.
We calibrate our model to the US and show how the solution depends on

the model�s parameters in an intuitive way. In particular, we �nd that an in-
crease in income risk reduces average household debt, also if we condition on
those consumers who hold some debt. Thus, our model with bu¤er-stock sav-
ings in incomplete markets has di¤erent predictions than models which analyze
approximations around the non-stochastic steady state (see, for example, Ia-
coviello, 2005). We argue that an increase in idiosyncratic income risk alone
cannot explain the increase in household debt in the US and other developed
countries.
The rest of this paper is structured as follows. In Section 2 we present, solve

and calibrate the model. In Section 3 we discuss the model�s implications for
the relationship between income risk and household debt before we conclude in

1See Deaton (1991), Carroll (1997) and the general equilibrium analysis of Aiyagari (1994)
for models of non-durable consumption; and Diaz and Luengo-Prado (2005) or Gruber and
Martin (2003) for models with durables.

2We take these rates as given so that our analysis is partial equilibrium.
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Section 4.

2 The model

Agents are risk-averse and have an in�nite horizon. They derive utility from a
durable good d and a non-durable good c. The instantaneous utility is given
by U(c; d) = u(c) + �w(d) where u(:) and w(:) are both strictly concave, and
� is the weight assigned to utility derived from the durable. We assume that
limd!1 w

0(d) = 0 and that marginal utility w0(d) is well de�ned at d = 0 so
that our model is able to generate agents with no durable stock in at least some
states of the world, as is realistic. A possible functional form is w(d) = (d+d)� ,
with � � 1 and d> 0. The asymmetry in the utility function with respect to non-
durable and durable consumption is justi�ed in the sense that durables are less
essential than non-durable consumption such as food. Note that we implicitly
assume that durables can be transformed into non-durable consumption with a
linear technology so that the relative price is unity.
In specifying utility as above we have made a number of simplifying assump-

tions. We assume d to be a homogenous, divisible good. Moreover, utility is
separable over time and at each point in time it is separable between durables
and non-durables. Both assumptions are made for tractability given that it is
more realistic to assume that durables are a bundle of characteristics and that
utility derived from durables depends on non-durable consumption in non-trivial
ways. Instead, as in much of the literature, we assume that the service �ow de-
rived from durables is proportional to the stock where we have normalized the
factor of proportionality to 1 (see Waldman, 2003, for a critical review of these
common assumptions).
We assume that markets are incomplete so that agents cannot fully diversify

their risk. It is well known that in such an environment, it is necessary to assume
that agents are impatient, � < 1=(1 + ra), where ra is the lending rate which is
taken as given in our partial equilibrium model. It follows from the results by
Deaton and Laroque (1992) that agents hold a �nite amount of �nancial assets
a. Because of positive depreciation � and limd!1 w

0(d) = 0, also the durable
stock d is bounded from above. The collateral constraint and d � 0 then imply
a compact state space so that standard dynamic programming techniques can
be applied (see Araujo et al., 2002, for existence proofs in a general equilibrium
context).
We assume that there are transaction costs in the �nancial market so that the

lending rate ra is smaller than the borrowing rate rb: ra < rb. This assumption
implies that some agents will hold no �nancial assets, a = 0. As we will see
below this has interesting implications for the consumption propensities and the
shape of the policy functions.

Timing. We specify our model in discrete time so that we have to make
assumptions about the timing within a period. Figure 1 illustrates the time
line. We assume that agents derive utility from the durable good dt before the
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Figure 1: Timing in the model

durable depreciates at rate �. Then the uncertain income yt is drawn and the
cash-on-hand available to the agent is

xt � (1 + rj)at + yt + (1� �)dt, j = a; b,

where rb is interest rate on debt and ra is the interest rate on �nancial assets
at, with rb > ra .

The program. Rearranging the budget constraint,

ct = (1 + r
j)at � at+1 + yt � (dt+1 � (1� �)dt) ,

we can write the value function as

V (xt; dt) = max
at+1;dt+1

264u(xt � at+1 � dt+1| {z }
ct

) + �w(dt) + �EtV (xt+1; dt+1)

375
We can further simplify the problem by noting that dt is predetermined in

period t and that the additive separable term �w(dt) does not a¤ect the optimal
choices of the consumer. De�ning

eV (xt) � V (xt; dt)� �w (dt)
4



the transformed maximization problem is

eV (xt) = max
at+1;dt+1

264u(xt � at+1 � dt+1| {z }
ct

) + ��w (dt+1) + �Et eV (xt+1)
375 (1)

under the constraints

at+1 =

�
(1 + rat )at + yt � ct � it if at � 0
(1 + rbt )at + yt � ct � it if at < 0

�
dt+1 = (1� �)dt + it�

1 + rbs
�
as + (1� �)ds + y| {z }
xs�xs(y)

� 0, s > t

ds � 0, s � t .

The �rst two constraints are the accumulation equations for the �nancial wealth
a and the durable stock d. The third constraint is the collateral constraint. This
constraint ensures that the lowest attainable cash-on-hand xs guarantees full
repayment (if income takes its smallest possible value y). The assumption here
is that the lender, who lends at the risk-free rate, knows the �nancial position
(a,d) and the minimum of the support of the income distribution y. The lender
does not know individual income draws.
Problem (1) satis�es Blackwell�s su¢ cient conditions (monotonicity and dis-

counting) for a contraction mapping so that we can apply standard dynamic
programming techniques to solve for the stationary equilibrium. Because of sta-
tionarity, we drop time indexes and use primes � 0 �to denote a one-period lead
(but for u0(:) or w0(:) which denote �rst derivatives of the instantaneous utility
functions).

Equilibrium de�nition. A stationary equilibrium is given by the policy func-
tions for non-durable consumption c(x), durable investment i(x), the accumu-
lation equations a0(x) and d0(x), and the evolution of the state variable x0(x) so
that for given prices {ra; rb}
(i) the value function eV (xjy) attains its maximal value.
(ii) the collateral constraint is not violated, i.e., x� 0.
(iii) the durable stock is weakly positive, d � 0.

2.1 Euler equations and analytic results

For later reference, note that in the optimum

u0(c) = �(1 + ra)Eyu
0(c0) ,

if the agent holds positive �nancial assets a, and

u0(c) = �(1 + rb) (Eyu
0(c0) + Ey�

0)
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if the agent holds debt and the collateral constraint is expected to bind so that
Ey�

0 > 0. Because of the interest spread rb > ra, both Euler equations can
be slack. In this case the intertemporal rate of substitution of non-durable
consumption is in-between the lending and borrowing rate:

1 + ra <
u0(c)

Eyu0(c0)
< 1 + rb .

Then, agents hold zero �nancial assets, a = 0.
In the optimum, durable investment is chosen so that it satis�es the condition

u0(c) = �Ey (u
0(c0)(1� �) + �w0(d0) + (1� �)�0 + 
0) ,

where 
0 � 0 is the multiplier associated with the constraint d0 � 0 . As is intu-
itive, the agent aligns the marginal utility of foregone non-durable consumption
today (resulting from durable investment) with the discounted marginal utility
derived from the durable tomorrow and the additional marginal utility of non-
durable consumption that is a¤orded by re-selling the durable good (taking into
account its depreciation at rate �).
Note that if the collateral constraint is expected to bind, Ey�0 > 0, present

consumption is valued less and more resources are transferred to the future
period. We can show the following

Remark 1: If utility is separable in the durable d and non-durable consumption
c, the instantaneous utility functions u(:) and w(:) are strictly concave, of
the HARA family, and satisfy prudence so that u000(:) � 0 and w000(:) � 0,
we can show:

(i) If the constraints are not binding, c(x), d(x) are concave, a(x) is convex
and @c(x)=@x > 0, @d(x)=@x > 0. Moreover, @a(x)=@x � 0 if � = 1, and
under additional restrictions on concavity also for 0 � � < 1.

(ii) If the collateral constraint binds, @a(x)=@x falls and can become negative.

(iii) If the Euler equations for non-durable consumption are slack, c(x), d(x)
can be locally strictly convex and a(x) can be locally strictly concave.

Proof: see the Appendix.

Remark 1(i) is an application of Theorem 1 in Carroll and Kimball (1996)
to our model with durable and non-durable consumption. The concavity of
the non-durable and durable consumption functions in models of incomplete
markets is very intuitive. Precautionary motives imply that the consumption
propensity falls as agents have more cash-on-hand.
The intuition for Remark 1(ii) is that the possibility of a binding collateral

constraint increases the amount of �nancial wealth a for small values of x so
that the slope is �atter. The optimality condition of borrowing agents

u0(c) = �(1 + rbt ) (Eyu
0(c0) + Ey�

0)

6



illustrates that as Ey�0 falls with more cash-on-hand x (the collateral constraint
is expected to be less binding), u0(c) decreases, ceteris paribus. The same holds
for durable investment. The slope @a(x)=@x can be negative if the propensity
of non-durable and durable consumption is larger than 1 and the collateral
constraint is relaxed as the durable stock increases.
The intuition for Remark 1(iii) is that the propensity to consume out of cash-

on-hand has to increase if the Euler equations for non-durable consumption are
slack since a0 = 0 and @a0=@x falls so that @a0=@x = 0. Hence, the consumption
propensities increase since @c=@x + @d=@x = 1 if a0 = 0. The consumption
functions are no longer globally concave.
Moreover, the durable stock increases relative to non-durable consumption

since the optimality conditions above (without multipliers for the constraints)
imply

1 + ra < �(1� �) + ��Eyw
0(d0)

Eyu0(c0)
< 1 + rb .

The expected intra-temporal rate of substitution between durable and non-
durable consumption tomorrow equals [1 + ra � �(1� �)] =(��) if the agent
lends and

�
1 + rb � �(1� �)

�
=(��) if the agent borrows. Thus, as agents accu-

mulate cash-on-hand in the region where a0 = 0, Eyw0(d0)=Eyu0(c0) falls until
the intra-temporal rate of substitution equals 1 + ra .
The larger propensity for durable investment, for values of cash-on-hand x

where a0 = 0, is intuitive. As long as the depreciation rate is not too high,
durables are an imperfect way to transfer resources intertemporally since the
rate of transformation is optimally in-between the exogenous interest factors
1 + rb and 1 + ra.
That �nancial market imperfections increase the propensity of durable and

non-durable consumption is supported by empirical evidence (see, for example,
Alessie et al., 1997, for estimates using the period of �nancial deregulation in
the UK in the 1980s).3

2.2 Calibration and numerical results

Numerical algorithm. It is well known that problems like ours do not have
a closed-form solution for optimal policies. Therefore, we pursue a numerical
approach which relies on value function iteration. While this allows us to con-
veniently rely on the contraction properties of the Bellman operator, one of the
main challenges for this technique is to �nd a way to get around the curse of
dimensionality. This is where the formulation of the problem that reduces the
number of state variables to the minimum pays o¤ - by subsuming the portfolio
positions and the income realization in the single variable cash-on-hand. Hence,
the state variables are cash-on-hand and the state of uncertainty, which is mod-
eled as a 2-state Markov chain. The range of cash-on-hand, x, is restricted to

3Bertola et al. (2005) provide alternative microfoundations to explain the higher propensity
for durable purchases if there is an interest spread rb > ra and agents can be liquidity
constrained (a = 0). In this case, a monopolist dealer has an incentive to lower the credit
price of a durable good to attract liquidity constrained customers.
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an interval [0; xmax]. We perform value function iteration on a grid over that in-
terval. Our choice of xmax guarantees that, for every x and for every realization
of uncertainty, the equilibrium policy will imply a value for x tomorrow that
remains within that interval.4 We use linear interpolation of the value function
between these grid points.
A feature of our algorithm that greatly enhances the accuracy of our solutions

is the fact that the maximizing choices for the policy (at each state and each
iteration) are not selected from a discretized set of choices, but rather by solving
these maximization problems continuously over portfolio choices. We rely on a
numerical optimization routine5 , which can also handle the collateral constraint
and sign restrictions, to perform this task and to obtain the implicit multipliers
on the constraints. The policy functions over the range [0; xmax] are obtained
from the optimal policy choices on the grid by interpolation, using cubic splines.
As has become standard in the literature (see, e.g., Judd, 1992, and Aruoba

et al., 2006), we evaluate the accuracy of our solutions by the normalized Euler
equation errors implied by the policy functions. These are smaller than 4�10�4
over the entire range where the Euler equations apply with equality, and in
fact much smaller for most values that the state variables of our problem can
assume.

Calibration. We normalize average labor income y to 1, and parametrize the
utility functions

u(c) =
c1�� � 1
1� � and w(d) =

(d+ d)
1�� � 1

1� � ,

where, as mentioned above, d > 0 allows the consumer to hold no durable stock.
We set risk aversion for the non-durable and durable good � = 2 which is well
within the range of commonly used values, and assume d= 0:01. It turns out
that this parameter is rather unimportant and can be set to negligibly small
values without changing the quantitative results much. This is because the
region of d close to zero is not important in our simulations. We calibrate the
size of the shocks and transition probabilities of our 2-state Markov chain as
0:4. This implies a coe¢ cient of variation of 0:4 and a �rst-order autocorrelation
of 0:86 which is within the range of reasonable values considered by Aiyagari
(1994).
We calibrate our model to the US, following previous calibrations by Diaz

and Luengo-Prado (2005) and Athreya (2004). Table 1 summarizes the cali-
bration parameters. We calibrate the relative taste for the durable � and the
depreciation rate � so that we match a ratio of the durable stock to disposable
income of 1.6 and a ratio of non-durable consumption over durable investment

4 In our algorithm, we choose the grid for cash-on-hand so that for an upper bound of cash-
on-hand x , the optimal policies imply that the maximal attainable cash-on-hand, x0max (for
the highest realization of income ymax) is smaller than this upper bound: x0max = (1 + r) a

0+
ymax + (1� �) d0 < x. Using x = 0 as a lower bound gives us a compact state space (this
bound is implied by the collateral constraint).

5We are using the Matlab routine fmincon().
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Figure 2: Value and policy functions in the good and bad state

slightly above 6 (see Diaz and Luengo-Prado, 2005, for the discussion of empir-
ical estimates). This results in � = 0:4 and � = 0:08. The other parameters are
rather standard and their sources are listed in Table 1.
The choice of the depreciation rate merits further discussion. We need a

rather high depreciation rate so that a durable stock of 1.6, which is realistic
empirically, is consistent with a ratio of non-durable consumption over durable
investment of 6. Although a depreciation rate � = 0:08 is less realistic for hous-
ing, the rate is below commonly assumed values for other important durables
like cars or computers. Thus, we view it as a reasonable approximation for the
depreciation of a durable composite. We will also present results for a lower
depreciation rate � = 0:04 which is closer to commonly used depreciation rates
as used in Campbell and Hercowitz (2005).

Value function and policy functions. Figure 2 displays the solution for the
value function and the policy functions in the bad and good income state. The
value function is smooth and concave. Not surprisingly, the function shifts down
in the bad state of the world. The policy functions have a slightly non-standard
shape consistent with the results of Remark 1. Because of the interest spread
rb > ra, a = 0 for an interval of cash-on-hand values. This local concavity
of the �nancial policy implies local convexities in the policy functions for non-
durable consumption and the durable stock. The local convexity is much more
pronounced for the durable policy. This depends on whether the depreciation
rate is low enough so that durables are a reasonably attractive vehicle to transfer
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Figure 3: Time-series simulation of the economy without default

resources intertemporally.
Note that the constraint d � 0 is never binding whereas the collateral con-

straint is expected to bind for values of cash-on-hand close to zero. We now
simulate our economy to �nd out more about the mean and distribution of the
policy variables in the steady state.

Simulations. We simulate our economy for 10,000 periods. Figure 3 displays
the results for an arbitrarily chosen subsample of 300 periods. If the exogenous
income process yt implies a long enough sequence of bad-state incomes, the agent
accumulates �nancial debt as he borrows against the durable stock. If the bad
shocks persist, the agent might not have the resources to keep the durable stock
at his current level so that it depreciates. This tightens the collateral constraint
and can sometimes imply that x = 0. The collateral constraint xt � 0, however,
is also important for behavior if x > 0, as long as the constraint is expected to
bind.
Note that without income uncertainty, the impatient consumer would always

be at his borrowing limit. Income uncertainty implies that the agent does not
borrow as much and, if income is persistently good, he even accumulates some
bu¤er-stock of assets, at > 0. Finally, we observe that durable investment is
more volatile than consumption also because of the high propensity to invest if
�nancial assets are zero. We return to this point below.
Table 2 displays the averages in the steady-state equilibrium for the main

variables of interest. In column (1) we display the results for our benchmark
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economy. All values are expressed in average-income equivalents. On average,
the consumer holds 2:3 of average income as cash-on-hand and borrows a sixth
of average income with �nancial assets. The size of the durable stock of is 1:64
and the ratio of non-durable consumption over durable investment is 6:5 which is
in line with empirical evidence for the US (see Diaz and Luengo-Prado, 2005).6

Given that the income shocks are purely idiosyncratic, the law of large num-
bers applies upon aggregation (see Uhlig, 1996) and the time-series distribu-
tion can be used as an approximation of the cross-sectional distribution in the
steady state. Figure 4 displays such distributions for non-durable consumption
c, durable holdings d, �nancial assets a, and cash-on-hand x. The density of
cash-on-hand is bell-shaped and is truncated at x = 0, where collateral con-
straints bind. Thus, also the densities of c, d, and a have more mass at their
lower bound of the support. Moreover, �nancial assets have a mass point at
a = 0 when the (non-durable) consumption Euler equation is slack for both ra

and rb. The frequency of agents with zero �nancial assets in Figure 4 is 11.7%.
This is about the same order of magnitude as the 10% of US consumers be-
tween age7 25 and 50 which hold net non-housing wealth in the range from zero
to two weeks�of their permanent income (see the discussion of these statistics
based on the 1995 Survey of Consumer Finances in Carroll, 2001). The higher
propensity to consume in the range where a = 0 implies that both the distribu-
tion for non-durable consumption and durable holdings are bimodal. Consistent
with the much stronger change in the propensity to purchase durables observed
in Figure 2, the bimodality is more pronounced for the distribution of durable
holdings.

Changes in parameters. We now investigate how changes of the model�s pa-
rameters alter the steady-state equilibrium. In Table 2, column (2), we compute
the average equilibrium for lower risk-aversion, � = 1. This reduces non-durable
consumption and induces accumulation of cash-on-hand in terms of durables.
Thus, the collateral constraint is laxer and consumers borrow more when bad
income shocks occur.
In column (3) we investigate whether the parameter d is important in our

benchmark equilibrium. We set d = 0 and �nd no signi�cant changes. As ex-
pected durable holdings increase slightly compared to non-durable consumption
because the marginal utility derived from the durable is higher (for a given d).
Thus, the ratio c=i falls. The larger durable stock also relaxes the collateral con-
straint. This allows agents to borrow more so that the average �nancial-asset
position is lower. The increase in debt is not enough, however, to completely
o¤set the increase in d so that cash-on-hand increases. The e¤ect of increasing
� from 0:4 to 0:5 is qualitatively the same (see column (4)).
If agents are more impatient (� = 0:9), the consumers borrow more (see

column (5)). At the same time the ratio c=i increases since non-durable con-

6Note that average disposable income y + rja is nearly equal to average income since
rja ' 0 .

7Bu¤er-stock saving behavior should matter for consumers in this age range.
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Figure 4: The steady-state distributions

sumption generates utility today whereas durable investment only generates
utility tomorrow. Thus, the durable stock falls which also tightens the collat-
eral constraint. Since consumers borrow more, the collateral constraint binds
much more often.
When calibrating the model, we have mentioned that a depreciation rate

� = 0:08 is rather high. In column (6) we lower the depreciation rate to � =
0:04. This increases the durable stock and non-durable consumption and lowers
durable investment which is only a tenth of non-durable consumption. The
larger cash-on-hand relaxes the collateral constraint and allows agents to borrow
more in bad times so that the average �nancial asset position is lower.
If we lower the borrowing rate rb to 0:02, not surprisingly agents borrow

more (see column (7)). Cheaper borrowing also allows consumers to a¤ord a
larger durable stock. Total cash-on-hand decreases, however, because of more
consumer debt. The fall in the borrowing rate also reduces the spread in the
�nancial market so that agents hold zero �nancial assets less frequently and
the kinks in the policy functions of durables and �nancial assets become less
pronounced. This implies that the frequency of consumers with �nancial assets
a = 0 is 2.3% which is similar to the empirically observed frequency of 2.5% for
consumers holding precisely zero net non-housing worth in the 1995 Survey of
Consumer Finances in the US (see Carroll, 2001). The lower frequency implies
in our model that the distribution of durable holdings becomes less bimodal
(the �gures are not reported but are available upon request).
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3 Income risk and household debt

We now apply our model to answer the question whether higher income risk is
a good candidate for explaining the rise in household debt in the US in the last
decades. We �nd that in our model the answer is no. The reason is that higher
risk (in terms of shock size or persistence) increases the bu¤er-stock motive
and thus decreases the debt holdings of agents. Instead, institutional �nancial
market reforms that allow consumers to collateralize more of their debt are a
more plausible explanation in our model.
The results are in Table 2, columns (8)-(10). In column (8) we increase

the size of shocks from 0:4 to 0:5, which implies an increase of the standard
deviation of log-income by 12%. This is much more than the increase of the
cross-sectional variance of earnings in the US (15 basis points in the period
between 1981 and 2003) to illustrate the point qualitatively. As can be seen
in column (8), consumers hold more �nancial assets as bu¤er stock and also,
conditional on holding debt, average debt increases from �0:35 to �0:22. The
average durable stock increases slightly. The results are qualitatively the same if
the shocks are more persistent (see column (9) where the transition probability
falls from p = 0:4 to p = 0:2). Moreover, the equilibrium change is similar if we
exogenously tighten the collateral constraint in column (10) where we no longer
allow consumers to collateralize their durable stock. Thus, relaxing collateral
constraints, does increase consumer debt. The bottom-line is that an increase
in income risk does not increase consumer debt if the bu¤er-stock saving motive
is strong. Instead, lower collateral requirements are a possible explanation for
higher consumer debt (see Campbell and Hercowitz, 2005, for a discussion on
how market innovations that followed the Monetary Control Act of 1980 and
the Garn-St.Germain Act of 1982 relaxed collateral constraints on household
debt in the US).
However, we cannot fully dismiss the hypothesis that more idiosyncratic

income risk increased consumer debt for at least two reasons:
(i) In our partial-equilibrium model interest rates are exogenous. A general

equilibrium e¤ect as in Aiyagari (1994) would imply that interest rates have
to fall until the asset market clears. This would reduce the bu¤er-stock saving
motive. However, the results in Aiyagari suggest that it is unlikely that the
general equilibrium e¤ect outweighs the direct partial-equilibrium e¤ect.
(ii) The access to borrowing and idiosyncratic risk maybe endogenously

related. For example in Krueger and Perri (2005), limited enforcement of
credit contracts implies that �nancial market development interacts with income
volatility. If more volatile income makes the exclusion from credit markets in
case of default more costly, this might foster �nancial market development. In
this case, more volatile income will induce a higher bu¤er-stock but with respect
to a laxer borrowing limit. Whether this implies more or less debt depends on
which e¤ect dominates quantitatively and is a priori unclear.
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4 Conclusion

We set up and solve a heterogenous-agent model with incomplete markets in
which households derive utility from non-durable consumption and durable hold-
ings. We show that an interest spread between the borrowing and lending rate
implies local convexities in the policy functions for non-durable consumption
and especially durable holdings which are important quantitatively.
We apply our model to the question whether an increase in income risk can

explain the increase in household debt observed in many developed countries in
the past decades. Calibrating our model to the US economy, we �nd that an
increase in income risk reduces average household debt, also if we condition on
those consumers who hold some debt. Thus, our model with bu¤er-stock saving
motives has di¤erent predictions than models which analyze approximations
around a non-stochastic steady state (see, for example, Iacoviello, 2005). We
argue that an increase in idiosyncratic income risk alone cannot explain the
increase in household debt in the US and other developed countries.
In current research we extend our model to analyze interactions between ag-

gregate and idiosyncratic risk and whether the observed decrease of aggregate
risk in the US has facilitated the risk-sharing provided by �nancial intermedi-
aries.

Appendix

Proof of Remark 1
The proof is based on results of Carroll and Kimball (1996).
Claim (i): If the constraints are not binding, c(x), d(x) are concave and

a(x) is convex and @c(x)=@x > 0, @d(x)=@x > 0, @a(x)=@x � 0 .
Proof: We want to show that if u(:) and w(:) are HARA utility functions

and u0(:) > 0, u00(:) < 0, u000(:) � 0, and w0(:) > 0, w00(:) < 0, w000(:) � 0, then
c(x), d(x) are concave and a(x) is convex and @c(x)=@x > 0, @d(x)=@x > 0,
@a(x)=@x � 0 .
Our problem is

eVt (xt) = max
at+1;dt+1

264u(xt � at+1 � dt+1| {z }
ct

) + ��w (dt+1) + �Et eVt+1 (xt+1)
375

where xt � (1 + rj)at + yt + (1� �)dt so that the budget constraint

ct = xt � at+1 � dt+1 .

To start we also assume a �nite horizon so that we have the terminal condi-
tion

cT = xT .

14



We then proceed analogously as in Carroll and Kimball and prove Lemmas
1-3. For this we de�ne as �t((1+r

j)at+1(xt)+(1��)dt+1(xt)) � �Et eVt+1 (xt+1),
where

xt+1 � (1 + rj)at+1 + yt+1 + (1� �)dt+1.

Note that �t(:) is written as a function of choice variables.
The �rst lemma shows that the property of prudence is conserved when

aggregating across states of nature.

Lemma 1: If eV 000t+1 eV 0t+1= heV 00t+1i2 � k, then �000t �0t= ��00t �2 � k .
Proof: see Carroll and Kimball, p. 985.
The second lemma shows that the property of prudence is conserved when

aggregating intertemporally.

Lemma 2: If �000t �
0
t=
�
�00t
�2 � k and u000u0= [u00]2 � k, w000w0= [w00]2 = k, theneV 000t eV 0t = heV 00t i2 � k .

Proof: Following Carroll and Kimball, p. 985/986, we denote the marginal
utility of non-durable consumption at the optimal consumption level with zt =
u0(c�t (xt). Neglecting the collateral constraint and interest spread, we know that
in our problem the following equations hold in the optimum:

zt = u0(c�t (xt)) ,

u0(c�t (xt)) = eV 0t (xt) ,
u0(c�t (xt)) = �(1 + rj)Et eV 0t+1 (xt+1) = (1 + rj)�0t ,
u0(c�t (xt)) = ��w0(dt+1) + (1� �)�0t ,

where �t((1+r
j)at+1(xt)+(1��)dt+1(xt)) . We then de�ne the functions ft(zt),

gt(zt), ht(zt), lt(zt) as
ft(zt) = u

0�1(zt) = ct ,

ht(zt) = eV 0�1t (zt) = xt ,

lt(zt) = w
0�1
�
zt � (1� �)�0t(:)

��

�
= dt+1 ,

gt(zt) = �
0�1
t

�
zt

1 + rj

�
� (1� �)lt(zt) = (1 + rj)at+1 .

Noting from the last equation that

(1 + rj)at+1 + (1� �)dt+1 = �0�1t

�
zt

1 + rj

�
,
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we use this expression in as the argument of �0t(:) in the second equation which
then simpli�es to

lt(zt) = w
0�1
�

rj + �

�� (1 + rj)
zt

�
= dt+1

Dropping time indexes for functions f , g, l, h, we have

f 0(z) =
1

u00(c(z))
,

f 00 = � u000(c)

[u00(c)]
2 f 0|{z}
@c=@z

= � u000

[u00]
3 ,

so that

�zf
00

f 0
=
u000u0

[u00]
2 � k .

Similarly,

�zh
00

h0
=
eV 000t eV 0theV 00t i2 .

Furthermore,

l0 =
rj + �

�� (1 + rj)w00
,

l00 = �
�
rj + �

�
w000

�� (1 + rj) [w00]
2 l
0 ,

so that

�zl
00

l0
=
w000w0

[w00]
2 � k ,

where we use that
rj + �

�� (1 + rj)
zt = w

0(dt+1) .

Finally,

g0 =
1

(1 + rj)�00
�
�0�1t

�
zt

1+rj

�� � (1� �) rj + �

�� (1 + rj)w00
,

g00 = � �000

(1 + rj)2
�
�00
�3 + (1� �)

�
rj + �

�
w000

�� (1 + rj) [w00]
2 l
0 .

Thus,

�zg
00

g0
=

�000�0

(1+rj)[�00]3
� (1� �)w000w0

[w00]2
l0

1
(1+rj)�00 � (1� �)l0

.
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For � = 1, this simpli�es to

�zg
00

g0
=
�000�0�
�00
�2 � k ,

For 0 < � < 1,

�zg
00

g0
=

g0

g0 � (1� �)l0
�000�0�
�00
�2 � (1� �)l0

g0 � (1� �)l0
w000w0

[w00]
2 .

If we assume HARA utility so that w000w0= [w00]2 = k, then �000t �
0
t=
�
�00t
�2 � k

implies that

�zg
00

g0
� g0

g0 � (1� �)l0 k �
(1� �)l0

g0 � (1� �)l0 k = k .

Now note that since
ct = xt � at+1 � dt+1

and
at+1 =

g

(1 + rj)
� (1� �)l ,

we have

h = f +
g

(1 + rj)
� (1� �)l + l

= f +
g

(1 + rj)
+ �l .

That is, h is an additive function of f , g and l, so that

h0 = f 0 +
g0

(1 + rj)
+ �l0

and

h00 = f 00 +
g00

(1 + rj)
+ �l00 .

This implies that

�zh
00

h0
= �z

f 00 + g00

(1+rj) + �l
00

f 0 + g0

(1+rj) + �l
0

=
f 0

f 0 + g0

(1+rj) + �l
0| {z }

>0

�
�zf

00

f 0

�
| {z }

�k

+

g0

(1+rj)

f 0 + g0

(1+rj) + �l
0| {z }

>0

�
�zg

00

g0

�
| {z }

�k

+
�l0

f 0 + g0

(1+rj) + �l
0| {z }

>0

�
�zl

00

l0

�
| {z }

�k

� k ,
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since this is a weighted average of expressions that are larger or equal than k.

As in Carroll and Kimball we move on to show Lemma 3, where we exploit
again that HARA utility implies w000w0= [w00]2 = k and u000u0= [u00]2 = k with
equality.

Lemma 3: If eV 000t eV 0t = heV 00t i2 � k, w000w0= [w00]2 = k and u000u0= [u00]2 = k, then
the optimal consumption policy rules c(x) and d(x) are concave and liquid
assets a(x) are convex.

Proof: Note that
ct(x) = ft(h

�1
t (x)) .

Thus,
@c

@x
=
f 0(h�1)

h0(h�1)
=
eV 00
u00

> 0

if u00 < 0, eV 00 < 0 and
@2c

@x2
=

�
f 00(h�1)=h0(h�1)

� �
h0(h�1)

�
�
�
f 0(h�1)

� �
h00(h�1)=h0(h�1)

�
[h0(h�1)]

2

=
f 0(h�1)

[h0(h�1)]
2

�
f 00(h�1)

f 0(h�1)
� h

00(h�1)

h0(h�1)

�
.

Applying Lemma 2 we �nd

@2c

@x2
=

f 0(h�1)

[h0(h�1)]
2

1

z

26664�zh00(h�1)h0(h�1)| {z }
�k

� �zf
00(h�1)

f 0(h�1)| {z }
=k

37775 .

The sign of this derivative is smaller or equal than zero if sgn(f 0(h�1)) < 0.
Recalling that f 0(h�1) = f 0(z) = 1=u00 < 0, this is the case for a strictly
concave utility function. Analogous manipulations for dt(x) = lt(h

�1
t (x)) prove

@d(x)=@x > 0 and @2d(x)= (@x)2 � 0.
Since at+1(x) = xt � ct(x)� dt+1(x),

@a

@x
= 1� @c(x)

@x
� @d(x)

@x

and
@2a

@x2
= �@

2c(x)

@x2
� @

2d(x)

@x2
� 0.

Thus, �nancial wealth increases or decreases with x, depending on whether
the marginal propensity to consume @c(x)=@x + @d(x)=@x R 1. The second
derivative is certainly positive so that a(x) is convex.
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We now investigate the properties of the consumption propensities further.
In particular, do we know whether @c(x)=@x+ @d(x)=@x > 1?
Noting that

h0 = f 0 +
g0

(1 + rj)
+ �l0

we can write
@c

@x
=

f 0(h�1)

f 0(h�1) + g0(h�1)
(1+rj) + �l

0(h�1)

and
@d

@x
=

l0(h�1)

f 0(h�1) + g0(h�1)
(1+rj) + �l

0(h�1)
.

Thus,
@c

@x
+
@d

@x
=

f 0(h�1) + l0(h�1)

f 0(h�1) + g0(h�1)
(1+rj) + �l

0(h�1)
< 1 ,

if � = 1 and g0(h�1) > 0 .

We now compute the derivative of a(x) = g(h�1(x))=
�
1 + rj

�
:

@a

@x
=

1

1 + rj
g0(h�1(x))=h0(h�1(x))

=
eV 00t

1 + rj

�
1

(1 + rj)�00
� (1� �) rj + �

�� (1 + rj)w00

�
,

which is certainly positive if � = 1 since eV 00t < 0; �00 < 0. For � < 1, we need to
impose an additional condition on the curvature

1

(1 + rj)�00
� (1� �) rj + �

�� (1 + rj)w00
< 0 or

�00

��w00
<

rj + �

1� � .

In general the sign of @a=@x depends on the relative curvature of the value func-
tion expected tomorrow, �00t , and instantaneous utility derived from the durable,
w00. Intuitively, a larger � makes durables less useful to transfer utility and thus
increase the marginal propensity of �nancial assets to transfer resources.

The lemmas derived above imply Theorem 1 as in Carroll and Kimball
(1996). Note that the second-order derivatives for the policy functions hold
with strict equality if k > 0 and there is some labor income uncertainty.
Carroll and Kimball show results for a �nite horizon. In a �nite horizon, we

have that in the last period VT = u(c) + �w(d) so that prudence of u(:) and
w(:) trivially also apply to VT . Then one iterates forward using using Lemma
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1 and 2. To extend these results to the in�nite horizon one needs to apply
the contraction property of V , for T !1. Since cash on hand is �nite, agents
discount and V satis�es monotonicity, limT!1 Vt(x) = V (x) for all x (see Lucas
and Stokey, 1989, ch. 3). Pointwise convergence implies that the properties of
Vt are conserved as Vt converges towards V . �

Claim (ii): If the collateral constraint binds, @a(x)=@x falls and can become
negative.
Proof: Intuitively, the value function will be more concave if the collateral

constraint holds. The expression for the propensities derived above, then imply
that @c(x)=@x+@d(x)=@x increases if eV 00 falls (i.e., increases in absolute value).
This can imply @a(x)=@x < 0, which we now want to derive more formally.
Adding the multiplier � for the collateral constraint and 
 for the constraint
d > 0, the four equations used in Lemma 2 change to

zt = u0(c�t (xt) ,

u0(c�t (xt) = eV 0t (xt) ,
u0(c�t (xt) = (1 + rj)

�
�0t + Et�

�
,

u0(c�t (xt) = ��w0(dt+1) + (1� �)
�
�0t + Et�

�
+ Et
 ,

so that
ft(zt) = u

0�1(zt) = ct ,

ht(zt) = eV 0�1t (zt) = xt ,

lt(zt) = w
0�1

 
zt � (1� �)

�
�0t(:) + Et�

�
� Et


��

!
= dt+1 ,

gt(zt) = �
0�1
t

�
zt

1 + rj
� Et�

�
� (1� �)lt(zt) = (1 + rj)at+1 .

Observing that

(1 + rj)at+1 + dt+1 = �
0�1
t

�
zt

1 + rj
� Et�

�
,

the third equation can be rewritten as

lt(zt) = w
0�1

 
rj+�
1+rj zt � Et


��

!
= dt+1 .

Thus, a expectedly binding collateral constraint does not directly a¤ect dt+1 .
Instead if the constraint d = 0 is expected to bind this lowers w0(dt+1) and thus
induces a larger dt+1, ceteris paribus.
More interestingly, let us investigate how the marginal propensity of a(x)

changes if the collateral constraint is binding (we neglect the constraint d � 0
for simplicity). Recall that a(x) = g(h�1(x))=

�
1 + rj

�
:
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@a

@x
=

1

1 + rj
g0(h�1(x))=h0(h�1(x))

=
eV 00t

1 + rj

 
1

1+rj � Et
@�
@z

�00
� (1� �) rj + �

�� (1 + rj)w00

!
.

Since a larger z = u0(c�(x)) means a smaller c and x, Et@�=@z > 0, i.e. the
collateral constraint is expected to become more binding for smaller x and thus
larger z. Then, this derivative shows that the propensity @a=@x falls if the
collateral constraint is expected to bind. In particular, the propensity need no
longer be positive. The intuition is that the possibility of a binding collateral
constraint increases the amount of �nancial wealth for small values of x so that
the slope is �atter. �

Claim (iii): If the Euler equations for non-durable consumption are slack,
c(x), d(x) can be locally strictly convex and a(x) can be locally strictly concave.
Proof: We show that c(x), d(x) are locally strictly convex and a(x) is lo-

cally strictly concave in the range where a = 0. In particular, @c(x)=@xja=0 >
@c(x)=@x and @d(x)=@xja=0 > @d(x)=@x for given x, and Eyw0(d0)=Ey�0 falls.

If at+1(x) = 0,
ct = xt � dt+1

and thus
h = f + l .

Hence,

�zh
00

h0
=

f 0

f 0 + l0| {z }
>0

�
�zf

00

f 0

�
| {z }

�k

+
l0

f 0 + l0| {z }
>0

�
�zl

00

l0

�
| {z }

�k

so that the curvature of w(:) becomes much more important for the curvature
of the value function. Also

@c

@x
+
@d

@x
=
f 0(h�1) + l0(h�1)

f 0(h�1) + l0(h�1)
= 1 ,

so that the propensities increase since @a(x)=@x > 0 to the left of the range
where a(x) = 0. The local increase of the propensities implies local convexity
of the consumption functions. Moreover, @a(x)=@x > 0 is locally concave.

More formally, if @a(x)=@x = 0, the collateral constraint is certainly not
binding and
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zt = u0(c�t (xt) ,

u0(c�t (xt) = eV 0t (xt) ,
(1 + ra)�0t < u0(c�t (xt) < (1 + r

b)�0t

u0(c�t (xt) = ��w0(dt+1) + (1� �)�0t ,

so that
ft(zt) = u

0�1(zt) = ct ,

ht(zt) = eV 0�1t (zt) = xt ,

lt(zt) = w
0�1
�
zt � (1� �)�0t(:))

��

�
= dt+1 ,

gt(zt) = �
0�1
t (zt + �

b)� (1� �)lt(zt) = (1 + rb)at+1
or

gt(zt) = �
0�1
t (zt � �a)� (1� �)lt(zt) = (1 + ra)at+1

with �a > 0 and �b > 0.
This implies

@a

@x
=

1

1 + rb
g0(h�1(x))=h0(h�1(x))

=
eV 00t

1 + rb

 
1 + @�b

@z

(1 + rb)�00
� (1� �) rb + �

�� (1 + rb)w00

!
.

For the range at+1(x) = 0 , @�
b=@z < 0 so that @a=@x = 0 (Note that @�b=@x >

0.). Similarly, for the lending Euler-equation,

@a

@x
=

eV 00t
1 + rb

 
1� @�a

@z

(1 + rb)�00
� (1� �) rb + �

�� (1 + rb)w00

!
,

with @�a=@z > 0 (Note that @�a=@x < 0.). �
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Parameters Values Sources / Targets
lending rate: ra = 0:01 Mehra and Prescott (1985)

borrowing rate: rb = 0:044 Athreya (2004)
discount factor: � = 0:96 Aiyagari (1994)
risk aversion: � = 2 for example, Aiyagari (1994)

transition probability p = 0:4 ! coe¢ cient of variation of 0:4, e.g. Aiyagari (1994)
size of the shock 0:4 ! 1st order autocorrelation 0:86, e.g. Aiyagari (1994)

minimum durable: d= 0:01 -
depreciation rate: � = 0:08 ! ratio c=i 2 6� 6:5 , Diaz and Luengo-Prado (2005)

weight of durable utility: � = 0:4 ! durable stock d 2 1:4� 1:6, DLP (2005)

Table 1: Parameter values for the calibration.

Variables Benchmark � = 1 d = 0 � = 0:5 � = 0:9
(1) (2) (3) (4) (5)

cash-on-hand x 2.330 2.794 2.335 2.417 1.207
�nancial assets a -0.170 -0.585 -0.172 -0.227 -1.085
durable stock d 1.641 2.610 1.649 1.799 1.453
durabl. inv. i 0.131 0.208 0.132 0.144 0.116
non-d. cons. c 0.859 0.769 0.858 0.845 0.840
ratio c=i 6.541 3.682 6.501 5.869 7.228

� = 0:04 rb = 0:02
shock size

0:5
p = 0:2

no collat.
d

(6) (7) (8) (9) (10)
cash-on-hand x 2.684 1.789 2.799 2.886 2.671
�nancial assets a -0.358 -0.755 0.239 0.295 0.132
durable stock d 2.142 1.691 1.696 1.717 1.673
durabl. inv. i 0.086 0.135 0.136 0.137 0.134
non-d. cons. c 0.900 0.853 0.864 0.873 0.866
ratio c=i 10.499 6.304 6.366 6.359 6.476

Table 2: Means in the steady-state equilibrium
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