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1 Introduction

The standard model of investment with convex adjustment costs predicts that movements
in the investment rate should be entirely explained by changes in Tobin’s q. This prediction
has generally been rejected in empirical studies. Furthermore, several studies have shown
that cash flow and other measures of current profitability have a strong predictive power for
investment. This has been taken by many authors as prima facie evidence of the presence
of financial constraints at the firm level.

Some recent papers – in particular Gomes (2001) and Cooper and Ejarque (2003) –
have challenged the above interpretation. These papers compute dynamic general equi-
librium models with financial frictions, calibrate them, and look at the relation between
Tobin’s q and investment in the simulated series. They show that, in presence of financial
frictions alone, Tobin’s q still explains most of the variability in investment, and cash flow
does not provide any additional explanatory power. These results seem to echo a concern
raised by Chirinko (1993):

”Even though financial market frictions impinge on the firm, q is a forward
looking variable capturing the ramifications of these constraints on all the firm’s
decisions. Not only does q reflect profitable opportunities in physical investment
but, depending on circumstances, q capitalizes the impact of some or all financial
constraints as well.”1

In this paper we analyze this issue using a model of investment with a financial friction
due to limited enforcement of financial contracts. We allow firms to use a rich set of state
contingent liabilities, which can include debt and equity claims. For each firm there is an
“insider,” which can be interpreted as the entrepreneur, the manager or the controlling
shareholder. The financial constraint imposes a lower bound on the fraction of the firm’s
value held by the insider at each point in time. In this framework, we explicitly derive the
market value of the total outstanding claims of the firm and use it to compute average q.

The contribution of this paper is twofold. First, we show that the presence of the
financial constraint introduces a positive wedge between average q and marginal q. This
wedge reflects the tension between the future profitability of investment and the availability
of internal funds in the short run. Second, we show that this wedge varies over time, and this
weakens the observed correlation between q and investment. Using a calibrated version of
our model, we show that our model can generate realistic correlations between investment,
q and cash-flow.

The paper provides a tractable model of optimal long-term financial contracts with fi-
nancial frictions, that can be used to explore the relation between investment and asset
prices. The model has two main ingredients: convex adjustment costs with constant re-
turns to scale, as in the classic Hayashi (1982) model, and a specific assumption of limited
enforcement in financial contracts that delivers a linear financial constraint for the single
entrepreneur. Thanks to the second assumption, the problem of the individual entrepreneur
retains the linearity of the original Hayashi (1982) model. This makes it easier to compare
the model with financial frictions with the frictionless benchmark. An additional advan-
tage of these assumptions is that aggregation is straightforward. In this sense, the model
retains the simplicity of a representative agent model, while allowing for rich dynamics of
the financial constraint.

1Chirinko (1993) p. 1903.
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The main difference between our paper and the papers by Gomes (2001) and Cooper
and Ejarque (2003), is in the way we treat the financial friction. Namely, they adopt a
relatively “reduced form” specification, assuming a convex cost of outside finance, while we
derive explicitly the optimal financial contract in an environment with limited enforcement.

Our paper is related to the large theoretical literature on the macroeconomic implications
of financial frictions, e.g. Bernanke and Gertler (1989), Carlstrom and Fuerst (1997), Cooley,
Marimon and Quadrini (2004). The form of financial imperfection presented in this paper
is close in spirit to Kiyotaki and Moore (1997). The main difference with that paper,
apart from the introduction of adjustment costs, is that we allow for fully state contingent
securities and that we introduce aggregate shocks explicitly.

A model that combines convex adjustment costs and financial frictions is Bernanke
et al. (2000). There are two crucial differences between our approach and theirs. They
concentrate on short term financial contracts, and on debt instruments. In the present
paper, instead we consider long term financial arrangements, and we allow for fully state
contingent contracts. An advantage of our approach, is that we can define q looking at the
value of total financial claims issued by the entrepreneurs, and therefore we can map the
measure of q in the model, with the q observed on financial markets.

Our model is also related to the model of financial contracting with limited enforcement
in Albuquerque and Hopenhayn (2004). The main differences between our setup and theirs
are the assumption of constant returns to scale and the way in which we model the outside
option of the entrepreneur. They assume that after default an entrepreneur goes into
autarky, while we assume that he loses a fraction of his wealth but retains access to financial
markets. The assumption of constant returns to scale implies that the optimal financial
contract is linear in the entrepreneur’s initial wealth. This allows us to give a simple
characterization for the risk-management problem of the single entrepreneur. Moreover, it
greatly simplify aggregation and provides a tractable way of introducing financial frictions
in a general equilibrium setting.

Following Fazzari et al. (1988) there has been a large empirical literature exploring the
relation between investment and asset prices in panel data. The great majority of these
papers have found small coefficients on average q and positive and significant coefficients
on cash flow, or other variables describing the current financial condition of a firm.2 An
early critical interpretation of these results was that cash flow contained information re-
garding future profits that, for some reason, (measurement error or non-fundamental stock
market movements) was not captured by the empirically observed q. This interpretation
was rejected by Gilchrist and Himmelberg (1995), who show that cash flow has significant
additional predictive power on investment even after controlling for the information value
in current cash flow.

The idea of looking at the statistical implications of a simulated model to understand
the empirical correlation between investment and q goes back to Sargent (1980). Recently
Gomes (2001), Cooper and Ejarque (2001, 2003) and Abel and Eberly (2005) have followed
this route, introducing either financial frictions or decreasing returns and market power
to try to match the existing empirical evidence. The conclusion one reaches from this
literature is that decreasing returns and market power can generate realistic correlations,
while financial frictions do not help in matching the observed correlations. In this paper
we show that the second conclusion is unwarranted, and depends crucially on the way

2E.g. Gilchrist and Himmelberg (1995), Gilchrist and Himmelberg (1998). See Hubbard (1998) for a
survey.
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one models the financial constraint. On the other hand, there are some parallels between
our approach and these papers, in particular with the “growth options” approach of Abel
and Eberly (2005). Both approaches imply that movements in q may reflect changes in
future rents that are unrelated with current investment. In the current paper these rents
are not due to market power, but to the scarcity of entrepreneurial wealth, which evolves
endogenously.

The organization of the paper is as follows. Section 2 introduces the model. In Section
3, we look at the optimal financial contract from the point of view of a single entrepreneur.
Section 4 characterizes a competitive equilibrium and characterizes the equilibrium relation
between investment and asset prices. Section 5 describes the calibration and simulation
results. In Section 6 we discuss some extensions. Section 7 concludes.

2 The model

Preferences and technology. There are two groups of agents: consumers and entrepreneurs.
There are two goods, a perishable consumption good and physical capital. Each group of
agents is a continuum of mass 1. Consumers are infinitely lived and have linear preferences
represented by the utility function

E

" ∞X
t=0

βtct

#
.

They have a constant endowment of labor lC which they supply on the labor market each
period.

Entrepreneurs have random, finite lives. Each period a random fraction γ of entrepre-
neurs dies and is replaced by an equal mass of young entrepreneurs. Young entrepreneurs
are endowed with lE units of labor in the first period of their life. We normalize total labor
supply to one, so that lC + γlE = 1.

The preferences of entrepreneur i, born at date t, are described by the utility function

Et

⎡⎣ JiX
j=0

βjEc
E
i,t+j

⎤⎦ ,
where Ji is the random duration of the entrepreneur’s life. We allow for the discount factors
of consumers and entrepreneurs, β and βE, to be different. We assume that βE < β. This
assumption, together with the assumption of a finite life for entrepreneurs, guarantees the
existence of a steady state where the borrowing constraint is always binding. We will further
discuss this assumption below.

Each period t entrepreneurs have access to a constant returns to scale technology de-
scribed by the concave production function AtF (ki,t, li,t), where ki,t is capital installed in
period t−1. The productivity parameter At is the same for all entrepreneurs. Entrepreneurs
face convex adjustment costs. By employing koi,t units of used capital, or “old capital,” and

G
³
ki,t+1, k

o
i,t

´
units of the consumption good in period t an entrepreneur installs ki,t+1

units of new capital, ready for production in period t + 1. The function G is convex in
ki,t+1, homogeneous of degree 1 and satisfies G1 (k, k) = 1.

The timing of events is as follows. At the beginning of period t, production is realized
and entrepreneur i learns if period t is his last period of activity. Then, entrepreneurs
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exchange used capital. An entrepreneur can set koi,t 6= ki,t by trading the difference on the
used capital market. Finally, new capital is installed using old capital and consumption
goods as inputs. With this timing assumption entrepreneurs are able to liquidate all old
capital on their last period of activity, while continuing entrepreneurs acquire it from them.
The assumption that used capital is homogeneous and can be traded across firms is useful to
simplify the entrepreneurs’ problem in the last period of their life. It also helps in modelling
the liquidation proceedings in the event an entrepreneur defaults.

Aggregate uncertainty is described by the Markov process st in the finite state space S,
with transition probability π (st+1|st). The state st determines current productivity ac-
cording to At = A (st). This general formulation will allow us to introduce both persistent
and temporary productivity shocks. The theory will be developed for the case of a finite
state space S, for ease of exposition. However, when we turn to the simulations we will use
continuous random variables. Individual uncertainty is described by the random variable
χi,t, which is equal to 1 in all the periods when entrepreneur i is active, except in the last
period, when χi,t = 0.

Financial contracts. Consider an entrepreneur born at time t. The entrepreneur fi-
nances his current and future investment by selling a long-term financial contract Ci,t. The
contract specifies: a sequence of state-contingent transfers {di,t+s}∞s=0,3 a sequence of state-
contingent labor inputs, old capital inputs, and capital stocks

n
li,τ , k

o
i,τ , ki,τ+1

o∞
τ=t

for all

the periods in which the entrepreneur is alive. The transfers and input levels are contingent
both on the history of aggregate shocks, {s0, s1, ..., st}, and on the idiosyncratic termination
shock of entrepreneur i. The choice variables koi,τ and ki,τ+1, and the transfer di,τ , are set
after the idiosyncratic termination shock is realized. Let qot denote the price of old capital
in period t. Feasibility requires that the transfers {di,τ} satisfy:

cEi,τ + di,τ +G
¡
ki,τ+1, k

o
i,τ

¢
≤ AτF (ki,τ , li,τ )− wτ li,τ − qoτ

¡
koi,τ − ki,τ

¢
, (1)

for all the periods where the entrepreneur is active.4 All input levels and transfers are set
to zero afterwards.

Limited enforcement. Financial contracts are subject to limited enforcement. The en-
trepreneur has full control over the firm’s assets. In each period, after production takes
place, the entrepreneur can choose to divert part or all of the current profits and the capital
stock. In this way he can capture up to a fraction (1− θ) of the firm’s liquidation value,
vi,t, which is equal to current profits plus the resale value of the capital stock:

vi,t = AtF (ki,t, li,t)− wtli,t + qot ki,t.

The only recourse outside investors have against such behavior is the liquidation of the firm.
Upon liquidation, the investors can recover the remaining fraction θ of the firm’s liquidation
value. After liquidation the entrepreneur can start anew with initial wealth (1− θ) vi,t. That
is, the only punishment for a defaulting entrepreneur is the loss of a fraction θ of the firm’s

3The transfer will typically be negative in the first period (initial investment) and can be positive or
negative in the following periods, corresponding to dividend payments minus new investment in the firm.

4 In the first period of activity the constraint is:

cEi,t + di,t +G
¡
ki,t+1, k

o
i,t

¢
≤ AtF (ki,t, li,t)− wtli,t − qoτ

¡
koi,t − ki,t

¢
+wtlE ,

with ki,t = 0.
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liquidation value. Assuming that the entrepreneur is only allowed to re-enter the financial
market after a certain number of periods would not alter the qualitative features of the
model. We discuss below the relation between this form of limited enforcement and other
contractual imperfections used in the literature.

3 Optimal financial contracts

Before turning to the competitive equilibrium, we concentrate on the decision problem of a
single entrepreneur. We begin by introducing some preliminary definitions that will simplify
the analysis. Then we give a recursive characterization of the optimal financial contract
and show that, under constant returns to scale and given the notion of limited enforcement
introduced above, the optimal financial contract is linear.

3.1 Preliminaries

We will study equilibria where consumers always have positive consumption, ct > 0. There-
fore, the price of a sequence of state-contingent transfers {di,t+s}∞s=0 is equal to its expected
present value, discounted at the rate β. An entrepreneur born at date t will choose the
financial contract Ci,t to maximize his expected utility subject to feasibility, (1), to the
intertemporal budget constraint:

∞X
s=0

βsEt [di,t+s] ≥ 0,

and to the condition that future promised transfers be credible. The last condition is
satisfied if, at each date, the entrepreneur prefers repayment to diversion and default. This
condition is stated formally below. For a recursive formulation of the problem it is useful
to define the net present value of the firm’s liabilities at date τ :

bi,τ =
∞X
s=0

βsEτ [diτ+s] .

The entrepreneur’s problem can be simplified by exploiting the assumption of constant
returns to scale. Under constant returns to scale the liquidation value of the firm can be
written as:

vi,t = Rtki,t = max
li,t

{AtF (ki,t, li,t)− wtli,t + qot ki,t} ,

where Rt, the gross return on capital, is taken as given by the single entrepreneur and is a
function of the prices wt and qot . Also, constant returns to scale for G, and the presence of
a competitive market for old capital, imply that there exists a shadow price of new capital,
qmt , such that:

qmt ki,t+1 = min
koi,t

©
qot k

o
i,t +G(ki,t+1, k

o
i,t)
ª
. (2)

Thanks to constant returns to scale, the value of qmt is a function of qot and, thus, is taken
as given by the single entrepreneur.5

5The first order condition for problem (2) gives:

qot = G2

¡
ki,t+1, k

o
i,t

¢
= G2

µ
ki,t+1
koi,t

, 1

¶
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Note that in this model there is a one-to-one relation between the investment rate and
the shadow price of new capital:

qmt = G1

µ
ki,t+1
ki,t

, 1

¶
(3)

That is, this shadow price corresponds to the usual definition of marginal q and is a sufficient
statistic for the firm’s investment rate. The open question is whether the q observed in
financial markets corresponds to marginal q in a model with financial frictions. This is the
issue we address in 4.1.

Putting together the definitions above, the feasibility constraint (1) can be written as:6

cEi,τ + di,τ + qmτ ki,τ+1 ≤ vi,τ . (4)

3.2 Recursive characterization

We study recursive competitive equilibria, where the state of the economy is captured by a
vector of aggregate state variables Xt ∈ X , including the exogenous state st, with transition
probability H (Xt+1|Xt). The vector Xt will be defined and discussed in section 4. For now,
consider a single entrepreneur, who takes as given the law of motion for Xt. The state Xt

determines the wage rate, wt, and the price of used capital, qot . Therefore, it also determines
the gross rate of return, Rt, and the shadow price of new capital, qmt . Let this dependence
be captured by the functions R (Xt) and qm (Xt).

Now we can use a recursive approach to characterize the optimal financial contract.
The individual state variables for the entrepreneur are given by vi,t, bi,t, and χi,t. Define
W (v, b;χ,X) as the expected utility, in state X, of an entrepreneur who controls a firm
with liquidation value v and outstanding liabilities b.7 The expected utility W is defined at
the time when production has already taken place and the idiosyncratic termination shock
has been observed. Also, W is defined after the default decision has taken place, assuming
that the entrepreneur does not default in the current period. For now, we will assume that
the entrepreneur’s problem has a solution in each state X ∈ X , and the expected utility W
is finite. This will be the case in the recursive equilibria we study below (see Proposition
(4)).

which determines the ratio ki,t+1/koi,t. Moreover, the envelope theorem gives:

qmt = G1

¡
ki,t+1, k

o
i,t

¢
= G1

µ
ki,t+1
koi,t

, 1

¶
.

Therefore qot determines the ratio ki,t+1/k
o
i,t, which determines q

m
t .

6The first order condition for problem (2) (see footnote 5) and constant returns to scale give:

G
¡
ki,t+1, k

o
i,t

¢
= G1ki,t+1 +G2k

o
i,t

= qmt ki,t+1 − qot k
o
i,t.

Substituting in the feasibility constraint and rearranging we obtain (4).
For a newborn entrepreneur the constraint is:

cEi,t + di,t + qmt ki,t+1 ≤ wtlE .

7For a newborn entrepreneur, v is the entrepreneur’s initial labor income, and b is zero.

7



In all periods prior to the last period of activity, i.e. for χ = 1, W satisfies the Bellman
equation:

W (v, b; 1,X) = max
cE ,d

k0,v0(.),b0(.)

cE + βEE[W
¡
v0, b0;χ0,X 0¢ |X] (P )

s.t.

cE + d+ qm (X) k0 ≤ v, (5)

b = d+ βE[b0
¡
χ0,X 0¢ |X], (6)

v0
¡
X 0¢ = R

¡
X 0¢ k0 ∀X 0, (7)

W (v0
¡
X 0¢ , b0 ¡χ0, s0¢ ;χ0,X 0) ≥W ((1− θ) v0

¡
X 0¢ , 0;χ0,X 0) ∀χ0,X 0, (8)

where the conditional expectation E[.|X] is computed according to the transition H (X 0|X),
with χ0 independent of X 0.

Problem (P ) can be interpreted as follows. At each date, an entrepreneur who does
not default has to decide how to allocate the current firm’s resources, v, to its potential
uses: payments to insiders, cE, payment to outsiders, d, and investment in physical capital,
qmk0. This is captured by the feasibility constraint (5). Moreover, the entrepreneur has
to satisfy the “promise keeping” constraint (6): current and future payments to outsiders
have to cover the current liabilities of the firm, b. The current payments are d, the future
payments are captured by the net present value of the firm’s liabilities in the following
period, b0 (χ0,X 0). These liabilities are allowed to be contingent on the realization of the
idiosyncratic termination shock χ0 and of the aggregate state X 0.8 Constraint (7) simply
says that liquidation value of the firm next period will be given by the total returns on the
firm’s installed capital k0. Finally, the no-default constraint (8) ensures that, in all future
states of the world, the future liabilities b0 are credible. The no-default constraint take this
form, given that the entrepreneur has the option to default and start anew with a fraction
(1− θ) v0 of the firm’s liquidation value and zero liabilities.

An entrepreneur in his last period of activity will simply liquidate all capital and pay
existing liabilities. Therefore, for χ = 0 we have:

W (v, b; 0,X) = v − b.

Lemma 1 The value function satisfies

W (v, b;χ,X) =W (v − b, 0;χ,X)

and the no-default condition can be written as

b ≤ θv. (9)

Proof. The first result follows by simply substituting d in problem (P ). To prove the
second result it is sufficient to show that W is monotone increasing in its first argument.

Lemma 1 allows us to replace constraint (8) with constraint (9). The latter can be
interpreted as a “collateral constraint,” where the total value of the entrepreneur liabilities
are bounded from above by a fraction θ of the liquidation value of the firm.

8 In equilibrium the distribution of all the elements of X0, conditional on the exogenous state s0, will be
degenerate. Therefore, we could restrict b0 to be contingent only on χ0 and s0. We allow b0 to be contingent
on all the elements of X0 only for notational convenience.
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An alternative set of assumptions that would deliver the same “collateral constraint” is
the following: (1) the entrepreneur loses access to the technology after default, (2) before
liquidation takes place there is a round of renegotiation, and (3) in the renegotiation stage
the entrepreneur can make a take-it-or-leave it offer to the outside investors. With these
assumptions, the entrepreneur has all the bargaining power, and whenever the net present
value of the entrepreneur’s outstanding liabilities exceeds θv he will renegotiate them down
to θv. Apart from the presence of state-contingent dividends, this is the set of assumptions
used in Kiyotaki and Moore (1997).

If we replace constraint (8) with constraint (9), problem (P ) is linear and we obtain the
following proposition.

Proposition 2 The value function W (., .;χ,X) is linear in its first two arguments and
takes the form:

W (v, b; 1,X) = φ (X) (v − b) ,

W (v, b; 0,X) = v − b.

There is an optimal policy for k0, cE, d and b0 which is linear in v − b.

Define the net worth of entrepreneur i:

ni,t = vi,t − bi,t.

This variable represents the difference between the market value of the firm’s capital (in-
cluding current profits) and the value of the claims issued to outsiders. Proposition 2 shows
that the expected utility of the entrepreneur is a linear function of the entrepreneur net
worth. The factor φ, which determines the marginal value of the entrepreneur net worth,
depends on current and future prices, and hence it is, in general, dependent on X.

The following proposition gives a further characterization of the optimal solution.

Proposition 3 For a given law of motion H (X 0|X), let φ (X) be defined by the recursion:

φ (X) = max

½
βE (1− θ)E [(γ + (1− γ)φ (X 0))R (X 0) |X]

qm (X)− βθE [R (X 0) |X] , 1

¾
. (10)

Suppose that
βφ (X) ≥ βEφ

¡
X 0¢ (11)

for all pairs X,X 0 such that H (X 0|X) > 0. Then, the optimal policy for the individual
entrepreneur involves: (i) k0 > 0, (ii) cE = 0 if φ (X) > 1, and (iii) b (1,X 0) = θv (X 0) if
βφ (X) > βEφ (X

0).

A central result of this proposition is point (iii), which characterizes the cases where
the state contingent liabilities are set to their maximum level. Consider an entrepreneur in
stateX choosing his financial liabilities next period, in stateX 0. The entrepreneur compares
the marginal value of a dollar today, φ (X), to the marginal value of a dollar tomorrow,
given by βEφ (X

0)H (X 0|X). On the financial market, the price of a dollar in state X 0 is
βH (X 0|X). Therefore, if (11) holds as a strict inequality, then it is optimal to borrow as
much as possible against the revenue realized in state X 0 and use the proceeds to invest
today.
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3.3 An asset pricing interpretation

Consider the ratio

m
¡
X 0,X

¢
= βE

γ + (1− γ)φ (X 0)

φ (X)
,

this ratio represents the shadow discount factor for the entrepreneur, i.e. it represents the
ratio of the marginal value of inside wealth tomorrow, in state X 0, to the marginal value of
inside wealth today.

Let R̃ represent the leveraged rate of return on entrepreneurial net worth:

R̃
¡
X 0,X

¢
≡ (1− θ)R (X 0)

qm (X)− βθE [R (X 0) |X] .

For each dollar of net worth the entrepreneur can borrow up to qm/ (qm − βθE [R0|X])
dollars today, because he can pledge a fraction θ of the gross return E [R0|X] and sell it to
the consumers. This investment yields a return Rt+1/q

m
t , of which the entrepreneur will

retain a fraction (1− θ).
Then, condition (10) can be rewritten as the familiar asset pricing expression

E
h
m
¡
X 0,X

¢
R̃
¡
X 0,X

¢
|X
i
= 1.

Notice that consumers do not have access to direct investment in entrepreneurial capital,
so this condition does not hold using the consumers’ discount factor. Using condition (11)
one can show that:

βE
h
R̃|X

i
≥ E

h
mR̃|X

i
= 1.

This inequality also implies that the market return on non-leveraged entrepreneurial capital
also is larger than 1, that is,

βE
∙
R (X 0)

qm (X)
|X
¸
≥ 1

The difference βE [R0] /qm − 1 is sometimes called the “external finance premium,” as it
reflects the premium that outsiders would be willing to pay to invest directly in the firms’
capital. This premium is closely related to the wedge between average q and marginal q,
that will be analyzed below.

4 Equilibrium and asset prices

We are now in a position to define a recursive competitive equilibrium. The aggregate state
is given by

X = (K,B, s) ,

where K is the aggregate capital stock and B represents the aggregate liabilities of the
entrepreneurs who are not in their last period of activity.

A recursive competitive equilibrium is given by a transition probability, H (X 0|X), such
that the optimal behavior of entrepreneurs is consistent with this transition probability, and
the goods market, labor market, and capital market clear. The formal definition is given in
the Appendix.

A crucial property of our model is that the entrepreneur’s problem is linear, and we
obtain optimal policies that are linear in entrepreneurial net worth, vi,t − bi,t. Given the
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linearity of the optimal policies it is straightforward to aggregate the behavior of the entre-
preneurial sector. We illustrate the aggregation properties of the model in the case where
the collateral constraint is always binding. This is the case where the condition

βφ (X) > βEφ
¡
X 0¢ (12)

holds for every pair X,X 0 such that H (X 0|X) > 0. Proposition 4 shows that, in economies
with “small” productivity shocks, such an equilibrium exists. This case will be the basis
for the numerical analysis in the next section. In section 6 we discuss the more general case
where the financial constraint is occasionally binding.

Condition 12 implies that, in each state X, the state-contingent liabilities are set to
their maximum level for each future value of X 0, i.e. b0 (χ0,X 0) = θv0 (X 0). Therefore, the
optimal level of investment is given by:

k0 =
1

qm (X)− βθE [R (X 0) |X] (v − b) . (13)

Consider an economy that enters period t with an aggregate stock of capital Kt, in
the hands of old entrepreneurs. The agents who invest in period t are: a mass (1− γ) of
the old entrepreneurs, who have vi,t = Rtki,t and bi,t = θRtki,t, and a mass γ of newborn
entrepreneurs with vi,t = wtlE. Therefore, the aggregate entrepreneurial net worth of
investing entrepreneurs is:9

Nt = (1− γ) (1− θ)RtKt + γwtlE,

Using the optimal policy (13) and aggregating we obtain:

Kt+1 =
1

qmt − βθEt [Rt+1]
Nt.

From these two equations we get the following law of motion for the aggregate capital stock

Kt+1 =
(1− γ) (1− θ)RtKt + γwtlE

qmt − βθEt [Rt+1]
. (14)

The next proposition shows that for a Cobb-Douglas economy with quadratic adjustment
costs and bounded productivity shocks, we can construct a recursive equilibrium of this type.

Let the production function and the adjustment cost function be:

AtF (kt, lt) = Atk
α
t l
1−α
t , (15)

G (kt+1, kt) = kt+1 − (1− δ) kt +
ξ

2

(kt+1 − kt)
2

kt
. (16)

Let the unconditional mean of At be Â, and let the support of At be
£
A,A

¤
. To show

that a recursive equilibrium with binding constraint exists we first check that there is a
deterministic steady state with binding constraints. This requires that θ is not too large,
inequality (A1) in the Appendix ensures that. Second, to obtain local stability of the
recursive equilibrium around the deterministic steady state it is necessary to impose an
additional restriction on the model parameters. This restriction is given by inequality (A2)
in the Appendix. Under these two restrictions the following proposition holds.

9Here, we are assuming that the average ki,t for the fraction (1− γ) of old entrepreneurs who do not die
in period t, is equal to Kt. That is, we are assuming that an appropriate law of large numbers apply to our
continuum of entrepreneurs.
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Proposition 4 Suppose the parameters
n
α, ξ, θ, γ, β, βE, Â, lE

o
satisfy conditions (A1) and

(A2) in the Appendix. Then the economy with constant productivity A (s) = Â has a deter-
ministic steady state with βER > 1. Furthermore, there is a ∆ > 0 such that if the process
A (s) satisfies A − A < ∆, then there exists a recursive competitive equilibrium where the
financial constraint is always binding.

4.1 Average q and marginal q

We are now in a position to define the financial value of a representative firm. The value of
the firm is simply the sum of all the claims on the firm’s future profits, held by insiders and
outsiders. That is, it is equal to the net present value of the payments cEi,t+s and di,t+s.10

This leads us to the following expression for the value of the firm:

si,t =W
¡
vi,t, bi,t;χi,t,Xt

¢
+ bi,t − di,t − cEi,t.

Where W corresponds to the net present value of the payments to the insider (including
current payments) and bi,t corresponds to the net present value of the payments to outsiders
(including current payments). We subtract the current payments, di,t + cEi,t, to obtain the
end-of-period (ex-dividend) value of the firm.

Normalizing the financial value of the firm by the total capital invested we obtain our
definition of average q

qi,t ≡
si,t
ki,t+1

.

Note that, for an entrepreneur in the last period of activity, both si,t and ki,t+1 are zero,
so qi,t is not well defined. On the other hand, for continuing entrepreneurs, it is possible to
show qi,t is the same for all agents, and we denote it simply by qt.

Proposition 5 Average q is greater or equal than marginal q, qt ≥ qmt with a strict inequal-
ity if the financial constraint is binding.

Proof. Given that φt ≥ 1 we have

si,t = φt (vi,t − bi,t) + bi,t − di,t − cEi,t ≥ vi,t − bi,t − cEi,t = qmt ki,t+1.

Notice that, absent financial constraints we have φt = 1 and qt = qmt . In this case the
model boils down to the Hayashi (1982) model, and qt is a sufficient statistic for investment,
given that qmt is, as we observed in 3.1.

On the other hand, in presence of financial frictions there is a wedge between the value
of the entrepreneur’s claims in case of liquidation (vi,t − bi,t) and the value of the claims he
holds to future profits.

If we used the factor φt to discount the value of future profits that go to the entrepre-
neurs, we would get

φt (vt − bt)

φt
+ bt − dt − cEt = qmt kt+1

10Note that for an entrepreneur it is optimal to invest all his wealth in his own firm, and he receives no
labor income after his first period of life. Therefore all his consumption, cEi,t+s, is financed by pay-outs from
the firm.
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and average and marginal q will be equal. However, all the firm’s claims are priced at
market prices, i.e. using the discount factor of outside investors. Then, the presence of
φt > 1 introduces a form of mis-measurement in a fraction of the firm’s current value and
creates a wedge between qt and qmt .

The presence of φt > 1 is closely related to the presence of a positive external finance
premium as defined in 3.3. The recursive relation 10 shows that φt is a forward looking
variable that cumulates the expected values of the future returns on leveraged net worth
R̃t+s which, in turns, are closely related to the external finance premium. Therefore, the
value of φt will be larger when entrepreneurs expect a positive external financial premium in
future periods. This generates a source of variability in qt, which is unrelated to movements
in qmt , and hence in investment. This variability is analyzed in the following section.

As a side remark, notice that in this model there is a one-to-one relation between qmt
and qot , therefore if the price of used capital was observed it would be a sufficient statistic
for total investment. The price qot is the price at which liquidating entrepreneurs sell used
capital, so its empirical counterpart are the prices paid for acquisitions and for sales of used
capital equipment. This points to a potential alternative way of measuring qt that does
not rely on financial market data. The presence of this relation, however, relies heavily on
the absence of adjustment costs for the transfer of used capital and on the way in which
we model firms’ exit. In this model firms are all identical and exit is an exogenous event,
therefore qot for exiting firms corresponds to qot for all firms. In a more realistic model,
the value of qot for exiting firms would not be representative of the shadow value for other
firms. Therefore, this alternative empirical strategy is also subject to serious measurement
problems.

5 Investment Dynamics

5.1 Calibration

In this section we examine the quantitative implications of the model, looking at the be-
havior of investment, average q and cash-flow. We focus on economies where the financial
constraints is always binding, i.e. where Proposition (4) applies. The production function
is Cobb-Douglas and adjustment costs are quadratic, as specified in (15) and (16). The
baseline parameters are:

α = 0.33; δ = 0.05; ξ = 5;

β = 0.97; βE = 0.969;

θ = 0.6; γ = 0.12; lE = 0.3.

The values for α and δ are standard. The time period represents a year, and we set
β to match a risk-free interest rate of 3%. The adjustment cost ξ is set to 5. This value
is much smaller than the values usually derived from q theory equations. Absent financial
frictions, the coefficient for q in an investment regression is equal to 1/ξ. Therefore, to
match the low value of the coefficient empirically estimated –typically smaller than 0.1–
one needs to assume a large value for ξ, which implies unrealistic levels of the average
adjustment costs. Setting ξ = 5 means that in absence of financial frictions the coefficient
on q would be 0.2. The value for θ is set to 0.6. The parameter θ is approximately equal
to the fraction of investment financed with outside funds. Fazzari et al. (1988) report that
30% of manufacturing investment is financed externally. Therefore, by choosing θ = 0.6 we
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choose a very conservative value for this parameter, biasing our results in the direction of
the case of no financial constraints. The parameters γ and lE are chosen to give an outside
finance premium of 3%, close to the one in Bernanke et al. (2000). We experimented with
different values of γ and lE and found out that, as long as the finance premium remains
constant, the specific choice of these parameters has little effect on our results. The choice
of βE is conventional. By experimenting with different values of βE we found that the value
of βE only affects the average value of q, but has no effect on the correlations we consider.
On the other hand, the choice of βE is relevant to check that the conditions of Proposition
4 are verified. In particular, a value of βE closer to β means that the range of At has to be
smaller.

The productivity parameter At is given by

At = eat

where at follows the process

at = xt + ηt

xt = ρxt−1 + �t

The shocks ηt and �t are Gaussian, i.i.d. shocks, and ρ = 0.95. Allowing for both temporary
and persistent shocks turns out to be relevant, especially when we look at the univariate
correlation between investment and q. To apply proposition 4 we need bounded values for
At. This is achieved simply by truncating the values for At, obtained from the process
above. Clearly, for small levels of σ2η and σ2� , the truncation is immaterial.

5.2 Impulse-response functions

Figure 1 shows the impulse-response functions for investment, q and cash-flow, following a
persistent shock, �t. The investment rate is given by:

it ≡
It − δKt

Kt
,

qt is reported in log deviations from the steady state, and cash flow (normalized by the
capital stock) is defined as:

cft ≡
AtF (Kt, Lt)−wtLt

Kt
=

αAtK
α
t

Kt
= αAtK

α−1
t .

In the right column we also report, for reference, the impulse-response functions for
productivity, At, for the “wedge” between average and marginal q, defined as qt − qmt , and
for the capital stock (in log deviations from the steady state).

Following a persistent technology shock, investment, average q, and cash flow increase
on impact, as in the standard model without financial frictions. However, now q increases
for two reasons. First, marginal q is increasing with investment. On top of that, φt is
increasing, since firms anticipate that the financial constraint will be tighter in the periods
immediately following the shock. This increases the wedge between average q and marginal
q and magnifies the response of q to the shock.

Why is the financial constraint is tighter in the periods following the shock? Due to the
persistent nature of the shock, future profitability increases and this increases the expected
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returns, Rt+s. At the same time, entrepreneurs’ inside funds have increased because of the
increase in current cash flow. However, initially, the first effect dominates and the rate of
return on entrepreneurial net worth increases.

In later periods, investment and cash flow remain above their steady state levels. How-
ever, now q decreases below its steady state level. In this phase, the wedge is moving in the
opposite direction. This happens because future profits are now smaller, as productivity is
going back towards its steady state value. At the same time, the entrepreneurs’ net worth
has increased thanks to the profits accumulated in the early phase. Therefore, in later
periods the financial constraint is less tight and the wedge falls. This accounts for the fall
in average q in the later periods.

This dynamic responses illustrate the fact that the movements in the wedge depend on
the tension between the desired level of investment (driven by expected productivity) and
the availability of funds (driven by past productivity). As the wedge varies over time, the
one-to-one relation between q and investment is broken.
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Figure 1. Impulse response functions to a persistent shock.

A temporary productivity shock provides an even starker example of the effects of the
time-varying wedge. The impulse-responses for the shock ηt are plotted in Figure 2. In this
case investment and cash flow jump temporarily above their steady state levels. However,
average q jumps below its steady state level and then gradually adjusts back.

A temporary shock can be viewed as a pure wealth shock to entrepreneurs. This shock
has no effect on future profitability, but changes the availability of funds to invest. The
direct result of the shock is that entrepreneurs are less financially constrained and increase
investment. As the capital stock moves towards its first best level the return on entrepre-
neurial capital falls, and so does the wedge between average and marginal q. Marginal q
is still increasing, due to the increase in investment. However, the net effect is to decrease
average q.

15



0 5 10 15 20
0

0.5

1

a

0 5 10 15 20
-5

0

5

10

15
x 10-3

i
0 5 10 15 20

0.45

0.5

0.55

0.6

0.65

W
ed

ge

0 5 10 15 20
-0.015

-0.01

-0.005

0

A
vg

 q

0 5 10 15 20
0

0.005

0.01

0.015

k

0 5 10 15 20
-0.05

0

0.05

0.1

0.15

cf

Figure 2. Impulse response functions to a temporary shock.

5.2.1 Raw correlations

Before turning to regressions and to conditional correlations, it is useful to address a ba-
sic question. Can our model can replicate the very weak observed correlation between q
and investment? That is, can we replicate the simple univariate relation between q and
investment?

In Figure 3 we plot the relationships between investment and q, and investment and
cash flow, for an economy with only persistent shocks. There is almost a perfect linear
relationship between investment and cash flow, and there is a noisy relationship between
investment and q. The reason for the noisy relationship between investment and q is the
time variation in the wedge described above.
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Figure 3.

Simulated values for (i, q) and (i, cf), with only persistent shocks.

However, the correlation between investment and q is still quite strong. If we regress
investment on q we obtain a coefficient of 0.07 and an R2 close to 0.60.
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This correlation disappears once we consider the polar case of an economy with only
temporary shocks, which is plotted in Figure 4. In this case, average q actually displays
a weak negative relationship with investment. At the same time, the relation between
investment and cash flow still displays an almost perfect fit.
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Figure 4.

Simulated values for (i, q) and (i, cf) , with only temporary shocks.

Now, if we regress investment on q we obtain a coefficient of −0.07, and, more importantly,
an R2 close to zero.

By experimenting with the case where both temporary and persistent shocks are present,
we found out that there is a simple monotone relation between the relative size of temporary
shocks and the correlation (and R2) between investment and q. That is, the model is able
to replicate the weak correlation between q and investment observed in the data, if we
introduce sufficiently large temporary shocks in the model.

5.2.2 Multivariate regression

Now we turn to standard investment regressions, and we ask whether our model can replicate
the coefficients on q and cash flow observed in the data. To do so, we simulate our model
and we generate 500 sample series of 200 periods of artificial data. For each simulated series,
we run the standard investment regression:

it = a0 + a1qt + a2cft + et.

Existing empirical estimates of this regression are mostly based on panel data, while
our model immediate implications are in terms of time series. However, it is not difficult to
extend our model to a version with heterogeneous productivity shocks, and local input and
capital markets. If we assume that firms in “sector” j are hit by the productivity shock Ajt,
and that labor and old capital are immobile across sectors, the panel implications of our
model are identical to its time series implications. One can rewrite the model introducing
a sector-specific wage rate wjt and a sector-specific price of old capital qojt, and the results
obtained above carry over at the sector level. An alternative approach would be to intro-
duce heterogeneity and decreasing returns at the individual level, instead of the “external”
decreasing returns that we have assumed so far. The reason we do not go that way, for the
moment, is that other papers (Gomes (2001), Cooper and Ejarque (2001, 2003)) have shown
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that decreasing returns can weaken the relation between q and investment. Therefore, by
keeping our assumption of “external” decreasing return, we study the effect of financial
frictions in isolation.

As a reference point, we consider the coefficients obtained in Gilchrist and Himmelberg
(1995), which are reported in Table 1.

q (s.e.) cf (s.e.)
0.033 0.242
(0.016) (0.038)

Table 1. GH (1995) Empirical multivariate investment regressions.

Multivariate regression results for the simulated model are presented in Table 2. We
consider the case where both temporary and persistent shocks are present and we report the
results for different values of the ratio σ2pers/σ

2
tot. For a high fraction of persistence shocks

(80%) we can approximately match the empirical coefficients of Gilchrist and Himmelberg
(1995). Also note that the coefficient on cash flow is at least twice as large as the coefficient
on investment, regardless of the mix of shocks.

σ2pers/σ
2
tot q (s.d.) cf (s.d.)

1 0.016 0.73
(.00) (.01)

0.8 0.048 0.26
(.01) (0.05)

0.6 0.056 0.15
(.01) (.01)

0.4 0.057 0.12
(.01) (.00)

0.2 0.055 0.12
(.01) (.00)

0 0.050 0.12
(.00) (.00)

Table 2. Multivariate regression results. Average coefficients and standard deviations.

6 Extensions

6.1 Occasionally binding constraints

So far we have assumed that shocks are small enough that Proposition 4 applies and the
financial constraint is always binding. This assumption is a useful simplification for two
reasons. First, it reduces the state space for a recursive equilibrium to Kt, while in general
the state space is given by both Bt andKt. Second, the optimal financial contracts is simply
given by

Bt+1 = θRt+1Kt+1

while in the general case, the optimal financial contract is described by a function of the
type

D (st+1, Bt,Kt)

18



which can specify different payments for each realization of the exogenous state st+1 next
period.

As a first step in the analysis of the general case, we consider here the case of an economy
that is hit by a single temporary shock at time τ . After time τ , the productivity level is
deterministic and equal to A. If the temporary shock is sufficiently large, the firms enter
a path in which the financial constraint is not binding for the first T − τ periods, and is
binding again afterwards. In particular, condition (11) holds as an equality for t, τ ≤ t ≤ T,
and we have

φt = (1− γ)φt+1 + γ

Condition (10) tells us that in this case investment is determined by the condition

qt = βRt+1

and the evolution of entrepreneurial wealth is given by

Nt+1 =
1− γ

β
Nt + γwtLE

Since the rate of return on entrepreneurial wealth is lower than in steady state, entrepre-
neurial wealth declines over time up to the point where the financial constraint is binding
again.

The dynamics of investment in this case are illustrated in Figure 5 for different values of
the temporary shock. In the first panel of Figure 5 we report the dynamics of entrepreneurial
wealth N , in percentage deviations from the steady state. In the second panel, we report
the dynamics of the investment rate. The figure shows that the relation between cash-flow
shocks and investment is non-linear and that the propagation depends on the size of the
shocks. For small shocks the firm uses all the extra cash flow to invest in physical capital,
so the effect at impact (normalized by the size of the shock) is large, but it dies out quickly.
For large shocks the firm instead invests only a fraction of the extra cash flow in physical
capital, and invests the rest at the risk free rate. The firm effectively is accumulating cash
reserves to be used for investment in the following periods. The impact effect is smaller
(when normalized by the size of the shock) but the response of investment is more persistent.
These dynamics are driven by the interaction of the financial constraint and the adjustment
cost. With no financial constraint the temporary shock would have no effect on investment,
and with no adjustment cost the temporary shock would only have temporary effects on
investment.

The interest in this result lays in the fact that with occasionally binding constraints, we
can reduce the effect of cash flow on investment and we can increase the serial correlation of
the investment rate after a temporary shock. If one goes back to the simulations reported in
Table 2 and compares them with the Gilchrist and Himmelberg (1995) coefficients reported
in Table 1 one can see that both effects help match the empirical evidence for low levels of
σ2pers/σ

2
tot.
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Figure 5. Impulse response functions of entrepreneurs’ wealth N (top panel)

and investment rate I (bottom panel) to temporary shocks of various sizes.

7 Conclusions

In this paper we have developed a tractable framework for thinking about the effect of
financial frictions on asset prices and Tobin’s q. The main conclusion is that, in the presence
of financial frictions q may reflect some of the future rents that will go to the insider. Since
the insider’s shadow discount factor is different from the market discount factor, these future
rents are “mispriced,” and the financial value of the firm appears larger than the value of
installed capital. As a consequence Tobin’s q is larger than one.

Using a calibrated version of our model, we have explored its quantitative implications
for the correlations between investment, q and cash flow measures. The model can replicate
the low correlation between q and investment observed both in aggregate and in micro data.
Moreover, the model can replicate the coefficients on q and cash flow obtained in panel data
regressions.

The model is stylized in many respects. We have decided to stay as close as possible
to the original Hayashi (1982) environment, to focus on the “pure” effect of the financial
friction. On the other hand, to retain the constant returns to scale features of the Hayashi
(1982) model, we have built a model where heterogeneity plays a very limited role. For
example, in our model, reallocating funds across entrepreneurs would have no effects on
aggregate investment dynamics. It would be interesting to extend the analysis to the case
of decreasing returns to scale, where heterogeneity plays a much richer role.

Also, to simplify the analysis, we have considered the case of risk neutral consumers with
a constant discount factor. This means that we have ruled out shocks that affect the supply
of funds on financial markets. If we interpret our model as a model of a single “sector”
(as we did in section 5.2.2), then the assumption of constant interest rates and risk premia
may be reasonable. On the other hand, if we interpret the model as an aggregate model,
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then the interaction between the consumers’ stochastic discount factor and q might have
interesting consequences for aggregate behavior.
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8 Appendix

Proof of Proposition 3
Using the fact that W (v, b, 0,X) = v − b, and W (v, b, 1,X) = φ (X) (v − b), the first

order conditions of problem (P ) can be written as:

1− λ+ ξ = 0

−βE (1− γ)H
¡
X 0|X

¢
φ
¡
X 0¢+ λβ (1− γ)H

¡
X 0|X

¢
− μ

¡
1,X 0¢ = 0

−βEγH
¡
X 0|X

¢
+ λβγH

¡
X 0|X

¢
− μ

¡
0,X 0¢ = 0

βE
X

X0∈−(X)
[
¡
γ + (1− γ)φ

¡
X 0¢¢R ¡X 0¢H ¡X 0|X

¢
+ μ

¡
1,X 0¢ θR ¡X 0¢+

+μ
¡
0,X 0¢ θR ¡X 0¢− λqm (X) + ψ = 0

where λ is the Lagrange multiplier on the resource constraint ??, μ (χ0,X 0) is the Lagrange
multipliers on the collateral constraint in state (χ0,X 0), and ξ and ψ are the Lagrange
multiplier on the non-negativity constraint for, respectively, cE and k0 (implicit in problem
(P )). Let Γ (X) be the set of realizations of X 0 that have positive probability according to
H (X 0|X), this set is assumed to be finite, which is consistent with the recursive equilibria
studied. The envelope condition implies that

φ (X) = λ.

Therefore, the conditions μ ≥ 0 imply that, if H (X 0|X) > 0, then:

βEφ
¡
X 0¢ ≤ βφ (X) , (17)

βE ≤ βφ (X) . (18)

Substituting the μ and rearranging the last optimality condition we obtain:

βE
X

X0∈−(X)
[
¡
γ + (1− γ)φ

¡
X 0¢¢ (1− θ)R

¡
X 0¢]H ¡

X 0|X
¢
+

−λ

⎛⎝qm (X)− βθ
X

X0∈−(X)
R
¡
X 0¢H ¡X 0|X

¢⎞⎠+ v = 0

which, together with the envelope condition gives:

φ (X) =
βE (1− θ)E [(γ + (1− γ)φ (X 0))R (X 0) |X] + ψ

qm (X)− βθE [R (X 0) |X] .

Definition of Recursive Competitive Equilibrium
A recursive competitive equilibrium, with linear policies for the entrepreneurs and risk

neutral asset pricing, is given by:

(i) a transition probability H (X 0|X), where X = {K,B, s};
(ii) pricing functions R (X) , qm (X) , w (X); and
(iii) policy functions cE (v, b, χ,X) , k0 (v, b, χ,X) , d (v, b, χ,X) and b0 (χ0,X 0; v, b, χ,X),

that are linear in v − b;11

11The first two arguments of the b0 function reflect the state contingent nature of the optimal contract
chosen in state (v, b, χ,X).
The restriction to policy functions that are linear in v − b is justified, given Proposition (2).
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which satisfy the following conditions:

(a) the policies in (iii) are optimal for problem (P ) in section 3.2, given the transition
H;

(b) the functions R (X) , qm (X) and w (X) satisfy the following equations (these condi-
tions embed market clearing in the used capital market and in the labor market):

R (X) = A (s)F1 (K, 1)−G2
¡
k0 (V,B, 1,X) ,K

¢
,

qm (X) = G1
¡
k0 (V,B, 1,X) ,K

¢
,

V = R (X)K,

w (X) = A (s)F2 (K, 1) ;

(c) the following inequality is satisfied (this condition ensures market clearing in the
consumption goods’ market, with ct > 0)

A (s)F1 (K, 1)−G
¡
k0 (R (X)K,B, 1,X) ,K

¢
+

− γcE (R (X)K,B, 0,X)− (1− γ) cE (R (X)K,B, 1,X) +

− γd (R (X)K,B, 0,X)− (1− γ) d (R (X)K,B, 0,X) > 0

(d) the transition for s0 is consistent with π (s0|s); the transition probabilities for K 0 and
B0 are consistent with the following:

K 0 = k0 (R (X)K,B, 1,X) with probability 1,

B0 = (1− γ) b0
¡
1,
©
K 0, B0, s0

ª
;V,B, 1,X

¢
− γw (X) lE with probability π

¡
s0|s
¢
.

Proof of Proposition 4
Part I. Deterministic steady state
Consider the case of a deterministic steady state. Let productivity be constant At = Â.

In this case, we have qmt = 1 and qot = 1 − δ. The steady state capital stock K̂ and gross
return R̂ can be found as the solution of:³

1− βθR̂
´
K̂ = (1− γ) (1− θ) R̂K̂ + γŵLE

R̂ = ÂFK

³
K̂, 1

´
+ 1− δ

It is straightforward to show that K̂ is an increasing function of θ, that as θ → 0 also K̂ → 0
and that there exists a θ∗ < 1 such that βER̂ = 1.

12 The marginal utility of entrepreneurial
wealth, φ̂, satisfies

φ̂

γ + (1− γ) φ̂
=
(1− θ)βER̂

1− θβR̂
.

If the following condition is satisfied

βER̂ > 1,

12 In the case of a Cobb-Douglas production function the steady state capital stock can be obtained
analytically and is equal to:

K̂ =

µ
αβθ + α (1− γ) (1− θ) + γ (1− α)LE
1− (βθ + (1− γ) (1− θ)) (1− δ)

¶ 1
1−α

.
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then φ > 1 and both (17) and (18) are satisfied. Given the discussion above this condition
is satisfied as long as

θ < θ∗. (A1)

Part II. Stability
To analyze the stability properties of the steady state we can linearize the transition

equation (14) and use the definition of Rt. We get the following second order equation for
kt+1 = lnKt − ln K̂,

α2kt+2 + α1kt+1 + α0kt = 0

where

α2 = βθξ

α1 = −
h
ξ + 1− βθR+ βθ

³
ξ + α (1− α) K̂α−1

´
− (1− γ) (1− θ) ξ

i
α0 =

h
ξ + α (1− α) (γLE − (1− γ) (1− θ)) K̂α−1 + (R− ξ) (1− γ) (1− θ)

i
Provided that

α21 − α0α2 > 0 (A2)

it is possible to show that the steady state K̂ is saddle-path stable. Then with bounded
shocks we can construct a stable stochastic steady state K. One can then establish the
continuity of the function φ with respect to the parameters A (s) and show that φt is
bounded in [φ, φ]. Finally, it is possible to find a small enough value of A−A such that the
bounds for φt satisfy

φβ > βEφ.

This guarantees that the financial constraint is always binding.
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