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Abstract

Shimer (2005) showed that a standard search and matching model of the labor
market fails to generate fluctuations of unemployment and vacancies of the mag-
nitude observed in US data in response to shocks to average labor productivity
of plausible magnitude. He also suggested that wage determination through Nash
bargaining may be the culprit.

In this paper we pursue two objectives. First, we identify those properties
of Nash bargaining that limit the ability of the model to generate a large re-
sponse of unemployment and vacancies to a shock to average labor productivity.
In light of these properties, cast in terms of a general model of wage determina-
tion, we reinterpret some of the specific solutions proposed so far to this problem.
Second, we examine whether asymmetric information may help to violate those
properties and to provide amplification. We assume that the firm has private in-
formation about the job’s productivity, the worker about the amenity of the job,
and aggregate labor productivity shocks do not change the distribution of private
information around their mean. In this environment, we consider the monopoly
(or monopsony) solution, namely a take-it-or-leave-it offer, and the constrained ef-
ficient allocation. We find that our key properties are satisfied for the first model
essentially under all circumstances. They frequently (for commonly used specific
distributions of beliefs) also apply to the constrained efficient allocation.
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1 Introduction

The search-and-matching framework (Pissarides (2000)) is the workhorse of analysis of

aggregate labor markets and an important component of many quantitative business cy-

cle models. Shimer (2005) recently pointed out that a plausible calibration of a baseline,

representative agent version of the search and matching model driven by labor pro-

ductivity shocks of plausible magnitude and persistence grossly fails to account for the

observed volatility of unemployment and vacancies. Therefore, in spite of its many suc-

cesses, to explain business cycles the search-and-matching model fares no better than a

simple demand-and-supply representative-agent competitive model of the labor market.

Shimer suggests that the weakness of the search-and-matching model may lie in the

assumption of wage determination by Nash bargaining. In response, some authors (e.g.

Hall (2005), Hall and Milgrom (2005)) have considered alternatives to Nash bargaining

that produce a larger response of unemployment and vacancies to labor productivity

shocks. Other authors have taken alternative routes and introduced on-the-job search

and/or heterogeneity of either firms (Krause and Lubik (2004), Costain and Reiter

(2005)) or workers (Nagypal (2004)).

In this paper we focus again on wage determination, but we address the problem

from the opposite angle. We investigate the extent to which the failure of the model

generalizes to other models of wage determination beyond Nash bargaining. Our analysis

proceeds in two steps. First, we identify a few properties of a general model of wage

determination that limit the ability of the search model to produce large fluctuations

in unemployment and vacancies in response to shocks to average labor productivity.

Second, we examine several standard models of wage determination under asymmetric

information, and ask whether they also possess these properties.

In pursuing our objectives we take a methodological shortcut. A fully specified dy-

namic model of wage determination can be simulated, to compare the predicted volatility

of unemployment and vacancies to the volatility of average labor productivity. This is

the exercise that Shimer (2005) performs for Nash bargaining. However, as a preliminary

exercise, he computes the elasticity of the steady state v/u ratio (ratio of vacancies to

unemployment) to a permanent shock to average labor productivity. His results suggest

that the latter provides a remarkably close approximation to the relative volatilities ob-

tained from the dynamic simulation. It appears that the quality of this approximation

is related to the high persistence of average labor productivity and the rapid transitional

dynamics of the search-and-matching model. Since we are only after qualitative proper-

ties, we do not want to fully specify a model of wage determination that one could then
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subject to simulations. Thus, we will use the shortcut of focussing on the elasticity of

the steady state v/u ratio with respect to average labor productivity.

We show that, in any model that shares with Nash bargaining certain qualitative

properties that we discuss later, this elasticity must be less than an upper bound of the

form:
(

average productivity (or average wage)

average productivity (or average wage)− flow utl. of non market activity

)

× function(parameters not related to wage determination, data)

This is the product of two terms. The first term, that we will occasionally refer to as the

markup, measures the relative gains from market vs. non-market activity. In a recent

paper Hagedorn and Manovskii (2005) have made the case that these gains are tiny,

so this term should be calibrated to be perhaps as large as 20, in which case even the

model with Nash bargaining could deliver satisfactory fluctuations in unemployment

and vacancies driven by shocks to average labor productivity. If this term is indeed

large, then our bounds will not be very useful, and indeed unemployment is almost

equivalent to employment, so not even worth studying. However, other calibrations

such as Shimer’s assign to this term a much lower value, between 1 and 2. If one prefers

the latter calibration, then the size of the second term becomes crucial. This term,

which we will occasionally refer to as the multiplier, only depends on parameters of the

model not associated with wage determination (the matching function, the interest rate

and the rate of exogenous separations), whose calibration is relatively uncontroversial,

and on the job finding rate that the model is usually calibrated to match.

The properties of wage determination that imply this bound are quite simple. A

general model of wage determination is a rule to share the rents generated by search

frictions. The first property is that the rents of the firm and the worker depend on

the productivity of the job and on the opportunity cost of the worker only through

their difference, the flow gains from trade. As productivity always determines total

rents, this implies that the worker’s opportunity cost also affects the firm’s rents. The

second property requires that as flow gains from trade rise, neither party loses rents (the

PDV of gains from trade) in absolute terms, a non trivial restriction because of general

equilibrium effects. These two properties imply the above bound with the wage entering

the mark-up. To avoid issues of wage calibration and to express the mark-up in terms

of productivity, we need a third property, which requires that the firm’s total rents rise

not too fast in the flow gains from trade.

When these properties are satisfied, two effects tame the multiplier. On the one hand,
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if the worker’s surplus from employment is positive and not decreasing in flow gains from

trade, the worker has a better outside option in booms simply because the job-finding

rate rises so quickly, even if the net returns to finding a job remains constant. So wages

rise and profits fall, reducing the multiplier. This feedback effect has been the focus of

much recent literature because, in Nash bargaining, both the job finding rate and the

worker surplus are procyclical. However, this effect can be moderated by reducing the

worker’s share of surplus through an appropriate wage rule. But this requires giving

large profits to firms. In this case, the observed small variations in labor productivity

are tiny relative to average profits and, given congestion in hiring, they cannot justify

the observed large swings in the v/u ratio. So weakening the first, feedback effect

reinforces this second, congestion effect. Choosing the wage determination mechanism

that optimally balances the two effects can raise the multiplier from less than 2 (Shimer’s

number) to less than 4, a far cry from the empirical target of about 10.

Interestingly, each of the two effects can operate in isolation. Hall and Milgrom

(2005) present a strategic bargaining model that violates the first property and thus

lacks altogether the feedback effect of the job finding rate on wages. This still leaves

room for the congestion effect. In fact, in their model the multiplier is small and to

provide amplification they raise the mark-up by calibrating wages to be very high and

close to the worker’s opportunity cost of bargaining further. If one is not willing to

admit a large mark-up, then both the feedback and the congestion effect have to be

absent from the chosen wage determination mechanism. This is accomplished by Hall

(2005)’s completely rigid wage, which violates both of our properties, at the cost (for

our comparative statics purposes) of introducing multiplicity of equilibrium wages.

Our second contribution is to verify whether these properties hold in wage determi-

nation models under asymmetric information. The latter has been repeatedly suggested

as a natural direction to escape the tight limits on fluctuations associated with Nash

bargaining, given the freedom in choosing distribution of types. We follow this lead

and assume that, upon being matched, the firm privately draws a match specific pro-

ductivity and the worker a match specific amenity value of the job. This innovation

raises a new issue. With heterogenous productivity, a given increase in average labor

productivity can come about through various changes in the distribution of productivity

across jobs and be associated, for example, with more or less dispersion in productivity.

Kennan (2005) provides an example of substantial amplification through such interac-

tions. We ask whether introducing asymmetric information can provide amplification

without interactions between average labor productivity and the distribution of private
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information. Thus we assume that a shock to average labor productivity does not alter

the distributions of productivity and of worker’s job amenity around their means.

We study in detail two classic wage determination models under asymmetric infor-

mation. In the the monopoly (or monopsony) solution, where either the firm or the

worker makes a take-it-or-leave-it wage proposal to the other privately informed party,

our properties and elasticity bound apply under very weak assumptions about the dis-

tribution of private information, particularly in the firm offer case. For the constrained

efficient allocation, obtained with the help of a mediator (e.g. an arbitrator in wage con-

tracting), as in Myerson and Satterthwaite (1983), our analysis is in progress. So far, we

have been able to show that the bound applies (with some slack) when the distribution of

private information is the same for workers and firms, but otherwise fairly unrestricted,

and in an asymmetric example. We also analyze in some detail the case of symmetric

uniform distributions, the canonical example in the literature on two-sided asymmetric

information. From these applications, we draw the following conclusion. The properties

of Nash bargaining that are responsible for the failure of the search model as a business

cycle tool are fairly weak, and even failure of one of them may not be sufficient to pro-

vide the desired amplification. In other words, for the purpose of business cycle analysis,

Nash bargaining is an excellent approximation to a large class of wage determination

mechanisms even in the presence of private information.

In Section 2 we introduce the economy, in Section 3 we define our notion of a model of

wage determination. We discuss Nash bargaining and define its properties that mute the

response of the steady state v/u ratio to a permanent shock to average labor productivity.

We also discuss some models of wage determination that have been shown to imply large

fluctuations in unemployment and vacancies, and we illustrate which of these properties

of Nash bargaining they violate. The bounds are derived in Section 4. We then consider

models of wage determination in the presence of asymmetric information. Section 5 is

devoted to monopoly, and 6 to the constrained efficient allocation. Section 7 reviews

our results and concludes.

2 The Economy

We consider a search-and-matching model of the labor market à la Pissarides (1985).

We extend it to allow for bilateral asymmetric information about match-specific values:

the worker may ignore how much output she is producing for the firm, and the employer

how much the worker likes the job.

4



The economy is populated by a measure 1 of workers and a much larger measure

of firms. All agents are infinitely-lived, risk neutral and share the discount rate r > 0.

Workers can either be employed or unemployed. An unemployed worker receives flow

utility b and searches for a job. Employed workers receive endogenously determined

wage payments from their employers and cannot search for other jobs. Firms can search

for a worker by maintaining an open vacancy at flow cost c. Free entry implies that the

value of an open vacancy is zero. Unemployed workers and vacancies are matched at

rate m(u, v) where m is a constant returns to scale matching function. Let θ ≡ v
u

denote

the vacancy/unemployment ratio. Then vacancies are matched at rate m (1/θ, 1) ≡ q(θ)

and workers are matched at rate m(1, θ) = q(θ)θ.

Upon being matched, the worker draws a match specific amenity value z from the

distribution FZ and the firm draws a match specific productivity component y from the

distribution FY . The draws are once and for all until the match dissolves. Without loss

in generality, the two distributions have mean zero. Output of the match is given by

p + y, so p is ex ante average labor productivity. However, in general, not all matches

are formed and p will not equal labor productivity averaged across existing matches. We

will refer to p as the aggregate component of labor productivity. The amenity value z

adds to the wage to determine the flow value of employment for the worker. This value z

may be private information of the worker, and the idiosyncratic productivity component

y may be private information of the firm. Matches are destroyed exogenously at rate δ.

Shimer (2005) considers the representative agent complete information version of this

model. He simulates the dynamics of the economy driven by a first order Markov process

for labor productivity p. He shows that fluctuations in p of plausible magnitude cannot

generate observed business-cycle-frequency fluctuations in unemployment and vacancies

if wages are determined by Nash bargaining (from now on: NB).1 As a preliminary

exercise, Shimer computes the steady state of the model for constant labor productivity

p, and computes the elasticity of the v/u ratio with respect to labor productivity p

under the assumption that wages are determined by NB. He argues that this elasticity

is small for plausible parameter values. In this paper we focus on the latter exercise.

We argue that this elasticity is small for plausible parameter values for a much larger

class of models of wage determination that share some of the properties of NB. We

conjecture that models in which this comparative statics elasticity is small will also be

1As well known, in the search model with risk neutral agents there is no substantive distinction
between productivity and demand shocks. The primitive shock is to the returns to market vs. non-
market activities, so labor productivity may well be endogenous. Whatever the primitive driving force,
at stake is the comovement of productivity with unemployment.

5



unable to generate substantial fluctuations in simulations with a stochastic process for

labor productivity. This would require specifying the wage-setting rule, while we are

mainly concerned with the implications of a broad class of such rules.

3 Models of Wage Determination

We think of a model of wage determination as pinning down the value of the match

and how it is split between the worker and the firm. We are interested in the general

equilibrium effects of changes in productivity p on the division of rents and, consequently,

on unemployment. Each match takes the outside options, the utility of unemployment

U for the worker and zero for the firm by free entry, as given, and internalizes the direct

effects of changes in p on the rents. In equilibrium, the outside option U also changes,

and we capture this effect through the flow value n = rU .

We allow the outcome of wage determination to depend on the aggregate component

of labor productivity p, the flow value of unemployment n, and the match specific values

y and z. Let W (y, z, p, n) denote the value of employment to the worker given the flow

outside option n, G(y, z, p, n) = W (y, z, p, n)−U the capital gain from the job obtained

by the worker, and J(y, z, p, n) the corresponding capital gain for the firm (which is

the value of the job, since the outside option of the firm is zero). These values are

conditional on private information draws y, z, that is, on trade (on the match forming).

Let x(y, z, p, n) be the probability that the match is formed given an outcome y, z. Then

we can define the unconditional counterparts, namely, the ex ante chance of trading and

the expected rents to workers and firms, taking into account the possibility that the

match will not form:

ξ(p, n) ≡
∫∫

x(y, z, p, n)dFY (y)dFZ(z),

G(p, n) ≡
∫∫

G(y, z, p, n)dFY (y)dFZ(z), (1)

J (p, n) ≡
∫∫

J(y, z, p, n)dFY (y)dFZ(z).

A model of wage determination is then a a triple Ω = {G,J , ξ}. We could define it in

terms of conditional values, {G, J, x}, but our key properties will be in terms of objects

in Ω. Notice that by adopting this formulation we implicitly assume that the outcome

of the wage determination model is unique. Multiplicity of equilibria is one way that

has been considered to escape the tight bounds on labor market fluctuations associated

with NB (see the wage norm example below).
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Our first objective is to identify those properties of NB that are responsible for

the limited ability of the model to generate large fluctuations in unemployment and

vacancies. Under complete information, the generalized NB solution selects a wage to

maximize GβJ1−β for some β ∈ [0, 1]. As is standard, this implies that the total surplus

G + J is shared between the worker and the firm with shares β and 1− β, respectively:

in flow terms

(r + δ)G(y, z, p, n) = x(y, z, p, n)β(p− n + y + z),

(r + δ)J(y, z, p, n) = x(y, z, p, n)(1− β)(p− n + y + z).

The probability of trade is one if the match has a positive surplus, zero otherwise:

x(y, z, p, n) = I {p− n + y + z ≥ 0} (2)

where I is an indicator function. Notice that the functions G, J and x depend on p and

n only through their difference p− n. Since y and z have mean zero, and the flow gains

from trade are p + y + z − n, we can think of p− n as the mean gains from trade. If p

and n increase by the same amount, this leaves the rents G and J unchanged, and only

changes the location of the bargaining problem. With NB, an equal change in p and

n that does not change the flow gains from trade also leaves the total rents and their

division unchanged. Therefore, also G, J and ξ depend only on p − n. This property

motivates the first definition.

Definition 1 Location Invariance. A model of wage determination Ω = {G, J, x}
satisfies Location Invariance if the functions G, J and ξ depend on p and n only through

their difference p− n.

Each of the upper bounds that we will derive in Section 4 requires this property.

Indeed, some of the other properties that we will rely on are only defined for location

invariant models of wage determination.

A feature of the trading rule (2) is that the probability of trade is non-decreasing in

both y and z. That is, trade is more likely if the firm draws a high productivity or the

worker draws a higher amenity value of the job. This suggests that existing matches are

better than the average match draw.

Definition 2 Positive Selection. A location invariant model of wage determination

Ω = {G,J , x} satisfies Positive Selection if the average match specific productivity and
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the average match specific amenity value z conditional on trade (observed among active

jobs) exceed their unconditional counterparts, hence are non-negative

Y(p− n) ≡
∫∫

x(p, n, y, z)ydFY (y)dFZ(z)

ξ(p− n)
≥ 0 =

∫∫
ydFY (y)dFZ(z)

ξ(p− n)
, (3)

Z(p− n) ≡
∫∫

x(p, n, y, z)zdFY (y)dFZ(z)

ξ(p− n)
≥ 0 =

∫∫
zdFY (y)dFZ(z)

ξ(p− n)
. (4)

In order to obtain bounds on the elasticity of the v-u ratio we need to be able to take

derivatives. So for each model of wage determination we will make sufficient assumptions

(usually concerning smoothness of the distribution functions FZ and FY ) to guarantee

that the functions ξ(p− n), G(p− n) and J (p− n) are differentiable. For NB, one then

obtains from the envelope theorem

(r + δ)G ′(p− n) = βξ(p− n)

(r + δ)J ′(p− n) = (1− β)ξ(p− n).

Since the trading decision is privately efficient, at the margin it is not affected by a

change in p − n. Only the direct effect remains, which is to increase expected surplus

by the fraction of matches where it is positive, namely ξ(p − n). This property of NB

motivates:

Definition 3 Increasing Rents. A location invariant model of wage determination

Ω = {G,J , x} satisfies Increasing Worker’s (Firm’s) Rents if G ′ ≥ 0 (J ′ ≥ 0).

Definition 4 Regular Rents. A location invariant model of wage determination Ω =

{G,J , x} satisfies Regular Firm’s Rents if (r + δ)J ′ ≤ ξ.

If trade is ex post efficient, as with NB, then (r+δ)[G ′(p−n)+J ′(p−n)] = ξ(p−n),

so Regular Firm’s Rents is equivalent to Increasing Worker’s Rents. If trade is ex

post inefficient, the property of Regular Firm’s Rents arises naturally from an envelope

theorem argument if wages are the solution of a maximization problem of the firm (as

in the case of Monopoly with firm offers).

Before analyzing how these properties of NB are related to the limited ability of the

model to generate large fluctuations in unemployment and vacancies, we discuss two

examples of models of wage determination that have been suggested as a remedy of this

limited ability and that violate some of the properties introduced above.
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4 Bounds on Labor Market Fluctuations

In this section we present several upper bounds on the the elasticity of the steady state

v/u ratio with respect to the aggregate component of labor productivity p. As discussed

in the Introduction, we focus on the steady state elasticity εθ = θpp/θ, as previous

research suggests that this yields a good approximation to the relative volatility of the

v/u ratio and labor productivity obtained from dynamic simulations.

Whether a particular bound applies depends on whether the model of wage deter-

mination satisfies a corresponding set of the four properties discussed in the previous

section (Definition 1-4). Location Invariance is always in the picture, so we will simplify

notation by already using this property when writing the steady state conditions.

Steady State Equilibrium and Comparative Statics. We characterize the steady

state equilibrium of the search model when productivity is constant at p. Upper bars

denote the steady state values of the endogenous variables. The steady state values of the

two endogenous variables θ̄ and n̄ are determined by two equations. First, the free entry

condition, equating the flow cost of posting a vacancy c to the expected capital gain,

which is the rate q(θ) at which open vacancies receive applications, times the expected

value J (p − n) to the firm of an application, taking into account that the match may

potentially fail to form:

c = q(θ̄)J (p− n̄). (5)

Second, the Bellman equation determining the flow value of unemployment as the flow

value of leisure b plus the expected capital gain, the rate q(θ)θ at which unemployed

workers contact open vacancies times the expected return G(p − n) from the contact,

again taking into account that the match may potentially fail to form:

n̄ = b + q(θ̄)θ̄G(p− n̄). (6)

A well-known property of this search model is that an unanticipated permanent shock

to any parameter causes θ = v/u, thus n, to jump immediately to its new steady

state, while the levels of unemployment u and vacancies v exhibit transitional dynamics.

Therefore, the above equations describe the state of the economy both before and after

a once-and-for all change in p.

We log-differentiate the system of equations (5)–(6) with respect to the productivity

parameter p and evaluate the derivatives at steady state values. Let εθ denote the

elasticity of θ̄ with respect to p, n̄p be the derivative of the flow value of unemployment
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with respect to p, and η̄ = 1− q′(θ̄)θ̄/q(θ̄) denote the elasticity of the matching function

with respect to vacancies, all evaluated at the steady state. Then

(1− η̄)εθ =
J̄ ′(p− n̄)

J̄ (p− n̄)
(1− n̄p)p, (7)

n̄pp

n̄− b
= η̄εθ +

Ḡ ′(p− n̄)

Ḡ(p− n̄)
(1− n̄p)p. (8)

Define the average payment that workers receive conditional on trade,

w̄ ≡ (r + δ)Ḡ
ξ̄

+ n̄− Z̄,

(notice that the average amenity value must be deducted from the average flow utility

of an employed worker in order to obtain observable wage payments), the job finding

rate

h̄ ≡ f̄ ξ̄,

the product of the matching rate f̄ and the probability of match formation ξ̄,and finally

observed average labor productivity, the average of p + y conditional on trade

Ā ≡ p + Ȳ .

Notice that Positive Selection implies Ā ≥ p: since only relatively good matches are

implemented, average labor productivity conditional on trade is higher than its uncon-

ditional counterpart. We use these equations and definitions to derive our bounds on

the elasticity εθ of interest.

The First Bound. The key properties that we will use in deriving the first bound are

Increasing Firm’s Rents and Increasing Worker’s Rents. The bound will be obtained by

contradiction. As a first step, we combine equations (6) and (8) to obtain

1− n̄p =
1

1 + f̄ Ḡ ′
[
1− η̄εθ

h̄

r + δ + h̄

(r + δ)Ḡ + ξ̄(n̄− b)

ξ̄p

]
(9)

The left hand side is the derivative of the flow gains from trade p − n with respect to

p evaluated at the steady state. Now suppose εθ is so large such the term in square

brackets on the right hand side of this equation is negative. As we assumed Increasing

Worker’s Rents G ′ ≥ 0, this implies that the left hand side 1−n̄p is negative as well. Thus

the increase in the outside option n is so large that it overturns the increase in p, and the

flow gains from trade p− n decrease. However, consulting (7), the decrease in p− n in
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conjunction with Increasing Firm’s Rents J ′ ≥ 0 implies a negative elasticity εθ. This

contradicts the initial assumption that εθ is sufficiently large to make the term in square

brackets negative. It follows that εθ must be small enough so that the term in square

brackets is nonnegative, and this requirement gives rise to our first bound. In order to be

able to express this bound in terms of observables, we make the additional assumption

that the Model of Wage Determination satisfies Positive Selection. This allows us to

replace the unobservable magnitudes p and (r+δ)Ḡ/ξ̄+n̄ with the observable magnitudes

Ā ≥ p and w̄ ≤ (r+δ)Ḡ/ξ̄+ n̄, respectively, to keep the term in square brackets positive.

So we obtain:

Proposition 1 If the model of wage determination satisfies (i) Location Invariance, (ii)

Positive Selection, (iii) Increasing Firm’s Rents and Worker’s Rents, then

εθ ≤
(

w̄

w̄ − b

Ā

w̄

)(
1

η̄

r + δ + h̄

h̄

)

This bound has the general structure illustrated in the Introduction, a mark-up from

market activity times a multiplier. Notice that even if the worker’s rents do not rise,

G ′ = 0, an increase in average labor productivity has a positive effect on the worker’s

outside option n, through the higher job-finding rate: n̄p = η̄εθ(n̄− b). If the job finding

rate responds strongly to labor market tightness (high η̄), if labor market tightness

responds strongly to productivity (high εθ), and if the flow value of unemployment n̄

is much larger that the flow utility b, then n will respond strongly to an increase in

productivity. The strength of this effect depends on the wedge n̄ − b between the flow

outside options of the worker, endogenous n̄ minus exogenous (value of leisure) b. In

turn, from equation (6), n̄ − b = h̄
r+δ+h̄

(r+δ)Ḡ+ξ̄(n̄−b)

ξ̄p
, so this wedge is large (and the

outside option is very sensitive to the job-finding rate) if employment is on average a lot

better than non market activity and if the job finding rate is high.

To put a number on this bound, we follow the calibration of Shimer (2005). We take

from him values for the exogenous parameters r, δ and η = η̄ (Panel A of Table 1).

The model should match two empirical values, the job finding rate h̄ and the average

productivity to average wage ratio Ā/w̄. Panel B of the table reports the value 1.35

of the job finding rate found by Shimer for US data. We have not yet constructed a

careful empirical analog of the ratio of average labor productivity to the average wage

Ā/w̄. To be on the safe side, we pick a value of 1.2.2 Panel C of the table computes the

resulting components of the bound in Proposition 1. The term Ā
w̄

1
η̄

r+δ+h̄
f̄ h̄

takes the value

2Notice that in a frictionless competitive equilibrium we would have Ā
w̄ = 1.
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Table 1

A. Parameter Value

r 0.012

δ 0.1

η 0.28

B. Data Value

h̄ 1.35
Ā
w̄

1.2

C. Bound Factor Value
1
η

3.57
r+δ+h̄

h̄
1.08

1
η

r+δ+h̄
h̄

3.87
Ā
w̄

1
η

r+δ+h̄
h̄

4.64
1

1−η
1.39

4.64. Since both Ā/w̄ and r+δ+h̄
h̄

are not much larger than one, the magnitude of this

term is mainly due to η̄−1.

If b is set to 40 percent of the wage, then the overall upper bound on the elasticity εθ

equals 7.74. This value is very sensitive to the elasticity of matching to job creation η̄.

In particular for η̄ = 0.5 the bound drops to 4.33. Contrast these values with Shimer’s

finding that, in the US, the v/u ratio is roughly 20 times as volatile as average labor

productivity. The bound is not very sensitive to r + δ nor Ā/w̄, so relaxing the bound

towards the desired empirical target of 20 requires a much lower value of η̄ than the 0.28

chosen by Shimer, or lower gains for workers from market activity w̄− b. We should add

that η̄ = 0.28 is already at the lower end of the range of estimates in the literature (see

Petrongolo and Pissarides (2001) for a survey).
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The Second Bound. Equation (7) can also be solved explicitly for a specific positive

value of the elasticity εθ. Substituting equation (9) into equation (7) yields

εθ =
Ā− Ȳ

Ā + Z̄ − b
· 1

ξ̄(1+f̄ Ḡ′)
(r+δ)J̄ ′ (1− β̄) 1

1
1−η̄

+ β̄ 1
1
η̄

r+δ+ξ̄f̄
ξ̄f̄

(10)

where

β̄ ≡ (r + δ)Ḡ + ξ̄ · (n̄− b)

ξ̄(Ā + Z̄ − b)
= 1− (r + δ)J̄

ξ̄(Ā + Z̄ − b)

is the share of the flow gain from market activity Ā + Z̄ − b that goes to the worker.

Proposition 2 If the model of wage determination satisfies (i) Location Invariance, (ii)

Positive Selection, (iii) Increasing Firm’s and Worker’s Rents, and (iv) Regular Firm’s

Rents, then

εθ ≤ Ā

Ā− b
max

〈
1

1− η̄
,
1

η̄

r + δ + h̄

h̄

〉
. (11)

Proof.

εθ ≤ Ā− Ȳ
Ā + Z̄ − b

1
(
1− β̄

) (
1

1−η̄

)−1

+ β̄ 1
1
η̄

r+δ+ξ̄f̄
ξ̄f̄

≤ Ā

Ā− b

{
(
1− β̄

) (
1

1− η̄

)−1

+ β̄

(
1

η̄

r + δ + ξ̄f̄

ξ̄f̄

)−1
}−1

The first line follows from Increasing Worker’s Rents (1 + f̄ Ḡ ′ ≥ 1) and from Increasing

and Regular Firm’s Rents (0 ≤ (r + δ)J̄ ′ ≤ ξ̄). The second line follows from Positive

Selection. ¥

Notice the structure of Equation (10): up to the “mark-up” factor Ā−Ȳ
Ā+Z̄−b

, the mul-

tiplier is almost the harmonic weighted average of the two terms 1
1−η̄

and 1
η̄

r+δ+h̄
h̄

, with

weights equal to the shares β̄, 1 − β̄. The second term is familiar from the bound of

Proposition 1, and a low value of this term is associated with a low value of the elasticity

εθ for the reasons discussed earlier. The first term of the average (1− η̄)−1 captures con-

gestion effects. A low η̄ implies that an increase in labor market tightness has a strong

negative effect on the rate at which vacancies are matched with workers. Holding con-

stant the increase in the value of a match to the firm due to the increase in productivity,

labor market tightness cannot respond much if vacancy congestion is severe.

If all the gains from market activity go to the firm (β̄ → 0), then finding a job entails

no capital gain for the worker, and consequently an increase in the job finding rate does
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not help her outside option. In this case, only congestion effects limit the value of the

elasticity εθ. At the other extreme, if firms receive only very little of the gains from

market activity (β̄ → 1), a given absolute increase in the firm’s rents will be very large

in percentage terms, so the scope for an increase in labor market tightness is large even

if congestion effects are strong. Notice that a large discount factor r + δ makes firm’s

returns even smaller in absolute terms, and their increase even larger in percentage

terms. In this case, vacancy congestion (1 − η̄)−1 is not an important limiting factor

for the magnitude of εθ. Finally, a high response of the worker’s value (high Ḡ ′) must

occur at least in part the expense of the firm, amplifying the importance of congestion.

A similar effect obviously stems from a low J̄ ′.

In contrast to the first bound (Proposition 1), which of course still applies, this

second bound also has to reckon with congestion effects. If congestion effects are strong

so that the maximum operator in (11) yields (1 − η̄)−1, the second bound may be less

tight than the previous one. This is not the case for the parameter values of Table 1

since (1− η)−1 = 1.39 is much smaller than 1
η

r+δ+h̄
h̄

= 3.87, so the second bound (when

it does apply) significantly sharpens the first one. Once again, this is mainly due to

the low value of the elasticity of matching to vacancy, η = 0.28. For η = 0.5 the two

numbers are much closer, at 2 and 2.17, respectively. Notice also from Table 1 that

r + δ << h̄, so the second bound in equation (11) is approximately

εθ ≤ Ā

Ā− b
max

〈
1

1− η̄
,
1

η̄

〉

and the “multiplier” is determined uniquely by congestion effects on either side of the

market. The bound is tightest when the two effects are equal, at η̄ = 0.5.

Example: Nash bargaining without heterogeneity Without heterogeneity, Ā =

p, so our second bound in Proposition 2 is εθ ≤ p
p−b

max
〈

1
1−η̄

, 1
η̄

r+δ+h̄
h̄

〉
. For the baseline

model with NB wages and without heterogeneity, Shimer (2005) calculates the elasticity

εθ,NB =
p

p− b

r + δ + h̄β

(r + δ)(1− η̄) + h̄β

Setting the worker’s NB share β to zero yields εθ,NB = p
p−b

1
1−η̄

. For β = 0 workers do

not participate in the gains from market activity, so as discussed above only congestion

effects limit labor market fluctuations. It is clear from the formula above that this yields

the highest elasticity attainable with NB. As discussed above, with Shimer’s calibration

the congestion effect is associated with a much tighter limit on fluctuations than the
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feedback effect due to the low value of η̄ = 0.28. So the highest elasticity attainable with

NB is substantially lower than our second bound. If Shimer’s calibration is modified by

setting η̄ = 0.5, then the limits imposed by congestion and feedback are more balanced,

and NB bargaining can attain an elasticity of 3.33 while our second bound takes the value

εθ = 3.61. Thus for this value of η̄ NB almost attains our bound, which would imply

that no Model of Wage Determination satisfying the properties used in Propositions 1

and 2 can yield significantly more amplification than NB.3

Example: Constant Wage. Consider the model that simply specifies a constant

exogenous wage. If p and n increase by the same amount, the wage would have to move

along in order for the split of the rents to remain unchanged, so this model violates

Location Invariance.

Example: Double Auction (Hall (2005)). Hall (2005) considers a more sophisti-

cated model of wage determination with implications similar to a constant wage, namely

a double auction. With symmetric information any split of the surplus is an equilib-

rium of the double auction. As p and n rise by the same amount, say ∆, the set of

equilibria, an interval of the real line, also shifts up by the same ∆. So the productivity-

wage wedge and the wage-outside option wedge for the same job are unchanged. In

this broader sense, the model exhibits Location Invariance, although strictly speaking

the multiplicity of equilibria does not allow to apply its formal definition. However, the

presence of multiplicity can be exploited to select different splits of the rents for different

values of p and n, even if overall the flow gains from trade p − n are the same. This

is what Hall’s equilibrium selection of a constant wage accomplishes. The amplification

of productivity shocks is guaranteed by the large average wage (96% of average labor

productivity) which compresses profits and tames the congestion effect.

Example: Outside Option Principle (Hall and Milgrom (2005)) Hall and

Milgrom (2005) replace the standard NB assumption of the Mortensen-Pissarides model

with the bargaining theory of Binmore, Rubinstein and Wolinsky (1986). According

to this theory, the relevant threat point of the worker is not unemployment but delay

of bargaining. Now suppose p and n increase by the same amount but the cost of

delay to the worker remains unchanged (it does not fall one for one with the increase in

n). Then the split of the match rents will not remain the same, so this model of wage

3An alternative way of putting this is as follows. If η̄ ≥ r+δ+h
r+δ+2h (η ≥ 0.52 using Shimer’s calibration

of r, δ and h), the second bound is attainable through NB by setting β = 0.
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determination fails Location Invariance, and the feedback effect disappears. Nonetheless,

as discussed in the Introduction, the congestion effect remains. This model can generate

large unemployment fluctuations in response to plausible productivity shocks only if the

cost of delay is calibrated so as to generate a large bias in favor of the worker. This

makes the wage high relative to average productivity and small relative to the threat

point, creating a large mark-up.

The Third Bound. While the second bound is more appealing than the first one

because it does not require a calibration of the average wage, the additional properties

that it requires may be restrictive. As we shall see in the case of the constrained efficient

allocation considered in Section 6, this is particularly true for the property of Regular

Firm’s Rents. The latter condition can be dispensed with in the special case of symmetry.

Definition 5 Symmetry. A model of wage determination Ω = {G,J , x} is Symmetric

if G = J .

Proposition 3 If the model of wage determination satisfies (i) Location Invariance, (ii)

Positive Selection, (iii) Increasing Firm’s Rents, and (iv) Symmetry, then

εθ ≤ Ā

Ā− b

1

h̄
max

〈
r + δ

1− η̄
,
r + δ + h̄

η̄

〉

Proof. The proof is analogous to that of Proposition 3, noting that under symmetry

and increasing gain from trade

ξ̄
1 + f̄ Ḡ ′

(r + δ)J̄ ′ = ξ̄
1 + f̄ Ḡ ′
(r + δ)Ḡ ′ ≥ ξ̄

f̄

r + δ
=

h̄

r + δ
.¥

It is immediate to verify that the multiplier of the third bound is usually pinned

down by the second term in the maximum, as h̄ >> r+δ and η̄ is not too close to either

0 or 1. That is, for plausible parameter values, in the symmetric case what really binds

is the feedback effect

Heterogeneity. We conclude this section on upper bounds by turning to an issue

that we have glossed over so far. In Shimer (2005)’s setup matches are homogenous,

so p is average labor productivity. Thus, εθ is the elasticity of the v/u ratio with

respect to average labor productivity, the appropriate comparative statics counterpart

of the empirical values of relative standard deviations of the v/u ratio and average
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labor productivity. The fact that in Shimer’s setup the elasticity also provides a good

quantitative approximation of the relative standard deviation is our justification for

studying upper bounds on this elasticity.

However, in our setup with heterogeneity p is the ex ante, not the ex post, average

labor productivity. The actual average productivity Ā is endogenous, due to selec-

tion. Thus the appropriate comparative statics counterpart for the relative standard

deviation−in the sense of relating the same economic concepts−is not εθ, but rather the

ratio between εθ and the elasticity εĀ of average labor productivity Ā with respect to

p. The bounds on εθ that we have obtained apply, strenghtened, to εθ/εĀ if εĀ ≥ 1, or,

dĀ/dp ≥ Ā/p. Notice that, by positive selection, Ā/p = 1 + Y/p≥1. This means that,

when aggregate productivity is higher, the quality of implemented new matches must

not worsen, and in fact improve sufficiently. This is typically not the case in any the

models of wage determination that we analyze.

One observation, however, soothes this concern. When p increases by a small ∆p,

the change in labor productivity that we observe in the data is equal to ∆p for existing

matches, where selection has already taken place, and to ∆Ā for new matches. So the

total change in average labor productivity is a weighted average of the two. Since the

overwhelming majority of jobs that are active at each point in time in the US economy

existed before this quarter, this weighted average is dominated by ∆p, thus our bounds

should be appropriate. However, this argument does not apply when p falls. If p

decreases by ∆p, then the decrease in average labor productivity of existing matches

will in general be less than ∆p due to selective destruction of poor matches.

This discussion suggests an alternative avenue to resolve the shortcoming of the

search model as a tool of analysis of business cycles. The existing literature uniformly

assumes that labor productivity shocks affect all jobs, pre-existing and new. But the

model tells us that job creation is driven only by the productivity of new jobs. If, for

some reason, existing jobs’s productivity does not change, and all movement is at the

margin, as in a vintage capital model, a 2% change observed in average labor productivity

implies a many-fold change in the productivity of new jobs. More generally, a strong

procyclicality in the quality of new matches, relative to the existing ones (as for example

in Moscarini (2001)’s Roy model with search frictions), could be enough to explain the

empirically observed fluctuations in average productivity and in unemployment. Costain

and Reiter (2005) explore this avenue.

Having found several bounds, we now go through some particularly interesting exten-

sive forms of the bargaining game, specifically, the monopoly solution and the efficient
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mechanism. For each extensive form, we verify whether and under what conditions the

equilibrium is unique and satisfies the assumptions of one of our earlier Propositions.

5 Monopoly

In this section we consider the game in which the privately informed party makes a

take-it-or-leave-it offer to the uninformed party. If accepted, the offer is binding for

both parties until exogenous separation. This game has a unique equilibrium, which is

constrained ex ante efficient in the sense that the offer-making party’s welfare cannot

be improved further given information asymmetry (Satterthwaite and Williams (1989)).

This equilibrium does not, however, maximize ex ante gains from trade, due to the

monopoly distortion. We analyze separately the two cases of unilateral wage offer by

the firm and wage request by the worker, because the properties used to derive the

second bound are not symmetric for firms and workers.

5.1 Unilateral Wage Offer by the Firm

The Optimal Wage Offer. Consider a firm of type y. If it offers a wage wM , then

the worker is indifferent between taking the job and staying unemployed if his amenity

value is zM = n − wM , and the firm obtains profits p + y − wM = p − n + y + zM .

Thus the offer is accepted for amenity values z ≥ zM . One can equivalently think of the

firm choosing the threshold zM or the wage wM , and adopting the former approach the

objective of of the firm is to maximize

[1− FZ(zM)](p− n + y + zM). (12)

The first term is the probability of trade and the second term is the payoff of the firm

p + y − wM after paying wM = n− zM . The first order condition is

p− n + y + zM =
1− FZ(zM)

F ′
Z(zM)

. (13)

The left hand side is the gain from trading with an additional worker. However, if the

firm wants to trade with more workers, it has to pay higher informational rents to the

workers (types, values of z) it is already trading with. The right hand side gives the

number of workers that receive higher rents relative to the number of workers gained

from reducing zM .

We now introduce an assumption about private information that will allow us to

verify all the properties in Definitions 1-4.
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Assumption 1 a. The distributions FY and FZ have support [y, ȳ] and [z, z̄], respec-

tively, with y, z, ȳ, z̄ ∈ R̄.

b. The “virtual valuations” y − 1−FY (y)
F ′Y (y)

and z − 1−FZ(z)
F ′Z(z)

are strictly increasing and

continuously differentiable on [y, ȳ] and [z, z̄], respectively.

We allow for finite lower and upper bounds. Thus the solution to the firm’s problem

could be at a corner, and one may expect that corner solutions may generate sufficient

wage rigidity to escape the bounds. We will show that this is not the case. Part (b) of

the assumption insures that if the first order condition (13) has an interior solution, it is

unique, differentiable, and the global maximizer. Let zM(p− n + y) denote the optimal

amenity threshold, such that a worker accepts the wage offer if and only if she draws

an amenity z ≥ zM for the job. This threshold equals the lower bound z (the offer is

accepted for sure) if p− n + y + z ≥ 1−FZ(z)
F ′Z(z)

, that is if the gain from trading with more

workers always outweighs the cost of higher informational rents. It equals the upper

bound z̄ (the offer is rejected for sure) if p− n + y + z̄ ≤ 1−FZ(z̄)
F ′Z(z̄)

. In this case no trade

takes place and the model is trivial, so we rule this case out by assumption.

It is now straightforward to map this model of wage determination into the notation

of Section 3:

x(y, z, p, n) = I {z ≥ zM(p− n + y)} (14)

G(y, z, p, n) = x(y, z, p, n)
z − zM(p− n + y)

r + δ
, (15)

J(y, z, p, n) = x(y, z, p, n)
p− n + y + zM(p− n + y)

r + δ
. (16)

We now verify that this model of wage determination satisfies the properties introduced

in Section 3.

Location Invariance. It is immediate from equations (14)–(16) that the functions x,

G and J depend on p and n only through the difference p− n. As with NB, an increase

in p and n by the same amount just shifts the location of the firm’s problem, and leaves

the division of rents unaffacted.

Positive Selection. Inspecting the firm’s objective in (12), an increase in p − n + y

raises the marginal gain from trade by lowering the threshold zM . By a monotone

comparative statics argument, or by the implicit function theorem, zM(p−n+y) is weakly

decreasing (and strictly so over the range where the solution is interior). Consulting

equation (14), this implies that x(p, n, y, z) is non-decreasing in both y and z.
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Increasing Worker’s Rents. As a first step, it is convenient to define the worker’s

average gains from trading with a firm of type y:

(r + δ)G(p− n|y) ≡
∫ z̄

zM (p−n+y)

[z − zM(p− n + y)] dFZ(z)

This function is differentiable except possibly at the two threshold values where the first

order condition holds with equality for the corners z and z̄, with

(r + δ)G ′(p− n|y) = −z′M(p− n + y)[FZ(zM(p− n + y))] ≥ 0.

The firm expands the range of workers it is trading with by −z′M(p − n + y), so the

informational rents of all worker types that it is already trading with have to increase

by exactly this amount. By definition G(p− n) =
∫ G(p− n|y)dFY (y), so that

G ′(p− n) =

∫
G ′(p− n|y)dFY (y)

which establishes differentiability. Since G ′(p − n|y) ≥ 0, also G ′(p − n) ≥ 0, that is

worker’s rents are increasing.

Regular Firm’s Rents. The maximized value for firm type y is

(r + δ)J (p− n|y) = [1− FZ(zM(p− n + y)) [p− n + y + zM(p− n + y)] .

Differentiation yields

(r + δ)J ′(p− n|y) = 1− FZ(zM(p− n + y)).

If the firm is at a corner this follows immediately, as zM(p − n + y) does not respond

to a change in p − n. If the solution to the firm’s problem is interior this relationship

follows from the envelope theorem. Since the threshold zM is chosen optimally, the firm

cannot gain at the margin from adjusting the threshold, so the benefit from an increase

in p − n is just the direct effect on the rents that the firm earns from the workers is is

already trading with.

It follows that J (p−n|y) is continuously differentiable, and differentiation under the

integral sign yields

(r+δ)J ′(p−n) =

∫
(r+δ)J ′(p−n|y)dFY (y) =

∫
[1−FZ(zM(p−n+y))]dFY (y) = ξ(p−n).

This proves differentiability of J (p − n), Increasing Firm’s Rents, as well as Regular

Firm’s Rents. Recall that with NB match formation is ex post efficient, and the envelope
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theorem applies to the overall rents, that is (r + δ)(J ′ + G ′) = ξ. Here the envelope

theorem delivers (r + δ)J ′ = ξ. Due to the monopoly inefficiency, one generally has

(r + δ)(J ′ + G ′) > ξ.

We summarize these results in the following proposition.

Proposition 4 Under Assumption 1 the firm offer monopoly model satisfies (i) Location

Invariance, (ii) Positive Selection, (iii) Increasing Firm’s and Worker’s Rents and (iv)

Regular Firm’s Rents.

Thus, under weak assumptions, this model of wage determination satisfies those

properties which are sufficient for the bounds of Propositions 1 and 2.

5.2 Unilateral Wage Request by the Worker

By symmetry with the firm offer model, the worker offer monopoly model satisfies Lo-

cation Invariance, Positive Selection and Increasing Firm’s and Worker’s Rents. These

are all the properties needed to apply the bound of Proposition 1.

However, for the firm offer model we only established that the rents of the offer-

making party are regular. Now the firm is at the receiving end of the offer. To apply

the second bound, we need Regular Rents of the offer-receiving party. Using notation

symmetric to the firm offer model, in the worker offer model

(r + δ)J ′(p− n|z) = −y′M(p− n + z)[1− FY (yM(p− n + z))] (17)

at points of differentiability of yM(p − n + z). Here yM(p − n + z) is the threshold

productivity level chosen by the worker with amenity value z. Only firm types that the

worker has already been trading with experience an increase in their informational rent,

which is why the probability of trade 1 − FY (yM(p− n + z)) appears in equation (17).

How large the increase in the informational rent is for these firm types depends on how

many more firm types the worker wants to trade with, that is the drop in the threshold

−y′M(p−n+z). If the worker lowers the threshold substantially, then the increase in the

firm’s informational rent will be large. Now suppose the worker reduces the threshold

less than one for one with an increase in p− n, that is −y′M(p− n + z) ≤ 1. Then

(r + δ)J ′(p− n) =

∫
−y′M(p− n + z)[1− FY (yM(p− n + z))]dFZ(z)

≤
∫

[1− FY (yM(p− n + z))]dFZ(z) = ξ(p− n),
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enough to insure Regular Firm’s Rents. The following strengthening of the second part

of Assumption 1 insures that −y′M ≤ 1.

Assumption 2 The hazard rate
F ′Y (y)

1−FY (y)
is weakly increasing and continuously differen-

tiable on [y, ȳ].

To understand the role of a monotone hazard rate, consult the worker’s first order

condition for an optimal wage request to the firm:

p− n + yM + z =
1− FY (yM)

F ′
Y (yM)

. (18)

If in response to an increase in p − n the worker reduced yM one for one, then the left

hand side, which is the marginal benefit from trading with another firm type, would

be unchanged. However, under Assumption 2 the worker would end up at a point with

a lower hazard rate, that is the loss of trade associated with a more aggressive wage

request is smaller relative to the number of firms that would pay the higher wage. It

follows that it is optimal to reduce the threshold less than one for one.

Thus we obtain the following proposition.

Proposition 5 Under Assumption 1 the worker request monopoly model satisfies (i)

Location Invariance, (ii) Positive Selection and (iii) Increasing Firm’s and Worker’s

Rents. If part (b) of Assumption 1 is strengthened to Assumption 2, then this model

also satisfies Regular Firm’s Rents.

The stronger Assumption 2 of a monotone hazard is sufficient to apply Propositions

2. We emphasize that it is not needed for the bound of Proposition 1.

6 The Constrained Efficient Allocation

We now turn to the constrained efficient allocation in the presence of bilateral asym-

metric information, as in Myerson and Satterthwaite (1983) [MS83]. Parties have access

to a mediator, who receives announcements about the draws of private information, y

and z, and recommends a binding trading decision and wage. In this wage negotiation

context, the mediator enforcing the rules of the game can be thought of as an arbitrator

of a labor dispute.

The constrained efficient allocation is of great interest for two reasons. First, it

features the maximal expected gains from trade in the equilibrium of any unmediated

bargaining game. Therefore, if this allocation satisfies our properties and tames the
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amplification of productivity shocks, any other wage-setting rule under asymmetric in-

formation can provide amplification only through some form of inefficiency in trading.

If rents are shared efficiently, there cannot be sufficient amplification. Second, this allo-

cation is always unique and, for some classes of belief distributions, can be implemented

through a sealed-bid double auction. Therefore, the indeterminacy of the set of efficient

equilibria of the double auction under complete information, exploited by Hall (2005)

to generate sufficient wage rigidity, breaks down under any modicum of asymmetric

information.

For the constrained efficient allocation, it is straightforward to verify Location In-

variance and Positive Selection. However, we have not yet been able to uncover simple

sufficient conditions for properties such as Increasing Firm’s and Worker’s Rents and

Regular Firm’s Rents. So far we can only show that the bounds of Section 4 apply to

some special cases, which are considered at the end of this section. Specifically, under

the assumption of symmetric beliefs one can also establish Increasing Rents, so Propo-

sition 3 applies. We also specialize further to the case of uniform symmetric beliefs.

This case has received particular attention due to the fact that the constrained efficient

allocation can be implemented through an equilibrium of the 1
2
-double auction analyzed

by Chatterjee and Samuelson (1983). It is also of particular interest here because in

this case the property Regular Firm’s Rents holds, so the conditions of Proposition 2

are satisfied. Finally, we verify that Proposition 1 applies to asymmetric beliefs of the

exponential class.

The Mechanism Design Problem. A mediator, or principal, receives reports ŷ

and ẑ by the two parties and enforces a probability of trade x(ŷ, ẑ, p, n) and a wage

w(ŷ, ẑ, p, n) so as to maximize the sum of expected values to the two parties. The

reports are a Bayesian Nash equilibrium of this optimal mechanism. That is, the efficient

mechanism is a direct revelation game whose Bayesian Nash equilibrium produces the

constrained efficient allocation.

Given a pair of reports ŷ, ẑ and realizations y, z, the firm’s value is

J(ŷ, ẑ, y, p, n) =
p + y − w(ŷ, ẑ, p, n)

r + δ
(19)

and the worker’s value

W (ŷ, ẑ, z, p, n) =
z + w(ŷ, ẑ, p, n)− δU

r + δ
=

z + w(ŷ, ẑ, p, n)− δn/r

r + δ
. (20)

The constrained efficient allocation obtained through a direct revelation mechanism
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maximizes the total expected value to firm and worker

max
x,w

∫ z̄

z

∫ ȳ

y

[J(y, z, y, p, n) + W (y, z, z, p, n)] x(y, z, p, n)dFY (y)dFZ (z) \

+

∫ z̄

z

∫ ȳ

y

U [1− x(y, z, p, n)] dFY (y)dFZ (z)

subject to (intermim) Individual Rationality (IR) and Incentive Compatibility (IC) con-

straints of the firm: for all y, ŷ ∈ [y, ȳ]

∫ z̄

z

J(y, z, y, p, n)x(y, z, p, n)dFZ (z) ≥ max

〈
0,

∫ z̄

z

J(ŷ, z, y, p, n)x (ŷ, z) dFZ (z)

〉
(21)

and of the worker: for all z, ẑ ∈ [y, ȳ]

∫ ȳ

y

{W (y, z, z, p, n)x(y, z, p, n) + U [1− x(y, z, p, n)]} dFY (y)

≥ max

〈
U,

∫ ȳ

y

{W (y, ẑ, z, p, n)x(y, ẑ) + U [1− x(y, ẑ, p, n)]} dFY (y)

〉
.

We can rewrite the problem as follows. Subtract n (r + δ) /r from both sides of last

equation, use (19) and (20), ignore constant terms independent of choice variables, to

transform the original problem into that of maximizing the expected flow surplus

max
x,w

∫ z̄

z

∫ ȳ

y

(p + y + z − n)x(y, z, p, n)dFY (y)dFZ (z) (22)

subject to

∫ z̄

z

[p + y − w(y, z, p, n)] x(y, z, p, n)dFZ (z) ≥ max

〈
0,

∫ z̄

z

[p + y − w(ŷ, z, p, n)] x(ŷ, z, p, n)dFZ (z)

〉
,

∫ ȳ

y

[z + w(y, z, p, n)− n] x(y, z, p, n)dFY (y) ≥ max

〈
0,

∫ ȳ

y

[z + w(y, ẑ, p, n)− n] x(y, ẑ, p, n)dFY (y)

〉
.

Notice that this is not a constrained efficient allocation for society: here parties take

the outside option n = rU as given, and just mind the division of rents. The objective

function is independent of the wage w, which only plays the role of a transfer function

to induce parties to truthfully reveal their valuations, thus only enters the IC and IR

constraints.
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Proposition 6 There exists a unique constrained efficient trading rule: trade iff y ≥
y∗(z) where the decreasing function y∗ = y∗(z) uniquely solves

y∗ + p− n + z =
µ

1 + µ

{
1− FY (y∗)

F ′
Y (y∗)

+
1− FZ (z)

F ′
Z (z)

}
(23)

and µ ≥ 0 is the Lagrange multiplier on the binding constraint

∫ z̄

z

∫ ȳ

y∗(z)

[
p + y + z − n− 1− FY (y)

F ′
Y (y)

− 1− FZ (z)

F ′
Z (z)

]
dFY (y)dFZ (z) ≥ 0

which is equivalent to all IC and IR constraints.

Notice that the ex post efficient trading rule, trade iff y + p−n + z ≥ 0, holds if and

only if the constraint is not binding, hence µ = 0, which happens if and only if p− n is

large enough that the supports of p + y and z − n are sufficiently disjoint.

Location Invariance and Differentiability. We can also state the efficient trading

rule in terms of the worker’s private value: trade occurs iff z ≥ z∗(y, p−n) = y∗−1(y, p−
n). Either way, the higher the valuation a party has for the match, the more likely she

expects trade to be. By the implicit function theorem, these cutoff functions y∗ and z∗

are also differentiable in p− n.

The probability of trading conditional on private information, say, for a worker of

type z is 1− FY (y∗(z, p− n)) and unconditional on private information it is

ξ∗(p− n) =

∫ z̄

z

[1− FY (y∗(z, p− n))]dFZ(z) =

∫ ȳ

y

[1− FZ(z∗(y, p− n))]dFY (y).

As shown in MS83, the expected value to each party, unconditional on trade but

conditional on private information, is

G∗(z|p, n) = G∗(z|p, n) +

∫ z

z

[1− FY (y∗(z′, p− n))] dz′

J ∗(y|p, n) = J ∗(y|p, n) +

∫ y

y

[1− FZ (z∗(y′, p− n))]dy′.

Notice that G∗(z|p− n) is increasing in z and J ∗(y|p− n) is increasing in y, so the IR

constraints G∗(z|p − n) ≥ 0 and J ∗(y|p − n) ≥ 0 for each type of worker and firm are

satisfied if they are for the lowest types y and z. By Theorem 2 in MS83, these are

binding at the optimum:

G∗(p, n|z) = J ∗(p, n|y) = 0.
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Taking expectations w.r. to private information, we can finally obtain the expected

values to each party unconditional on trade and on private information:

(r+δ)G∗(p−n) =

∫ z̄

z

∫ z

z

[1− FY (y∗(z′, p− n))] dz′dFZ(z) =

∫ z̄

z

[1− FY (y∗(z, p− n))] [1− FZ(z)] dz

where the second equality follows from integration by parts. Similarly

(r+δ)J ∗(p−n) =

∫ ȳ

y

∫ y

y

[1−FZ (z∗(y′, p− n))]dy′dFY (y) =

∫ ȳ

y

[1−FZ (z∗(y, p− n))] [1− FY (y)] dy.

By inspection, ξ∗(p− n), G∗(p− n) and J ∗(p− n) are differentiable with respect to

p− n. Therefore, Location Invariance and differentiability hold. Notice also that these

values are uniquely defined by the trading rule y∗, that we proved to uniquely exist,

and do not depend on the payment function w∗, which is defined residually. Therefore,

G∗ and J ∗ are uniquely defined, a key property to meaningfully test our comparative

statics property.

Positive Selection. Using the efficient trading rule, the maximized expected flow

gains from trade (r + δ)S∗ = (r + δ)(G∗ + J ∗) can be written as follows:

(r + δ)S∗(p− n) =
∫ z̄

z

∫ ȳ

y∗(z,p−n)
(p + y + z − n)dFY (y)dFZ (z)

= ξ∗(p− n) · (p− n) +
∫ z̄

z
{z + E[y|y ≥ y∗(z, p− n)]} [1− FY (y∗(z, p− n))]dFZ (z)

= ξ∗(p− n){(p− n) +
∫ z̄

z
{z + E[y|y ≥ y∗(z, p− n)]} 1−FY (y∗(z,p−n))R z̄

z [1−FY (y∗(z′,p−n))]dFZ(z′)
dFZ (z)}

= ξ∗(p− n) ·
{

(p− n) +
∫ z̄

z
E[y|y ≥ y∗(z, p− n)]dH∗ (z) +

∫ z̄

z
zdH∗ (z)

}

where H∗ is the cdf of the worker’s valuation conditional on trade. Then notice that

E[y|y ≥ y∗(z, p − n)] ≥ E[y] = 0 so the inequality is also true when averaging over

dH∗(z). Next, as the cutoff y∗(z, p − n) is decreasing in z, it is easy to verify that

H∗ ºFSD FZ . So
∫ z̄

z
zdH∗(z) ≥ ∫ z̄

z
zdFZ (z) = 0. Overall, we conclude that Positive

Selection holds: (r + δ)S∗(p− n) ≥ (p− n) · ξ∗(p− n).

Increasing Rents. To apply the first bound from Proposition 1, using the above

expression, it remains to show

G∗′(p− n) =

∫ z̄

z

−dy∗(z, p− n)

d(p− n)
F ′

Y (y∗(z, p− n)) [1− FZ(z)] dz ≥ 0

J ∗′(p− n) =

∫ ȳ

y

−dz∗(y, p− n)

d(p− n)
F ′

Z (z∗(y, p− n)) [1− FY (y)] dy ≥ 0
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where from (23)

dy∗(z, p− n)

d(p− n)
=
−1 +

d( µ
1+µ)

d(p−n)

{
1−FY (y∗(z,p−n))

F ′Y (y∗(z,p−n))
+ 1−FZ(z)

F ′Z(z)

}

d

�
y− 1−FY (y)

F ′
Y

(y)

�

dy
|y=y∗(z,p−n)

=
1

dz∗(y∗(z,p−n),p−n)
d(p−n)

.

Since the denominator is positive by Assumption 1, a sufficient condition is that µ/(1 +

µ), thus the Lagrange multiplier µ, be non-increasing in p− n. This implies that, as the

average gains from trade p−n rise, the critical trading cutoff y∗(z, p−n) declines for all

z, or z∗(y, p − n) declines for all y, so the trading set becomes larger and both parties

gain. While we have not yet been able to sign this derivative in general, we can establish

it for some special cases.

A Special Case: Symmetric Beliefs. In the special case FY = FZ the third bound

from Proposition 3 applies provided also that the firm has increasing rents. By the

envelope theorem (r+δ)S∗′(p−n) = (1+µ) ·ξ∗(p−n) > 0 so, by symmetry, G∗(p−n) =

J ∗(p− n) = S∗(p− n)/2 and

G∗′(p− n) = J ∗′(p− n) =
S∗′(p− n)

2
> 0.

Now we further specialize to symmetric uniform beliefs [y, ȳ] = [z, z̄] =
[−1

2
, 1

2

]
.

Since beliefs are symmetric, this is a special case of the preceding special case, and the

bound of Proposition 3 applies. Nevertheless it provides an instructive example since it

also satisfies the assumptions of Proposition 2, in particular Regular Firm’s Rents. We

restrict variation in p−n to the interval
[
0, 1

3

]
. Over this range the Langrange multiplier

is constant at µ = 1
2
, and one also obtains the simple closed form solutions

ξ(p− n) =
1

2

(
3

4

)2

(1 + (p− n))2 ,

(r + δ)J (p− n) =
1

6

(
3

4

)3

(1 + (p− n))3 .

Thus one can directly verify that the increase in the rents of the firm are bounded by

the probability of trade, hence they are regular:

(r + δ)J ′(p− n) =
3

4
ξ(p− n) < ξ(p− n).
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A Special Case: Asymmetric Exponential Beliefs Now suppose that y and z are

positive real numbers with FY (y) = 1 − e−γy, FZ(z) = 1 − e−λz for some λ, γ > 0. We

can subtract the means 1/λ and 1/γ and absorb them into p and −n to make y and z

have mean zero. The constrained efficient cutoff is linearly decreasing

y∗(z, µ) = max
µ

1 + µ

(
1

γ
+

1

λ

)
− z − (p− n).

So for z ≥ µ
1+µ

(
1
γ

+ 1
λ

)
− (p− n) we have y∗(z, µ) ≤ 0 and so trade occurs for sure, as

y ≥ 0 ≥ y∗(z, µ), while for z ∈ [0, k) trade may fail. We will show that the Lagrange

multiplier µ associated to the IC constraint is nonincreasing in p−n, which implies that

all types trade more often and gain.

If the IC constraint is not binding, then µ = 0, dµ/d(p − n) = 0, and we are done.

If it is binding, it reads in this case

0 =

∫ ∞

0

∫ ∞

max〈0, µ
1+µ( 1

γ
+ 1

λ)−z−(p−n)〉

(
p− n + y + z − 1

γ
− 1

λ

)
γe−γydyλe−λzdz

=

∫ ∞

µ
1+µ( 1

γ
+ 1

λ)−(p−n)

∫ ∞

0

(
p− n + y + z − 1

γ
− 1

λ

)
γe−γydyλe−λzdz

+

∫ µ
1+µ( 1

γ
+ 1

λ)−(p−n)

0

∫ ∞

µ
1+µ( 1

γ
+ 1

λ)−(p−n)−z

(
p− n + y + z − 1

γ
− 1

λ

)
γe−γydyλe−λzdz.

After much algebra, we can compute these integrals. After rearranging, we obtain an

equation that defines µ implicitly

e−
µ

1+µ(λ
γ
− γ

λ)+(λ−γ)(p−n) =
λµ− γ

γµ− λ

λ

γ
.

If λ = γ, a symmetric model, this equation, thus µ, is independent of p − n, so again

dµ/d(p − n) = 0, and we are done. In any event, the left hand side is positive, so the

right hand side must be positive too, namely, (λµ− γ) / (γµ− λ) > 0. In an asymmetric

model, where λ 6= γ, implicit differentiation of last equation gives

dµ

d(p− n)
= −(µλ− γ) (µγ − λ) (1 + µ)2 γλ

µ (λ + γ)3 < 0.

It follows that, as average gains from trade p−n rise, the incentive problem is lessened,

the cutoff y∗ declines with p−n, both parties gain, and the first bound from Proposition

1 applies.
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7 Discussion and Conclusions

The analysis of various different wage-determination mechanisms uncovers important

similarities. Location Invariance implies that the firm’s share of the pie depends on

the worker’s outside option. In most natural models trade occurs if total rents exceed

a cutoff, so Positive Selection holds. Next is the property of Increasing Rents. Both

parties must benefit from an increase in the average gains from trade p− n. In general,

the envelope theorem implies that the player who is maximizing an objective function

gains from an increase in p − n. In the monopoly case, this gain accrues to the offer-

making party and is exactly equal to the probability of trade. The initial optimal wage

offer/request must appropriately balance the chance of trade and the returns conditional

on trade. This implies that an increase in p−n must be transmitted in part to the offer

to raise the chance of trade. The offer recipient also benefits, because the offer rises

to make trade more likely for the party who extends it. In the efficient mechanism,

the envelope theorem applies to the principal. The maximized expected rents rise in

p − n even faster than the chance of trade, due to the incentive constraints. In the

(near-)symmetric case, this overall gain to the match is shared by firm and worker, who

are then both better off.

Finally, albeit not strictly necessary for the main results, is the property of Regular

Firm’s Rents: as mean flow gains from trade p − n rise, we require that the expected

firm’s profits rise less than the chance of trade. If not, the response of job creation

could be strong enough to generate unemployment fluctuations of plausible magnitude.

This is the hardest property to verify. As said, in the monopoly case, the payoffs to

the offer-making party rise exactly like the chance of trade, by an envelope theorem

argument. In the efficient mechanism, an additional opposing force comes into play. If

incentive constraints are binding and severely limit trade, an increase in aggregate labor

productivity can relax them so as to boost the chance of trade, with a multiplier effect

on the rents of the firm and the worker. That is, more favorable business conditions may

help circumvent the inefficiency due to asymmetric information, which manifests itself

in failed wage negotiations. In this case, the firm’s profit gain following a productivity

boom could be sufficiently large to offset the indirect impact of job creation on wages

through the worker’s outside option. In the aggregate, job creation may surge enough to

produce a sharp fall in unemployment. We remark that this would obtain not through

wage rigidity but via a change in the “quantity” dimension of matching, namely the

probability of a mutually acceptable agreement.

Revisiting some of the recent contributions to the debate, as well as the role of
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asymmetric information, points to the following direction. To eliminate the feedback

effect we need to weaken the link between the worker’s outside option and the wage. This

can be accomplished, for example, through strategic bargaining as in Hall and Milgrom

(2005). This leaves the congestion effect to be dealt with. To eliminate the latter, one

must make the level of the firm’s rent small while making the rent very responsive to

changes in the flow gains from trade at the margin. In Hall and Milgrom’s symmetric

information model the level of the firm’s rent and its responsiveness at the margin are

tied together, requiring them to evade the congestion effect by calibrating the cost of

delay so as to generate a large bias in favor of the worker. Asymmetric information

provides a way to disentangle the level of the firm’s rent and it’s responsiveness at

the margin. Thus, a combination of strategic bargaining and asymmetric information

(arguably the more realistic, albeit complex, of all the environments considered so far)

may be the solution. Therefore, to reconcile the representative agent equilibrium search

model with the empirical evidence on employment fluctuations, while maintaining that

unemployment is costly for society, we may need to abandon the representative agent

and to introduce heterogeneity. In this paper, we showed that two natural attempts in

this direction fail, and yet they shed new light on the internal mechanism of the standard

search model.
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A Appendix. Proof of Proposition 6

To solve this mechanism design problem, we appeal to MS83’s formulation, and map

our problem in their framework. Let υ ≡ p + y, ζ ≡ n − z, Φ (ζ) ≡ 1 − FZ (n− ζ), so

Φ′ (ζ) dζ = F ′
Z (n− ζ) dζ = −F ′

Z (z) dz, Γ (υ) ≡ FY (υ−p), so Γ′ (υ) dυ = F ′
Y (υ−p)dυ =

F ′
Y (y)dy. Then the efficient mechanism maximizes expected gains from trade subject to

IC, IR and budget balance.

max
x,w

∫ ∫
(υ − ζ) x (υ, ζ) dΦ (ζ) dΓ(y)

s.t.

∫
[υ − w(υ, ζ)] x (υ, ζ) dΦ (ζ) ≥ max

〈
0,

∫
[υ − w(υ̂, ζ)] x (υ̂, ζ) dΦ (ζ)

〉

∫
[w(υ, ζ)− ζ] x (υ, ζ) dΓ (υ) ≥ max

〈
0,

∫ [
w(υ, ζ̂)− ζ

]
x

(
υ, ζ̂

)
dΓ (υ)

〉
.

This is the same formulation as in MS83. We apply their terminology and results. Let

the “virtual types” be

Qf (υ, α) ≡ υ − α
1− Γ (υ)

Γ′ (υ)
and Qw (ζ, α) ≡ ζ + α

Φ (ζ)

Φ′ (ζ)

which are, respectively, increasing in υ and decreasing in ζ by Assumption 1. Then IR,

IC and budget balance are equivalent to
∫ ∫

[Qf (υ, 1)−Qw (ζ, 1)] x (υ, ζ) dΦ (ζ) dΓ(y) ≥ 0

with equality if there is positive probability of no gains from trade (which we will assume

to avoid trivialities).

Form a Lagrangian

max
x

∫ ∫
{υ − ζ + µ [Qf (υ, 1)−Qw (ζ, 1)]}x (υ, ζ) dΦ (ζ) dΓ(y)

where µ is the multiplier. The FOC is

x∗ (υ, ζ) = I {υ − ζ + µ [ Qf (υ, 1)−Qw (ζ, 1)] > 0} = I {Qf (υ, M) > Qw(ζ, M)}

where I is the indicator function and

M ≡ µ

1 + µ
∈ [0, 1] .

This, in particular, implies that trade occurs iff υ ≥ ζ. More precisely, let the trading

cutoff υ∗(ζ, M) solve

Qf (υ
∗(ζ, M),M) = Qw(ζ, M)
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so that trade occurs iff υ > υ∗(ζ, M), which is the same as y ≥ y∗ ≡ υ∗ − p.

Assumption 1 implies that y∗ is decreasing in z, and that Qf (., 1) and Qw(., 1) are

increasing. Then Qf (υ, M) and Qw(ζ,M) are also increasing for every M ∈ [0, 1] (see

MS83 who state this without proof; there is a simple proof by contradiction). It follows

(MS83 Theorem 2) that an efficient mechanism exists, and the efficient rule is: trade iff

υ > υ∗ (ζ, M) for a cutoff function υ∗ defined implicitly by

υ∗ (ζ, M)− ζ = M

{
1− Γ (υ∗ (ζ, M))

Γ′ (υ∗ (ζ,M))
+

Φ (ζ)

Φ′ (ζ)

}
.

Using our definitions, this is (23).

To show uniqueness, proceed by contradiction. Suppose that there exist two dis-

tinct efficient allocations {x∗i }i=1,2. Given the nature of the optimal rule (trade if

υ > υ∗ (ζ, M)) these two mechanisms must be associated to two different values of

the Lagrange multiplier, M1 and M2 > M1. Then M2 > M1 ⇔ υ∗ (ζ, M2) > υ∗ (ζ, M1) ,

which implies

x∗2 (υ, ζ) = x∗1 (υ, ζ) = 1 for all υ > υ∗ (ζ,M2)

x∗1 (υ, ζ) = 1 > 0 = x∗2 (υ, ζ) for all υ ∈ (υ∗ (ζ, M1) , υ∗ (ζ,M2)]

x∗1 (υ, ζ) = x∗2 (υ, ζ) = 0 for all υ ≤ υ∗ (ζ, M1)

Therefore
∫ ∫

(υ − ζ) x∗1 (υ, ζ) dΦ (ζ) dΓ(y) >

∫ ∫
(υ − ζ) x∗2 (υ, ζ) dΦ (ζ) dΓ(y)

so that the second mechanism, associated to the higher Lagrange multiplier, yields a

strictly smaller objective function, and cannot be optimal.
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