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1 Introduction

Is the business cycle a matter of all firms moving up and down in parallel, or do some firms

react more to aggregate shocks? This paper studies the heterogeneity of firm sensitivities to the

business cycle. There are two main motivations.

First, a large empirical literature in finance documents that some stocks earn high expected

returns. This presumably reflects a compensation for risk. Since risk is driven by aggregate

shocks, we need to explain why some firms are more sensitive to aggregate shocks, i.e. to the

business cycle. But there is little work analyzing what real characteristics of the firms drive this

sensitivity. Where does a stock’s beta come from? The interest in this question is compounded by

the finding by Fama and French (1992) that firms with high ratios of book value to market value

have high average returns. The economic interpretation of their finding has remained elusive. Is

book-to-market really an indicator of firm riskiness, if so why?

The second, more fundamental motivation, is that macroeconomists often use the fiction

of a representative firm (i.e. an aggregate production function). But if some firms are more

sensitive to the business cycle, as suggested by the empirical finance literature, this may be a

poor approximation. In particular, some “marginal firms” would account for a large share of the

variation in GDP or employment, and would play a determinant role in the business cycle. This

could change the standard view of the business cycle.

In this paper, I propose and test a simple technology-based theory of firms’ sensitivities to

aggregate shocks. Firms differ in productivity, and low productivity firms are more sensitive to

aggregate shocks, especially in terms of their earnings. The key empirical finding, summarized in

Figure 1, is that the cross-sectional variation in expected returns is well explained by differences of

earnings sensitivities to the business cycle. It is also well explained by differences in profitabilities.

This is a solution to the long-standing puzzle, why are “value” stocks risky? The heterogeneity

in sales or employment response is smaller than for earnings, but it is still significant.

The simple theory that I use is based on the idea of “operating leverage” or “labor leverage”.1

Consider a firm which has a fixed factor (capital) and which must decide on how much of the

variable factor (labor) to hire. This firm is subjected to idiosyncratic and aggregate shocks.

Profits are the difference between revenues and costs. In response to an aggregate shock, revenues

and costs will not react similarly. Costs will tend to react less because the wage, which is the

1While the corporate finance literature also mentions an “operating leverage” effect, it is quite different from

the mechanism of this paper, because it relies on fixed costs.
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Figure 1: This figure plots, for each of the 25 portfolios of firms [sorted by size (market value)

and book-to-market], the sensitivity of the earnings to GDP growth (estimated from a time-series

regression) and the mean monthly excess return over the risk-free rate. See Section 4 for details.

cost of the most important input, is rather acyclical. Since costs move less than revenue, an

increase in aggregate productivity will result in a more than one-for-one increase in profits. This

amplification effect makes aggregate profits more cyclical than GDP; but the strength of the

amplification differs across firms. Firms for which the average profit margin (i.e. the ratio of

profit to output, or the capital share) is small will have a much higher amplification, since they

“leverage” the fact that costs move less than revenues - costs are almost equal to revenues, so

earnings increase greatly when (say) revenue rises 1% and costs 0.5%. This mechanism does not

rely on costs being variable or fixed (the “old” operating leverage) but rather on productivity and

input prices varying differently over the business cycle.

This explanation yields differences in sensitivities, to the extent that firms have different

capital shares. I study the conditions under which heterogeneous capital shares arise. I find that

this can occur either if the production function has an elasticity less than one, or if there are

some fixed costs. The simple model thus links the differences in sensitivities to aggregate shocks

with the literature on productivity heterogeneity. I develop the asset pricing implications with an

exogenous pricing kernel: the model yields rich empirical implications by linking real behavior (the

elasticity of output, employment and profits to an aggregate shock) with financial characteristics
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(the firm’s betas and its average return). This model can explain why firms with small market

capitalization or low book-to-market are more risky: they have lower profitability, and as a result

they tend to have more procyclical earnings. Hence their cash flows are more volatile and/or

more correlated with the business cycle. The logic of asset pricing based on macroeconomic risk

implies that they earn higher expected returns.

Next I build a full DSGE model to embed my model of Section 2. Despite a cross-section of

firms and aggregate risk, the model is tractable through a simple aggregation: only two endoge-

nous state variables are necessary. With this model, I can analyze these heterogeneous sensitivities

in general equilibrium.

I test the empirical implications of my model using Compustat. I find that they are overall

supported: firms with high margins have less procyclical earnings, sales and employment. Regard-

ing the value and size premium, I show that in the data, the book-to-market ratio is systematically

related across firms to productivity and operating leverage. I also show that the pattern of cycli-

cality of earnings is close to the one predicted by the model: high book-to-market firms are more

sensitive to GDP and to labor compensation than low book-to-market firms, and these estimates

are of the order of magnitude predicted by the model. This holds also for the 25 portfolios of

Fama and French, as illustrated in figure 1.

Outline of the Paper

The next section relates the paper to the existing research. Section 2 analyzes a partial

equilibrium model and computes risk premia with exogenous prices. Section 3 introduces a

special form of the model of Section 2 in a full dynamic general equilibrium model. Section 4

presents empirical evidence supporting the model, and Section 5 concludes.

Relation to the Literature
This paper is related to three main strands of the literature and it is interesting to motivate

the paper by reference to each.

The Success of Factor models and the Missing Piece

A large empirical literature in finance uses parsimonious factor models to fit the cross-section

of expected returns. In this literature, the challenge is to find macroeconomic variables which

proxy for the marginal utility of wealth, and which also covary strongly with the ex-post returns

of some stocks (e.g., value stocks, with high book-to-market). This challenge has been met,

and several variables, related to labor income, the consumption-wealth ratio, and durables or

housing consumption have been proposed.2 However this literature has not made any attempt

2A partial list includes Lettau and Ludvigson (2001) for the consumption-wealth ratio, Santos and Veronesi
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at answering the natural question: why should stocks with high book-to-market covary strongly

with durables consumption growth (or housing, etc.). The covariance is measured in the data but

it does not have a reasonable interpretation: what is it about value firms that make them covary

more with durables or housing? This is clearly an important question from a theoretical point

of view. From a practical point of view, since these factor models are often rather atheoretical

and there is a risk of “fishing” for the successful factor model or “overfitting” the Fama-French

portfolios, understanding if the estimated loadings (betas) on the factors are reasonable is an

important question.

Assets in Place vs. Growth Options: Some Doubts

Following the seminal work of Berk, Green and Naik (1999) and Gomes, Kogan and Zhang

(2003), a small literature has emerged that addresses the question of the sources of firm riskiness

(Carlson Fisher and Giammarino (2005,2006), Cooper (2006), Gala (2005) and Zhang (2005)).

These papers all emphasize that firms differ in the mix of growth options and assets in place, and

that these two components may have different riskiness.3 Of course, the mechanisms that these

papers propose are quite different. But a common theme is that firms have profit opportunities

and that the net present value of investment projects is strictly positive. Economically, most

of these models have (i) no entry, and (ii) firms operate decreasing return to scale production

functions subject to idiosyncratic shocks. For instance, in the impressive paper by Zhang (2005),

the production function has sharply decreasing returns to scale (y = kα with α = 1/3, where it

should be 1 under constant returns). The rents, or economic profits are thus very large.

It seems doubtful that there are so large rents for new investment. Even if these rents are

significant, is it so clear that these “growth options” are less risky than “assets in place”? The

empirical work has been sometimes confusing, measuring growth options directly by Tobin q and

thus not testing in any way if the characteristics, and the behavior, of the firms with high book-

to-market is different than the one of firms with low book-to-market.

This skepticism motivates my model: due to free entry, the value of growth options is nil:

competition between firms drives the NPV of investment completely to zero. Variation over time

in the value of existing production units arise because of the “operating leverage”/“labor leverage”

(2005) for labor income, Piazessi, Schneider and Tuzel (2006) and Lustig and Van Nieuwerburgh (2005) for housing,

Pakos (2005) and Yogo (2005) for durables.
3The more precise definition of the value of assets in place is the value of the firm under the (generally non

optimal) policy of not investing in the future. The value of growth options is then the residual = value of following

the optimal policy minus the value of the assets in place. (This, by the way, does not imply in principle that the

value of assets in place is capital or the book value.)
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mechanism outlined in the introduction.

Empirical Evidence on Heterogeneity in productivity and profitability

One motivation for this paper is the empirical finding of a large cross—sectional heterogeneity

in labor productivity (See Bartelman and Doms (2001) for a survey of the relevant empirical

literature). Typically, the ratio of the labor productivity of the 25th centile producer to the 75th

centile producer is about 2. The ratio of the labor productivity of the 90th centile producer to the

10th centile producer is about 4. If one uses TFP instead of labor productivity, the productivity

differentials are now smaller, respectively about 1.4 and 2. (All these numbers are drawn from

Syverson (2004) table 1.) Typically this literature has found that controlling for observables such

as vintage or capital intensity does not explain the major share of productivity heterogeneity.

My Section 2 asks under which conditions this heterogeneity in productivity can arise, given that

firms can run their marginal cost up if they are more productive.
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2 Partial Equilibrium Analysis of the Production Unit Problem and Value

In this section, I use a simple partial equilibrium model to examine how profits, sales, and

employment vary for a production unit operating a constant return to scale technology with fixed

capital. This section uses a simple model to show that the “labor leverage” mechanism does not

rely on the lack of flexibility of the technology - the labor factor can be fully adjustable -, or on

fixed costs, but rather on the fact that revenues and costs have different sensitivities to aggregate

shocks.

The mechanism does require that there is heterogeneity in capital shares (aka profitabilities or

operating margins), as in the data. However, the widely used Cobb-Douglas production function

implies that capital shares are identical across firms, no matter what their productivity is. This

is quite at odds with the data. I thus examine under which conditions firms with different

productivity shocks have different capital shares. I find that this is true either if there are some

fixed costs, or if the elasticity of substitution between capital and labor is less than unity. Under

these assumptions, I show that low productivity firms have low capital shares and are more

sensitive to aggregate shocks, especially in terms of earnings.

In Section 3, I insert a specific version of this firm model in a full dynamic stochastic general

equilibrium model.

A. Heterogeneous Sensitivities to Aggregate Shocks

Setup

Production takes place in units which are identical ex-ante but are hit upon creation and

thereafter by productivity shocks. A unit operates a decreasing return to scales, labor-only

production function subject to idiosyncratic and aggregate shocks: y = zxF (k, n). Since capital

is chosen before the shocks are realized, I assume it is the same in all units, which differ only by

their x.

There are two possible interpretations of this technology:

- The first interpretation is that a project requires some irreversible capital investment, and

that capital is fixed upon creation of the project. Think of Wal-Mart opening a new store in some

location: the cost of building the store is probably largely both irreversible (sunk); moreover,

whether the store is very successful or not, Wal-Mart will not probably increase its size. (Or

in any case, this is not the interesting margin.) This interpretation, while attractive for some

projects, can be problematic for others. For instance, a company experimenting with a new
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product would potentially adjust its scale and its capital stock very much in response to its

success or failure.

- This leads to the second interpretation, which is that there are two types of capital: one

which is fully adjustable and one which is not. Then one can handle the flexible capital just in

the same way as I handle labor. Hence relabeling “flexible factors” for labor in the analysis below

will yield

However I do need that some factor is fixed, or equivalently that there is some decreasing

returns to scale, to avoid a degenerate distribution.4

Total operating income, or profits, or earnings, is:

π(z, x, k, w) = max
n≥0 {zxF (k, n)− wn} . (2.1)

Since only the product zx matters for the firm’s decision, I will denote this π(zx, k, w).

Shocks

For now, I do not make any specific assumption on the stochastic process governing the

aggregate shocks z or idiosyncratic shocks x. Later it will be useful to assume that x is fixed and

∆ log zt is a stationary process (so that I can use an infinite moving-average representation) to

obtain some analytical results.

Optimal employment decision

Given current idiosyncratic and aggregate shocks x and z, the unit chooses n by equating the

marginal product of labor and the market wage:

xzF (k, n) = w.

The optimal labor demand takes the form n = k× g(xz/w). Let y(xz, k, w) = zxkF (1, g(xz/w))
be the total production (or sales), and let

sK =
π(xz, k, w)

y(xz, k, w)
=

zx
w
F (1, g(xz/w))− g(xz/w)

zx
w
F (1, g(xz/w))

def
= sK(xz/w)

be the “profitability” i.e. the ratio of operating income (earnings) to sales. This is the share of

output that is not paid to labor. This profit share is the capital share for the first interpretation

(i.e. an ex-ante irreversible capital investment with constant returns). For the second interpreta-

tion, with decreasing returns to scale (or a fixed factor), it also contains a share of profits. I will

refer to this number as the operating margin or profitability.
4If both factors are adjustable, there are differences in productivity, constant return to scales, and perfect

competition, then only the unit with the highest x would be operating. It would draw inputs from the whole

economy. Factor adjustment costs would prevent this too.
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The first result gives the response of each production unit to an aggregate productivity shock

or to a change in the aggregate productivity z or in the wage rate x.

Result 1: Let σ be the (local) elasticity of substitution of F . Let sL be the share of output

paid to labor. Then for all x,

∂ log n

∂ log z
=

xz/w

g(zx/w)
g (zx/w) = − Fn(k, n)

nFnn(k, n)
=

σ

sK(xz/w)
,

∂ log y

∂ log z
= 1 + sL

∂ logn

∂ log z
= 1 + sL

xz/w

g(zx/w)
g (zx/w) = 1 + σ

sL(xz/w)

sK(xz/w)
,

∂ log n

∂ logw
= − xz/w

g(zx/w)
g (zx/w) = − σ

sK(xz/w)
,

∂ log y

∂ logw
= −nFn(k, n)

F (k, n)

xz/w

g(zx/w)
g (zx/w) = −σ sL(xz/w)

sK(xz/w)
.

The proof is simply obtained by differentiating labor demand and recalling that the elasticity

of substitution σ satisfies

σ = Fk(k, n)Fn(k, n)/F (k, n)Fkn(k, n).

This result shows that different production units (i.e. different x) will have different employment

responses if and only if the labor demand g has not a constant elasticity form. If F has constant

elasticity of substitution, differences in responses of employment or sales can occur only if the

operating margin varies across firms. Of course we know that in the data, the operating margin

varies significantly.

Of course in general equilibrium an increase in productivity will typically be associated with

an increase in the wage. Putting these elasticities together, and for a given wage response to a

productivity shock ∂ logw
∂ log z

, I infer the total responses of employment and output:

d log n

d log z
=

xz/w

g(zx/w)
g (zx/w) 1− ∂ logw

∂ log z
=

σ

sK(xz/w)
1− ∂ logw

∂ log z
,

d log y

d log z
= 1 +

nFn(k, n)

F (k, n)

xz/w

g(zx/w)
g (zx/w) = 1 +

σsL(xz/w)

sK(xz/w)
1− ∂ logw

∂ log z
.

If the wage rises by the full amount of productivity, i.e. ∂ logw
∂ log z

= 1, employment does not respond

and output increases only by the amount of the productivity increase. If the wage increases by

less than productivity, there is a rise in employment in all units and a further rise in output.

Moreover this rise may be different across units: if g has a decreasing elasticity, this rise will be

strongest in low productivity (low x) units. Alternatively, for a constant elasticity of substitution

σ, the rise is strongest for low operating margins firms.
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Turning to earnings (or operating profits), I first note that the envelope theorem applied to

π(xz, k, w) = maxn≥0 {zxF (k, n)− wn} , yields the response of earnings to a change in aggregate
productivity or in the wage:

∂ log π(xz, k, w)

∂ log z
=

1

sK(xz, w)
,

∂ log π(x, z, w)

∂ logw
= − sL(xz/w)

sK(xz/w)
.

Combining the two yields the total effect of a shock to aggregate productivity on current

profits:

d log π(x, z, w)

d log z
=

∂ log π

∂ log z
+

∂ log π

∂ logw

∂ logw

∂ log z
,

d log π(x, z, w)

d log z
=

1

sK(xz,w)
1− sL(xz/w)∂ logw

∂ log z
.

This formula is the key element of this paper. It implies directly the following result:

Result 2:

- If ∂ logw
∂ log z

= 1, then d log π(x,z,w)
d log z

= 1 is independent of x, i.e. all production units’ earnings

π(xz, k, w) go up by one percent if aggregate productivity z rises by one percent.

- If ∂ logw
∂ log z

< 1, then d log π(x,z,w)
d log z

> 1 for all x and this elasticity is inversely related to sK(xz/w) :

if wages are “smoother” than productivity, earnings are more volatile than productivity, and this

sensitivity is greater for the units which have a low operating margin.

In aggregate data, corporate profits are highly procyclical and volatile than GDP. A well-

accepted reason for this is that labor compensation is relatively smooth and weakly correlated

with GDP growth. Result 2 is the cross-sectional counterpart of this fact: firms which have high

costs “leverage” the smoothness of wages. Their profits are more procyclical because they amplify

the fact that costs do not respond much to macroeconomic conditions, whereas revenues do.

B. Sources of differences in Operating Margins

For this mechanism to be interesting however, we need to choose a production function F

which generates heterogeneous operating margins i.e. a F such that units with different produc-

tivities x have different shares sK(xz/w). In particular, with a simple Cobb-Douglas production

function, each units equates its marginal product of labor to the common wage, and since the mar-

ginal product of labor is proportional to the average product of labor, there is no cross-sectional

heterogeneity either in labor productivity (output per employee) or in profitability!
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In the data, as I explain below, firms which have low productivity (low output per capita

Y/N) have also in general low TFP (low x) and low profitability. Hence it seems that an empiri-

cally successful production function should generate these two correlations. I first examine what

conditions on F are necessary to obtain these correlations.

Since sK(u) =
uF (1,g(u))−g(u)
uF (1,g(u))

, a simple differentiation yields after some simplifications:

d log sK
d log u

=
−g (u)uF (1, g(u)) + g(u)F (1, g(u)) + g(u)ug (u)F2(1, g(u))

(uF (1, g(u))− g(u))F (1, g(u)) ,

which is positive if and only if

−g (u)uF (1, g(u)) + g(u)F (1, g(u)) + g(u)ug (u)F2(1, g(u)) > 0

1− g (u)u
g(u)

> −ug (u)
g(u)

g(u)F2(1, g(u))

F (1, g(u))
,

and given that g (u)u
g(u)

= σ
sK
and uF2(1,g(u))

F (1,g(u))
= sL yields the condition

1− σ

sK
> − σ

sK
sL,

sK > σ(1− sL),
1 > σ.

Hence for an elasticity of substitution below unity, high productivity firms will have a higher

operating margin. Under the same condition, output per capita is increasing in productivity since

applying the elasticities found above yields

∂ log y

∂ log x
− ∂ logn

∂ log x
= 1 + σ

sL
sK
− σ

sK

= 1 + σ
sL − 1
sK

= 1− σ,

so that high TFP firms have high output per capita only if the elasticity of substitution is below

one. Summarizing this section:

Result 3: Assume a constant return to scale production function with heterogeneous produc-

tivities x and fixed capital k, i.e. y = xF (k, n). Then high x firms have higher output per worker

and a higher capital share if and only if the elasticity of substitution is below one. Moreover,

firms with low x have a higher response to a 1% increase in productivity if and only the elasticity

of substitution is below one.

It thus appears that this low elasticity of substitution case, which is empirically intuitive, is

also the only case (within constant returns) that can generate the right correlation between TFP,
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labor productivity and operating margins (or capital shares). [One alternative might be to use

decreasing returns, but they appear at face value inconsistent with the wide dispersion in size

across firms.] I now consider a few simple examples to illustrate.

Example 1. Cobb-Douglas F (k, n) = k1−αnα.

The optimal labor demand is n = k × d × (xz/w) 1
1−α where d is a constant. The supply is

y = e×k×(xz/w) 1
1−α where e is a constant. As a result the output per worker is e/d, independent

of productivity. The operating margin (capital share) is s = 1− α, which is also independent of

x, z, or w. Because the marginal product of labor is proportional to the average product of labor

in this case, and the MPL is equated across firms, there is no heterogeneity in output per worker

or in profitability. Hence, while this simple Cobb-Douglas production function is often used, it is

at odds with the facts on the heterogeneity in measured productivity or capital shares.

Example 2. Cobb-Douglas with Overhead labor F (n) = k1−α (n− n)α .
In this formulation, there is an overhead labor of n, leading to a fixed cost (labelled in wages

not units of output5). The optimal labor demand is n = n+ d × k × (xz/w) 1
1−α where d is a

constant.The output supply is y = e×k× (xz/w) 1
1−α where e is a constant. Output per capita is

thus e/ d+ n (xz/w)−
1

1−α which is increasing and concave in xz/w. For very large x the effect

of x on output per worker is small since fixed costs are a small share of output. The capital share

s is 1− w
e
d+ n (xz/w)−

1
1−α which is increasing in xz and decreasing in w. This formulation is

in principle capable of capturing the two key correlations.

Example 3. Putty-Clay F (k, n) = n1n≤k + k1n>k.

This production function has constant returns in labor up to a capacity constraint n, after

which the MPL is zero. This is an ex-post Leontief production function for individual units.

One particular case of it is the Putty-Clay model of Gilchrist and Williams (2001), simplified in

Gourio (2005,2006). With this formulation, two cases arise: either zx ≥ w, and the optimal labor
demand is n = g(zx/w) = k, or zx < w, and the optimal labor demand is n = g(zx/w) = 0. The

output is similarly y = zxk for zx > w, and 0 for zx < w.Finally, the profit share is (zx− w) for
zx > w, and 0 for zx < w. This setup can also generate the key correlations.

Example 4. CES Production Function with Fixed Capital F (k, n).

As proved above, the each correlation is generated iff σ < 1.

Conclusion from the four examples

While the basic Cobb-Douglas production function does not generate the standard facts on

5The case where the fixed cost is in goods units yields similar results.
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productivity, there are at least two reasonable setups that can: fixed costs or a “low” elasticity

of substitution between capital and labor at the production unit level.

Extensions: Intermediate Inputs, Variable Capital, Adjustment Costs, Monopo-

listic Competition

It is possible to add other inputs, including variable capital, to this framework. Most simply,

assume that the project has a production function F (k,m, n). The production unit rents capital

each period at the market price R, and buys materials at the cost pm. The problem of the firm is

thus now:

π(x, z, w,R, pm) = max
n≥0,k≥0

{zxF (k,m, n)− wn−Rk − pmm} .

If the production function has decreasing returns to scales, this problem is well defined. Ap-

plying the envelope theorem and totally differentiating with respect to z yields:

d log π

d log z
=

1

π/y
1− wn

y

∂ logw

∂ log z
− Rk
y

∂ logR

∂ log z
− pmm

y

∂ log pm
∂ log z

.

Hence we see that we can generalize this mechanism. Interestingly, the extent to which

profits are procyclical does not depend on whether factors are adjustable or not. By the envelope

theorem, factors are near their optimum use, so the effect on profits is second-order.

[[to finish]]

C. Valuation and Risk Premia with Exogenous Prices

I now explore the asset pricing implications of the results of the previous section. In this

Section, I take as exogenous the aggregate productivity process {zt} , the wage process {zt}, and
the discount factor {mt} , and I compute prices, betas and expected returns of the production
units.

I start with the Campbell-Shiller (1988) log-linear approximation for the price-dividend ratio:

pt − dt = k

1− ρ
+Et

j≥0
ρj (∆dt+1+j − rt+1+j) ,

where dt = log dividend, pt = log price, rt = log return, and k and ρ are constants related to the

average p− d ratio.6 Since rt+1 = k + ρpt+1 + (1− ρ)dt+1, I obtain as in Campbell (1991):

rt+1 − Etrt+1 = (Et+1 − Et)
j≥0

ρj∆dt+j+1 − (Et+1 −Et)
j≥1

ρjrt+j+1,

the usual decomposition of return innovations into innovations to current or future dividends and

innovations to future returns. This is just a restatement of the “price equals present discounted
6ρ = 1

1+exp(d−p) and k = − log ρ+ (1− ρ) log(1/ρ− 1).
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value of dividends” identity, without any behavioral implication. This equality holds for any log

return. I first assume for simplicity that production units have a constant idiosyncratic shock x.

Then if a production unit with productivity x is traded, its return satisfies also

rt+1(x)−Etrt+1(x) = (Et+1 − Et)
j≥0

ρj∆dt+j+1(x)− (Et+1 −Et)
j≥1

ρjrt+j+1(x),

Researchers have often used atheoretical VARs to measure these two components of unexpected

returns. The novelty of my approach is to provide an explicit model for the first term, ∆dt+j+1,

and link this term to observable characteristics of the firm. I believe this has the following

advantages: (1) it delivers a more complete economic explanation; (2) we can circumvent the

problem of measuring the betas, and (3) we obtain cross-equation restrictions, because the betas

that determines the return is also directly determined by the earning beta of the firm.

In my model, the production unit yields a flow of earnings π(xz, k, w). The formula above

applies with dt(x) = log πt(x), so that ∆dt(x) = ∆ log πt(x). Applying the analysis of the previous

section, I have

∆ log πt(x) ηz(x)∆ log zt + ηw(x)∆ logwt,

where ηz(x) and ηw(x) are the “elasticities” of profits to productivity and the wage:

ηz(x) =
1

sK(x)
,

ηw(x) = − sL(x)
sK(x)

.

I assume constant expected returns.7 Hence the second term (Et+1 −Et) j≥1 ρjrt+j+1 is zero

and:

rt+1(x)−Etrt+1(x) = (Et+1 −Et)
j≥0

ρj∆dt+j+1(x).

First Case: only productivity shocks and ηw(x) = 0

I now take an exogenous log-normal discount factor. I assume that only the shock to z is

priced, and that the market price of risk is λz > 0. Hence,

logmt,t+1 −Et logmt,t+1 = −λz (zt+1 −Etzt+1) .
7Of course there is some consensus that expected returns are time-varying. My paper deals only with the cash

flow part, and future work will address the questions of discount rate effects as emphasized by Campbell and Vuo

(2004).
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A positive innovation to aggregate productivity z reduces the state-contingent price. To compute

the risk premia, I need only to compute the covariance of the return with the innovation to zt.

The log of the risk premium is:8

log
EtRt+1(x)

Rft+1
= Etrt+1(x)− Etrft+1 +

1

2
Vtrt+1(x)

= −Covt (logmt,t+1, rt+1(x))

= −Covt (logmt,t+1 − Et logmt,t+1, rt+1(x)−Et+1rt+1(x))

= −Covt
⎛⎝λz (zt+1 −Etzt+1) , (Et+1 −Et)

j≥0
ρjηz(x)∆ log zt+j+1

⎞⎠ .
Note that only this last line uses that (i) the discount factor only prices shocks to z and (ii)

ηw(x) = 0 i.e. the profit does not react to wage shocks. These assumptions would be true for

instance if the wage is constant.

To continue this computation, I assume that productivity growth follows some arbitrary sta-

tionary process, for which I write the Wold decomposition ∆ log zt = A(L)ε
z
t . I find that the log

of the risk premium is

log
EtRt+1(x)

Rft+1
= ηz(x)λzCovt

⎛⎝(Et+1 −Et)
j≥0

ρj∆ log zt+j+1, (zt+1 − Etzt+1)
⎞⎠

= ηz(x)λzCovt

⎛⎝(Et+1 −Et)
j≥0

ρjA(L)L−jεzt+1, ε
z
t+1

⎞⎠
Using the usual Hansen-Sargent (1980) formulas, I obtain an expression for the log risk premium

lrp(x) :

lrp(x) = λzσ
2
zηz(x)A(ρ),

i.e. the product of the market price of risk λzσ2z times the sensitivity of the present discounted firm

x cash flows A(ρ)ηz(x). For instance, if A(L) = (1− κL)−1, then lrp(x) = λzσ
2
zηz(x)(1− ρκ)−1.

Second case: only productivity shocks are priced (λw = 0), but ηw(x) = 0.

In Section 3, I introduce a full dynamic stochastic general equilibrium model where produc-

tivity shocks drive the economy. This motivates the interest in the case where the wage responds

8Assuming log-normality, I have the usual computations:

Et (mt,t+1Rt+1(x)) = 1

Ete
logmt,t+1+rt+1(x) = 1

Et logmt,t+1 +Etrt+1(x) +
1

2
Vt logmt,t+1 +

1

2
Vtrt+1 = 1
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to productivity shocks, but there are no intrinsic wage shocks, and so the wage does not enter

the discount factor. To formalize that the wage responds to productivity, I first write the Wold

decomposition for the ∆ log z process:

∆ log zt = Az(L)ε
z
t .

Next I project ∆ logwt on the past history of εzt , and call ∆ logwt the remainder, which is by

construction uncorrelated with all the εzt−k, for k ≥ 0:

∆ logwt = Aw(L)ε
z
t +∆ logwt.

Since I assume that only shocks to ∆ log zt+1 are priced, I have logmt,t+1 − Et logmt,t+1 =

−λz (zt+1 − Etzt+1) = −λzεzt+1. In this case, I can again compute the key covariance:

Covt (logmt,t+1, rt+1(x))

= Covt (logmt,t+1 − Et logmt,t+1, rt+1(x)−Et+1rt+1(x))

= Covt

⎛⎝−λzεzt+1, (Et+1 −Et)
j≥0

ρj (ηz(x)∆ log zt+j+1 + ηw(x)∆ logwt+j+1)

⎞⎠
= Covt

⎛⎝−λzεzt+1, (Et+1 −Et)
j≥0

ρj ηz(x)Az(L)ε
z
t+j+1 + ηw(x) Aw(L)ε

z
t+j+1 +∆ logwt+j+1

⎞⎠ ,
and thus in this case lrp(x) = λzσ

2
z (ηz(x)Az(ρ) + ηw(x)Aw(ρ)) . This formula shows that the

covariance with the asset pricing factor is now driven not only by the response of profits to

productivity shocks, but also by the response of profits to the wages induced by the productivity

shocks.

Third case: both productivity and wage shocks are priced (λw = 0), and ηw(x) = 0.

This more general case is interesting to see the impact of “wage shocks” on asset prices in this

model. I thus assume that

logmt,t+1 − Et logmt,t+1 = −λzεzt+1 − λwε
w
t+1,

where εzt+1, ε
w
t+1 are the innovations to the productivity and wage process. Again in anticipation

of a general equilibrium model where productivity is exogenous and affects the wage, but not the

reverse, I define first εzt as the Wold innovation of ∆ log zt : ∆ log zt = Az(L)ε
z
t . Next I define

Awz(L) as the projection of ∆ logwt on εzt−k . Let ∆ logwt = ∆ logwt − Awz(L)εzt . Finally I
apply a Wold decomposition to ∆ logwt = Aww(L)εwt . By construction εwt is uncorrelated with εzt

at all leads and lags. In the end I have:

∆ log zt = Az(L)ε
z
t ,

∆ logwt = Awz(L)ε
z
t +Aww(L)ε

w
t ,
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and I can now again compute the covariance

Covt (logmt,t+1, rt+1(x)) = Covt (logmt,t+1 − Et logmt,t+1, rt+1(x)−Et+1rt+1(x))

= Cov

⎛⎝−λzεzt+1 − λwε
w
t+1, (Et+1 −Et)

j≥0
ρj (ηz(x)∆ log zt+j+1 + ηw(x)∆ logwt+j+1)

⎞⎠
= −Cov

⎛⎜⎝ λzε
z
t+1 + λwε

w
t+1, (Et+1 −Et) j≥0 ρj (ηz(x)Azz(L) + ηw(x)Awz(L))L

−jεzt+1

+(Et+1 − Et) j≥0 ρjηw(x)Aww(L)L
−jεwt+1

⎞⎟⎠
= −Cov

⎛⎝λzεzt+1, (Et+1 −Et)
j≥0

ρj (ηz(x)Azz(L) + ηw(x)Awz(L))L
−jεzt+1

⎞⎠
−Cov

⎛⎝λwεwt+1, (Et+1 − Et)
j≥0

ρjηw(x)Aww(L)L
−jεwt+1

⎞⎠ .
By the same logic as above, I obtain the log risk premium as

lrp(x) = λzσ
2
z (ηz(x)Azz(ρ) + ηw(x)Awz(ρ)) + λwσ

2
wηw(x)Aww(ρ).

There are now two risk factors, and the loadings are endogenously determined by the model as

a function of productivity x. Moreover, these loadings can be estimated by regressions of profits

on aggregate productivity and the aggregate wage:

∆ log πt(x) = ηz(x)∆ log zt + ηw(x)∆ logwt.

This is the sense in which this model provides cross-equation restrictions.

Future work will implement these formulas directly on the data. In light of the empirical

success of Section 5, I believe these can explain a part of the size and value premium by a simple

cash flow effect.
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3 A General Equilibrium Model with Overhead Labor

The analysis of Section 2 shows that in order to replicate the heterogeneity of labor produc-

tivity and of profitability, and to obtain the heterogeneous sensitivities to aggregate shocks, one

must depart from the standard Cobb-Douglas production function. In this section I use an ex-

tended version of the example 2 of Section 2: there are some fixed costs through overhead labor.

There are three key elements to keep in mind as we extend the analysis from partial to general

equilibrium:

(1) As should be clear from section 2, fixed costs are important in our analysis only in as much

as they generate an heterogeneity of “profit shares”, and not because of the inflexibility that they

generate. Of course in general equilibrium, fixed costs may have additional implications.9

(2) My choice of using fixed costs in the general equilibrium model is driven by a desire for

tractability. In this model with a non-trivial cross-section of firms and aggregate shocks, being

able to aggregate the model and use only a few state variables is important for numerical analysis.

Aggregation is not feasible for say, CES production functions subject to idiosyncratic shocks.

(3) The key condition that ∂ logwt
∂ log zt

< 1 which was noted in the partial equilibrium framework

is here not an assumption. Rather, it is generated as an outcome of the labor market equilibrium.

Here I assume a competitive labor market, which makes it hard to generate a smooth wage, since

the wage here reflects the marginal product of labor (and does not incorporate any reason for

“smoothness” such as risk-sharing). Future work will consider the implications of adding more

wage rigidity exogenously in this model.

A. Setup

Preferences

Preferences are of the usual expected utility type, defined over consumption and labor:

E
t≥0

βtU(ct, 1− nt). (3.1)

I will parametrize the utility function directly as a function of the intertemporal elasticity

of substitution σ and the Frisch elasticity of labor supply εnw, as in Rotemberg and Woodford

(1995).

Technology
9We know from the work of Jermann (1998) and Boldrin, Christiano and Fisher (2001) that an easy adjustment

of labor makes it hard to generate a large equity premium.
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The technology is the one of example 2, because it appears to be the most amenable to

aggregation. Thus, production takes place in units which are identical at birth and have fixed

capital. A unit operates a CRS production function subject to idiosyncratic and aggregate shocks:

y = zxF (k, n). I assume F (k, n) = k1−αnα. I assume for simplicity that k does not change over

time and cannot be chosen: it is an exogenous constant. Operating the unit requires paying fixed

costs as well as the variable labor. I view the fixed cost as overhead labor: cf units of labor must

be hired each period. Total operating income, or earnings, is thus

π(z, x, w) = max
n≥0

zxk1−αnα − w (n+ cf) . (3.2)

Shocks

There are three types of shocks in this economy.

“Large idiosyncratic shock”: with probability δ each period, a unit receives a large negative

shock that causes it to exit. This is the only reason for exit.

“Small idiosyncratic shock”: the idiosyncratic productivity x evolves according to a AR(1)

process:

log xi,t+1 = ρ log xi,t + μ+ σxεi,t+1, (3.3)

with εi,t+1 is N(0, 1) independent across units and across time. I denote F (x | x) the transition
function for this process.10

“Aggregate shocks”: aggregate productivity follows a standard persistent AR(1) process:

log zt+1 = ρz log zt + σzεz,t+1, (3.4)

with 0 < ρz < 1 and εz,t+1 is N(0, 1) iid over time and independent of all the εi,t.There is no

growth in this economy.

Production of new units

New units are produced by a capital-good producing sector that can transform units of con-

sumption good into capital goods at cost ψ (It) , where It is the number of units created each

period. ψ is an “external adjustment cost” which satisfies ψ > 0, ψ > 0. New units get an initial

productivity draw x from a distribution with p.d.f. h and c.d.f. H.

Resource constraints
10Note that despite random walk shocks I have a stationary distribution (when I shut down the aggregate shocks)

because of depreciation, i.e. the “death” shocks.
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Let Gt(x) be the measure of units with idiosyncratic productivity less than x, and let gt(x) =

Gt(x). Aggregating across units yields the goods resource constraint and the time resource con-

straint:

Ct + ψ (It) ≤ Yt =
∞

0
ztxk

1−αnt(x)αdGt(x), (3.5)

∞

0
nt(x)dGt(x) + cf

∞

0
dGt(x) = nt. (3.6)

The law of motion for the measure of productivity is, if F (x | x) is the transition c.d.f. of the
idiosyncratic shock11:

Gt+1(x) = (1− δ)
∞

0
F (x | s)dGt(s) + It ×H(x), (3.7)

which can equivalently be rewritten in terms of the underlying derivative:

gt+1(x) = (1− δ)
∞

0

∂F (x | s)
∂x

gt(s)ds+ It × h(x). (3.8)

Social Planner Problem

Since the welfare theorems hold in this economy, it is possible to use a social planning problem

to find the competitive equilibrium.. The problem is

max
{ct,nt,nt(x),It,Gt+1(x)}

E
t≥0

βtU(ct, 1− nt)

ct + ψ (It) =
∞

0
ztxk

1−αnt(x)αdGt(x),

nt =
∞

0
nt(x)dGt(x) + cf

∞

0
dGt(x),

∀x ≥ 0 : Gt+1(x) = (1− δ)
∞

0
F (x | s)dGt(s) + It ×H(x),

given G0, subject to the law of motion for the aggregate shocks.

It is convenient to divide this problem in two parts: the first one is the allocation of labor

across firms (i.e., the computation of the aggregate production function), the second one is the

choice of the total amount of labor, consumption and investment.

11Given our assumption that x is in log a random walk with drift, we have

F (x | s) = Pr (lnxt+1 ≤ lnx | lnxt = ln s) ,
F (x | s) = Φ

lnx− ln s− μ

σ
,

where Φ is the standard normal cdf. However I will not need to use this formula explicitely; I only need that the

transition depends only on the ratio x/s.
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Allocation problem within the period

Let W (nt) be the maximum feasible output given hours nt, assuming perfect and costless

reallocation of labor across units:

W (nt) = max
{nt(x)}x≥0

∞

0
xk1−αnt(x)αdGt(x)

s.t. : nt =
∞

0
nt(x)dGt(x) + cf

∞

0
dGt(x)

The first-order condition with respect to nt(x) is:

αxk1−αnt(x)α−1 = μt, (3.9)

where μt is the Lagrange multiplier on the constraint. Substituting back in the constraint yields

nt =
α

μt

1
1−α
k

∞

0
x

1
1−αdGt(x) + cf

∞

0
dGt(x).

Define M1,t =
∞
0 x

1
1−αdGt(x) and M2,t =

∞
0 dGt(x). Then

nt − cf ×M2,t =M1,tk
α

μt

1
1−α

μt =
αM1−α

1,t k
1−α

(nt − cf ×M2,t)
1−α .

Substituting back in (3.9) yields

nt(x) = k

⎛⎜⎜⎜⎝ αx
αM1−α

1,t k1−α

(nt−cf×M2,t)
1−α

⎞⎟⎟⎟⎠
1

1−α

,

= x
1

1−α
nt − cf ×M2,t

M1,t
.

Thus the total production given aggregate labor input nt is

W (nt) = k1−α
∞

0
x

1
1−α

nt − cf ×M2,t

M1,t

α

dGt(x)

W (nt) = k1−α
nt − cf ×M2,t

M1,t

α

M1,t

W (nt) = k1−α (nt − cf ×M2,t)
αM1−α

1,t . (3.10)

Sufficiency of the two moments of Gt

This last expression shows that for the social planning problem, we need to know only two

moments of Gt, the variables M1,t and M2,t. In this section I show that these moments satisfy
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simple recursions where the distribution Gt plays a role again only through these moments. This

allows me to get rid of the cross-sectional distribution in solving the planner problem.

First let’s write the law of motion for M1,t :

M1,t+1 =
∞

0
x

1
1−αdGt+1(x)

=
∞

0
x

1
1−α gt+1(x)dx

=
∞

0
x

1
1−α (1− δ)

∞

0

∂F (x | s)
∂x

gt(s)ds+ Ith(x) dx

= (1− δ)
∞

0

∞

0
x

1
1−α

∂F (x | s)
∂x

gt(s)dsdx+ Itυ,

where υ
def
= ∞

0 x
1

1−αh(x)dx is a constant.

Case 1: No shock after the initial draw from h.

In this case, F (x | s) = 1x≥s i.e. the initial shock h is permanent. Then ∂F (x|s)
∂x

= δ{x=s} and

∞

0

∞

0
x

1
1−α

∂F (x | s)
∂x

gt(s)dsdx =
∞

0
x

1
1−α

∞

0
δ{x=s}gt(s)ds dx

=
∞

0
x

1
1−αgt(x)dx

= M1,t,

hence the law of motion for M1,t is simply:

M1,t+1 = (1− δ)M1,t + Itυ.

Case 2: Unit root shock.

If the idiosyncratic shock evolves according to: lnxt+1 = lnxt + μ + σεt+1, then F (x | s) =
Φ lnx−ln s−μ

σ
and

∂F (x | s)
∂x

=
1

σx
φ
lnx− ln s− μ

σ
.

Thus

∞

0

∞

0
x

1
1−α

∂F (x | s)
∂x

gt(s)dsdx =
∞

0

∞

0
x

1
1−α

1

σx
φ
lnx− ln s− μ

σ
gt(s)dsdx

=
∞

0

∞

0

x

s

1
1−α−1

s
1

1−α−1 1
σ
φ
lnx− ln s− μ

σ
gt(s)dsdx

=
∞

0
s

α
1−αsgt(s)

∞

0
v

α
1−α
1

σ
φ
ln v − μ

σ
dv ds

=
∞

0
s

1
1−αgt(s)

∞

0
v

1
1−α

1

σv
φ
ln v − μ

σ
dv ds

where v = x/s.
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But ∞
0 v

1
1−α 1

σv
φ ln v−μ

σ
dv = E V

1
1−α where lnV is N(μ,σ2) thus this integral can be

evaluated:

ζ =
∞

0
v

1
1−α

1

σv
φ
ln v − μ

σ
dv = e

μ
1−α+

σ2

2(1−α)2 ,

and finally
∞

0

∞

0
x

1
1−α

∂F (x | s)
∂x

gt(s)dsdx = ζM1,t,

so that the law of motion for M1,t is:

M1,t+1 = (1− δ)ζM1,t + Itυ.

A similar (simpler) calculation shows that M2,t satisfies

M2,t+1 =
∞

0
gt+1(x)dx

=
∞

0
(1− δ)

∞

0

∂F (x | s)
∂x

gt(s)ds+ Ith(x) dx

= (1− δ)
∞

0

∞

0

∂F (x | s)
∂x

dx gt(s)ds+ It,

M2,t+1 = (1− δ)M2,t + It.

Simplified social planner problem

I can thus rewrite the social planner problem as:

max
{ct,nt,It,M1,t+1,M2,t+1}∞t=0

E
t≥0

βtU(ct, 1− nt)

ct + ψ (It) = ztW (nt) = ztk
1−α (nt − cf ×M2,t)

αM1−α
1,t .

M1,t+1 = (1− δ)ζM1,t + Itυ,

M2,t+1 = (1− δ)M2,t + It,

given M1,0 and M2,0. In the appendix I derive the first-order conditions, the steady-state and the

log-linearized version which I use to conduct business cycle analysis.

Asset Prices: Pricing a Production Unit

I know compute the value of a production unit of productivity x. First assume for simplicity

that x is constant. The cum-dividend asset price of a production unit with productivity x in this

economy is:
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Pt(x) = Et
j≥0

βjλt+j
λt

(1− δ)jmax
n≥0

{zt+jxnα − wt+j (n+ cf)}

= Et
j≥0

βjλt+j
λt

(1− δ)j

⎛⎝α α
1−α (1− α)

zt+j
wα
t+j

1
1−α
x

1
1−α − wt+jcf

⎞⎠
= q1,tx

1
1−α − q2,t. (3.11)

This is just breaking down the present value of cash flows as the present value of revenues and

variable labor costs, minus the present value of fixed costs, where I have defined

q1,t = dEt
j≥0

βjλt+j
λt

(1− δ)j
zt+j
wα
t+j

1
1−α
,

q2,t = cfEt
j≥0

βjλt+j
λt

(1− δ)jwt+j,

or recursively:

q1,t = Et

⎡⎣d zt
wα
t

1
1−α

+
βλt+1
λt

(1− δ) q1,t+1

⎤⎦ ,
q2,t = Et cfwt +

βλt+1
λt

(1− δ) q2,t+1 .

The free-entry condition (derived from the FOCs of the DGSE model) equates the marginal cost

of creating one additional unit and the marginal value:

ψ (It) = q1,tυ − q2,t.

To generate our key cross-sectional prediction, we need that when a positive TFP shock z hits

the economy, the present value of revenues minus variable costs rises by more than the present

value of fixed costs (which depends on the wage), i.e.

∂ log q1,t
∂ log zt

>
∂ log q2,t
∂ log zt

. (3.12)

While it is hard to analyze exactly under which conditions this inequality will hold, I will provide

parameters that satisfy this condition in the numerical simulations of the next subsection.

Note that since all units have the same quantity of capital k, they will all have the same

book value k, and there will be heterogeneity in book-to-market according to heterogeneity in x.

Hence high x firms (which have had lucky draws of productivity) have low book-to-market. If
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the condition 3.12 is satisfied, they have lower sensitivity (in terms of prices) to aggregate shocks.

This is because the sensitivity is

d logPt(x)

d log zt
=

x
1

1−α q1,t

x
1

1−α q1,t − q2,t
∂ log q1,t
∂ log zt

+
−q2,t

x
1

1−α q1,t − q2,t
∂ log q2,t
∂ log zt

,

= α(x)
∂ log q1,t
∂ log zt

+ (1− α(x))
∂ log q2,t
∂ log zt

,

with dα/dx < 0, and

∂

∂x

d logPt(x)

d log zt
= α (x)

∂ log q1,t
∂ log zt

− ∂ log q2,t
∂ log zt

< 0,

ensuring that firms with high x (which according to our previous analysis have high TFP, high

output per worker and high profitability) are less responsive to aggregate shocks than firms with

low x. Since x is positively correlated with market size according to (3.11), the model reproduces

the value and size premium. However in this model all return differentials are perfectly justified

by the correct beta (with respect to marginal utility of consumption Uc(ct, 1− nt).
Introducing Firms

In my model, productivity on existing units does not carry over to new units. Hence a

production unit with a good shock can scale up instantaneously through labor but only up to a

point. The allocation of new projects to firms can then be random, to generate firms.

B. Numerical Results from the DSGE model

Calibration and Numerical Methods

I use the following parameters to simulate my model. Many of these parameters are standard

in the business cycle literature. (To be explained and finished.)
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Calibration of the DGSE model (“Annual Data”)

Parameter Symbol Value

1/Intertemporal Substitution of Consumption γ 20

Intertemporal Substitution of Leisure εhw 100

Share of variable labor in output α 0.50

Death rate (=depreciation) δ 0.15

Trend of idiosyncratic productivity process μ 0.0

Standard Deviation of idiosyncratic productivity process σ 0.2

Standard Deviation of aggregate productivity process σz .02

Persistence of aggregate shock ρz .9

Fixed cost in labor term cf 1

Discount factor β 0.95

Mean initial productivity υ 1

Curvature of adjustment cost function ψ 2

Table 1. List of parameters used in the Calibration.

% Variable Labor Fixed Labor Capital

Share of each factor 50.0 29.3 20.7

Table 2. Decomposition of Value Added in Steady-State.

Impulse Response Functions

Figure 2 display the response to a persistent TFP shock z of aggregate consumption, output,

investment, and employment. Note that the model generates a hump-shape pattern for employ-

ment. The model matches roughly the relative volatility of investment, output and consumption

roughly but underestimates the volatility of employment.

Figure 3 plots the IRF of q1,t and q2,t to a persistent TFP shock. For this calibration, the

present value of revenues minus variable costs q1,t increases by more than the present value of

fixed costs q2,t, which generates the value and size premium.

C. Simulated Data

TBA. As in my job market paper I will present results from a simulated panel mimicking the

empirical results of Fama and French (1992, 1996)
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Figure 2: IRF of Consumption, Output, Investment and Employment to a persistent TFP shock.
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Figure 3: IRF of q1 and q2 to a persistent TFP shock.
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4 Empirical Evidence

This section documents two main empirical facts. The first one is that firms with high margins

or high productivity have in general more procyclical earnings, sales and employment as predicted

by the model. The second fact is that small firms and value firms, including the portfolios studied

in the asset pricing literature, have lower margins and productivity, and are more procyclical than

large or growth firms. This is especially true for the earnings (or profits) of these firms. Hence,

small and value stocks are clearly more risky in term of cash flows. As I show, this can explain

why these stocks have higher expected returns. Indeed, this direct evidence is consistent with

recent indirect evidence such as Campbell and Vuolteenaho (2004) who find that value stocks

have higher cash flow betas.

Methodology

I measure the effect of a firm characteristic xj,t (e.g. productivity) on the sensitivity of firm

variable Zj,t (e.g. sales) to the business cycle. To do so, I run the following regression:

∆ logZj,t = α+ β∆ logGDPt + γxj,t + δxj,t∆ logGDPt + εj,t. (4.1)

Note first that I use GDP growth to measure the business cycle. I present two types of results:

(1) results from running this regression on the unbalanced Compustat panel of firms (a pooled

time-series and cross-section regression), (2) results from running this for portfolios formed on

book-to-market or size and book-to-market as in Fama and French (1996).

Data and Variables

I use Compustat data from 1963 to 2004. I will often present robustness checks that include

running this on the sample 1978-2004, and/or only for the manufacturing sector (SIC between

2000 and 3990), for which the physical production interpretation is probably more reasonable.

As left-hand side variables Zj,t, I use (i) real earnings, where earnings are measured as Com-

pustat’s item 13 (income before taxes, interests and depreciation), (ii) real net income, where

net income is item 172 (income after taxes, interest and depreciation), (iii) real sales (item 12),

(iv) employment (item 29). In appendix I give some results for investment growth (item XX).

In all cases the deflator is the CPI, except for investment for which I use the GDP deflator for

non-residential fixed investment.

As variable xj,t, I use three measures. First, I use the “operating margin” (or profitability):

the ratio of operating income (item 13 in Compustat) to sales. Second, I use the book-to-market

ratio as constructed by Fama and French (1992, 1996; it is actually well approximated by the ratio
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of item 60 to the product of item 25 and item 199). Third, I use a productivity measure, the sales-

to-employee ratio (item 12 and item 29). For each case, I take the variable normalized in each year

relative to the average of Compustat, and in logs. For instance, for the first variable, the exact

definition is xj,t = log
OIj,t/Sj,t

k
OIk,t/ k

Sk,t
. These variables have all a mean approximately zero and

a standard deviation near one. Hence, the coefficient δ in the regression can be interpreted as the

effect of an increase of one standard deviation of margin, book-to-market or productivity on the

sensitivity to GDP growth.

Future work will involve creating a more precise firm-level productivity variable. I will also

examine the effect of aggregate productivity shocks (e.g. measured as innovations to TFP growth)

firm-level variables.

Descriptive Statistics

Table 3 presents some summary statistics on the right-hand side sorting variable xj,t before

normalization. There is a wide dispersion in profitability,

book-to-market and productivity. Table 4 shows that high profitability is associated with

high output per capita and low book-to-market (i.e. high Tobin q). The correlation between

book-to-market and labor productivity outside manufacturing is zero however. Some of this

reflects differences in industry composition, with some industries having on average higher book-

to-market: adding industry controls make this correlation negative.

xj,t = Coverage Median 10th centile 90th centile

Margin OI/S Manuf. 0.117 -0.053 0.235

All 0.133 -0.016 0.493

Book-to-market Manuf. 0.571 0.178 1.531

All 0.590 0.182 1.498

Productivity S/E Manuf. 0.92 0.46 1.96

All 1 0.42 3.05

Table 3: Summary Statistics for the variables used as xj,t

OI/S and B/M are not normalized, and productivity S/E

is normalized by the cross-sectional median in each year.

Pooled cross-section and time-series statistics.
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xj,t = OI/S B/M S/E OI/S B/M S/E

Margin OI/S 1 1

Book-to-market B/M -0.38 1 -0.24 1

Productivity S/E 0.10 -0.11 1 0.18 0.01 1

Table 4: Correlation matrixes for the variables used as xj,t.

After normalization by Compustat mean, and in logs, e.g. xj,t = log
OIj,t/Sj,t

k
OIk,t/ k

Sk,t

Manufacturing sample (left panel), and Whole sample (right panel).

A. The Sensitivity of Earnings and Profits to GDP growth as a function of Margin, Productivity

or Book-to-Market

The left panel of Table 5 gives the results of running the equation (4.1) on Compustat for Z =

earnings, and the right panel gives the results of running the same regression for Z =net income

(which I call “profit”). In both cases, results are presented for the three sorting variables: operat-

ing margins (or profitability, i.e. operating income over sales), book-to-market, and productivity

(sales per employee). In each case, I give results for the manufacturing sample and for the entire

sample of firms, and I give results for a specification which includes industry dummies (both in

levels and interacted with GDP growth, i.e. the industry dummies are included in xj,t). These

dummies control for industry-level differences in cyclicality. For conciseness the tables report only

δ, and the associated standard error and R2.
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xj,t = Coverage Industry δ t-stat R2

OI/S Manuf. yes -1.57 5.2 0.13

no -1.73 5.9 0.11

All yes -0.62 3.2 0.09

no -1.30 7.9 0.06

B/M Manuf. yes 1.15 4.9 0.03

no 0.76 3.0 0.03

All yes 0.78 4.3 0.03

no 0.93 5.4 0.02

S/E Manuf. yes 0.65 1.6 0.02

no -0.24 0.8 0.02

All yes 0.29 1.37 0.03

no -0.64 3.7 0.01

δ t-stat R2

-2.13 3.8 0.04

-2.25 4.2 0.03

-1.10 3.2 0.03

-2.08 7.5 0.02

1.32 3.3 0.02

1.79 4.9 0.02

1.40 4.8 0.02

1.51 5.5 0.02

-0.18 0.3 0.03

-0.81 1.7 0.02

0.38 1.2 0.02

-0.91 3.5 0.01

Table 5: Results from the Pooled Panel OLS Regressions:

LEFT PANEL: ∆ logOIj,t = α+ β∆ logGDPt + γxj,t + δxj,t∆ logGDPt + εj,t

RIGHT PANEL: ∆ logNIj,t = α+ β∆ logGDPt + γxj,t + δxj,t∆ logGDPt + εj,t

Compustat 1963-2004. OLS Standard Errors.

LHS is real % change of operating income (item 13; left panel) or real % change of

net income (item 172; right panel). The RHS x = OI/S,B/M or S/E is in logs, standardized

by the cross-sectional mean in year t. (see text)

In interpreting the results of Table 5, one must keep in mind that the average sensitivity of a

firm’s earning to GDP growth is about 3.4, so that for a typical firm and in a typical year, a 1%

increase in GDP increases earnings by 3.4%. Table 1 shows first that firms with higher margins

tend to have a lower sensitivity of their earnings to GDP growth. For instance, for manufacturing

and with industry controls, a one standard deviation increase in the margin of the firm would

make it less sensitive by 1.57 point, so that its sensitivity would be only about 3.4-1.57=1.83.

This is a sizeable effect. It is also robust across samples and specifications and always significant,

though its size varies a bit: the effect is stronger in manufacturing, and smaller when one accounts

for different industry cyclicalities.

Table 5 next reveals that firms with high book-to-market have more procyclical earnings as

well, and significantly so: a one-standard deviation of book-to-market increases the sensitivity of
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profits by slightly less than one.

Finally, the effect of productivity as measured by sales over employees is negative indeed before

the industry controls are introduced, but turns positive and barely significant with the industry

controls. Less productive industries are more procyclical. (By this measure of productivity,

manufacturing is less productive, since sales per employee is smaller in manufacturing in table 3.)

This may be because the productivity proxy is poor, or it may reflect a more direct failure of my

model.

In Appendix, I show that these results are stable to a change in sample to 1978-2004 (thus

eliminating possible compositional effects in the smaller Compustat sample 1963 to circa 1975).

These results are also robust to the inclusion of fixed effects. Note finally that these regressions are

run only for firms which have positive earnings in two consecutive years, so that these regressions

exclude many interesting firms in difficulties. In a given year, there are about 11% of observations

with negative earnings. These firms will be included however in our analysis using portfolios.

The right panel of Table 5 presents the results for the same regression with net income -

“profit”- instead. This variable is after tax, after interest and after depreciation so it is even

more volatile. For this variable the typical sensitivity is 4.5, and again firms with lower margins

or higher book-to market are significantly more procyclical: a one standard deviation increase in

book-to-market increases the sensitivity by about 1.5, and a one standard deviation decrease in

margin increases the sensitivity by about 2 (except for one estimate, for which it is close to 1).

The effect of productivity remains negative before industry controls but insignificant after the

industry effects are accounted for.
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xj,t = Coverage Ind. δ t-stat ξ t-stat R2

OI/S Manuf. yes -0.92 3.0 -3.52 8.1 0.14

no -1.17 3.9 -3.20 7.5 0.11

All yes -0.38 1.9 -1.49 5.7 0.10

no -1.09 6.4 -1.23 5.4 0.06

B/M Manuf. yes 1.06 3.9 -1.02 2.6 0.04

no 1.50 5.9 -1.19 3.2 0.03

All yes 0.92 4.8 -0.58 2.2 0.03

no 1.07 5.9 -0.54 2.1 0.02

S/E Manuf. yes 0.93 2.3 -1.25 2.5 0.04

no 0.09 0.3 -1.63 3.5 0.02

All yes 0.27 1.2 0.12 0.4 0.03

no -0.55 3.1 -0.43 1.9 0.02

δ t-stat ξ t-stat R2

-2.18 3.7 -0.29 0.3 0.05

-2.39 5.0 0.11 0.1 0.04

-1.28 3.6 0.76 1.6 0.03

-2.28 7.9 0.85 2.1 0.02

1.92 4.4 -1.44 2.2 0.03

2.47 6.1 -1.90 3.1 0.03

1.68 5.4 -0.84 1.9 0.02

1.69 5.8 -0.55 1.3 0.01

-0.17 0.3 0.70 0.8 0.03

-0.72 1.5 -0.05 0.1 0.02

0.48 1.4 -0.39 0.9 0.02

-0.86 3.2 -0.26 0.7 0.01

Table 6: Results from the Pooled Panel OLS Regression:

Left panel:∆ logOIj,t = α+ β∆ logGDPt + γxj,t + δxj,t∆ logGDPt + ζ∆ logwt + ξxj,t∆ logwt + εj,t

Right panel:∆ logNIj,t = α+ β∆ logGDPt + γxj,t + δxj,t∆ logGDPt + ζ∆ logwt + ξxj,t∆ logwt + εj,t

Compustat 1963-2004. OLS standard errors.

Ind. = yes if industry controls (levels and interacted with GDP) are computed.

LHS is real % change of operating income (item 13; left panel)

or real % change of net income (item 172; right panel).

The RHS x = OI/S,B/M or S/E is in logs, standardized by the cross-sectional mean in year t.

The “Old” Operating Leverage Does Not Explain the Value Premium

Corporate finance textbooks mention a different “operating leverage” amplification mechanism

which relies on fixed costs. The intuition is that firms differ in their amount of fixed costs. The

higher the share of fixed costs, the more volatile the profits for a given change in sales, since a

high share of costs do not vary with sales. To evaluate if this can account for the value premium,

I run the following regressions:

∆ logOIj,t = α+ β∆ logSj,t + γxj,t + δxj,t∆ logSj.t + εj,t. (4.2)

Table 4 shows that the coefficient δ is generally economically small and sometimes insignificant.

This I interpret as evidence against the “old” operating leverage. My mechanism is different in

34



two respects: (1) I examine how costs and revenue respond to aggregate shocks, and (2) whether

costs are fixed or variable is irrelevant.

xj,t = Coverage Industry Controls δ t-stat R2

Book-to-Market Manuf. yes 0.06 3.6 0.31

no 0.01 0.4 0.30

All yes 0.02 1.8 0.30

no -0.01 1.2 0.29

Table 7: Tests of the “Old” Operating Leverage.

Balanced Panel Regressions

In ongoing work, I use a balanced panel of Compustat firms. The results are similar for these

regression. This balanced panel will allow me in the future to study the dynamic response of a

firm’s output and profits to a macroeconomic shock, i.e. to go beyond one-period responses.

B. The Sensitivity of Real Variables to GDP growth as a function of Margins, Productivity and

Book-to-Market

Macroeconomists care more about production and employment decisions than distribution of

income between workers and capitalists. The model of Section 2 predicts that firms with low

productivity have higher responses of sales and employment to an increase in productivity. To

test this, I run the same regression (4.1) with Z = sales or employment. (A table in appendix

describes the results for Z = investment). Table 8 gives the results.

The typical sensitivity of sales (resp. employment) to GDP for Compustat firms is 1.9 (resp.

1.6), but there is significant heterogeneity in responses. For instance, a firm with a margin higher

than the mean by one standard deviation has a sensitivity of sales which is smaller by about 0.3,

and a manufacturing firm with a book-to-market higher than the mean by one standard deviation

has a sensitivity of sales greater by about 0.3. For employment, the numbers are a bit smaller

for book-to-market. Results with sales per employee as right-hand-side sorting variable remain

fragile.
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xj,t = Coverage Industry δ t-stat R2

Margin OI/S Manuf. yes -0.19 1.5 0.05

no -0.32 2.6 0.03

All yes -0.15 1.5 0.03

no -0.58 7.1 0.02

Book-to-market Manuf. yes 0.31 2.0 0.05

no 0.40 2.8 0.04

All yes 0.06 0.5 0.05

no 0.08 0.7 0.04

Productivity S/E Manuf. yes 0.07 0.4 0.10

no -0.32 1.90 0.08

All yes 0.20 1.60 0.07

no -0.39 3.70 0.05

δ t-stat R2

-0.14 1.1 0.04

-0.26 2.2 0.03

-0.19 11.5 0.03

-0.50 5.8 0.01

0.10 0.9 0.05

0.13 1.3 0.04

0.05 0.5 0.04

-0.03 0.3 0.03

0.26 1.8 0.03

-0.07 0.6 0.01

-0.08 0.7 0.03

-0.51 5.6 0.01

Table 8: Results from the Pooled Panel Regression:

LEFT PANEL: ∆ logSj,t = α+ β∆ logGDPt + γxj,t + δxj,t∆ logGDPt + εj,t,

RIGHT PANEL: ∆ logNj,t = α+ β∆ logGDPt + γxj,t + δxj,t∆ logGDPt + εj,t.

Compustat 1963-2004. OLS Standard errors.

∆ logSj,t = real sales growth (item 12) and ∆ logNj,t = employment growth (item 29)

C. Explaining Portfolio Returns

I now examine if the model can explain the differences of expected returns across stocks by

differences in their cash flow betas. Specifically, for each portfolio i of stocks, I run the time-series

regression:

∆ logOIi,t = αi + βi∆ logGDPt + εi,t, (4.3)

and I test whether the βi line up against the average returns as Section 2 leads us to expect.
12

I apply this analysis first to book-to-market sorted portfolios, and next to size- and book-to-

market sorted portfolios. This is motivated by a large empirical literature in financial economics,

centered around the contributions of Fama and French (1992, 1996) who show that these sorts

generate puzzlingly large variations in expected returns.
12Of course, according to Section 2, this cash flow betas differences should also lead to return betas differences,

but this requires us to make stronger assumption on the pricing kernel.(...)
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To be able to do this regression, I re-construct the portfolios using Compustat as Fama and

French did.13 I compute for each portfolio the sum of the operating income (for instance) of all

the firms in portfolio i at time t, and I construct the sum of the operating income at year t+1 of

all the firms that were in portfolio i at time t.14 This allows me to define the growth rate of real

variables of the value-weighted portfolios.

10 Book-to-Market Sorted Portfolios

Table 9 shows the regression coefficient estimates of (4.3). I also provide estimates for a similar

regression with net income15, employment, investment and sales. The estimates of sensitivities

are increasing in book-to-market, especially for earnings and net income. For these two variables,

the spread in sensitivities is economically and statistically important: an increase of 1% of GDP

increases earnings of the low book-to-market firms by about 1.5%, while it increases the earnings

of high book-to-market firms by 5.5%. This spread of earnings explains well the differences in

average returns as shown in Figure 4: the R2 of a cross-sectional regression of average returns

on the sensitivity is 0.93. The variable behind the sensitivity, according to Section 2, is the

profitability. Figure 5 shows that differences in profitabilities also explain well the differences in

average returns: in this case, the R2 is 0.97. These plots suggest strongly that “value” stocks are

risky simply because they have high cash flow risk.

The sensitivities of the “real” variables are also generally increasing, especially for the extreme

portfolios, but less clearly than for earnings or net income. This is quite consistent with the model

which says that the responses of sales and employment are multiplied by σ, which we assumed to

be less than one in this paper following Result 3.

Table 10 adds the wage in this sensitivity regression, to test the independent effect of produc-

tivity and wages: I run

∆ logZi,t = αi + βi∆ logGDPt + γi∆ logwt + εi,t.

13In particular, I follow their definition of book-to-market and their definitions of deciles based on the NYSE

stocks.
14Since firms change portfolios over time, I need to keep track of where the firms were in year t to compute

the growth between t and t+ 1 of the operating income of firms in portfolio i at t. I drop firms which disappear

between t and t+ 1. This could bias my results if these firms are more cyclical and there is more attrition in low

book-to-market portfolios (and small) portfolios. This seems rather unlikely, but will be examined in future work.
15Running this regression requires that Zi,t > 0 for all time periods. This is not true for net income in this

case, which is negative in some periods for various portfolios. I restrict the sample of the net income regression to

1963-1991 and do not run it for portfolio 10. For these portfolios and this sample, I have positive net income at

all times.
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Overall, the sensitivities on GDP are not much affected. The high book-to-market portfolios are

on average more sensitive (negatively) to the wage, as predicted by Section 2. This pattern is

however not monotonic, with a couple of portfolios behaving differently.

Portfolio i = 1 2 3 4 5 6 7 8 9 10

βi for Zi,t = Earnings 1.42 1.42 1.73 1.79 3.40 3.06 2.93 3.92 3.29 5.52

t-stat 3.42 2.72 1.85 2.87 5.10 6.64 4.21 4.73 5.39 7.20

R2 0.24 0.16 0.11 0.16 0.37 0.29 0.30 0.42 0.28 0.41

βi for Zi,t = Net Income 1.79 2.75 3.06 2.67 6.28 7.49 6.88 9.26 17.97 na

t-stat 2.51 3.53 2.40 3.58 4.38 3.41 3.79 2.88 1.73 na

R2 0.20 0.32 0.20 0.20 0.36 0.41 0.42 0.31 0.19 na

βi for Zi,t = Employment 0.86 1.23 0.84 1.40 1.34 1.20 1.30 1.37 1.17 1.69

t-stat 2.96 4.39 3.86 7.18 7.26 5.77 5.23 5.21 5.96 6.47

R2 0.10 0.30 0.20 0.49 0.49 0.28 0.42 0.39 0.32 0.49

βi for Zi,t = Investment 2.12 2.06 1.70 1.63 1.86 2.31 2.49 3.51 3.20 5.34

t-stat 2.16 2.04 1.83 2.22 3.07 3.29 3.80 4.01 3.25 4.34

R2 0.08 0.13 0.08 0.07 0.12 0.10 0.12 0.22 0.20 0.27

βi for Zi,t = Sales 0.81 0.93 0.78 0.60 1.25 1.14 1.46 1.32 1.28 2.39

t-stat 2.49 3.13 1.65 1.24 3.59 4.07 3.14 3.28 4.31 8.08

R2 0.08 0.18 0.07 0.05 0.20 0.18 0.19 0.20 0.20 0.44

Table 9: Point estimates βi, t-stats and R
2 of the time series regressions:

∆ logZi,t = αi + βi∆ logGDPt + εi,t.

This OLS regression is run for each portfolio i

and for each of the variable Z on the columns.

t-stat computed with Newey-West standard errors and 3 lags
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βi of earnings, sales and employment on GDP, for each of the 10 book-to-market sorted portfolios.

The βi are from Table 9.

Portfolio i = 1 2 3 4 5 6 7 8 9 10

βi for Zi,t = Earnings 1.42 1.54 1.81 2.09 3.61 3.30 3.21 3.63 3.81 5.97

t-stat 3.43 3.29 2.10 3.76 4.90 7.91 5.40 4.71 5.57 7.07

γi for Zi,t = Earnings 0.02 -0.61 -0.42 -1.46 -1.07 -1.16 -1.38 1.39 -2.57 -2.23

t-stat 0.04 0.78 0.41 1.17 1.08 0.87 1.25 0.98 3.00 1.89

R2 0.24 0.17 0.11 0.19 0.39 0.30 0.32 0.44 0.34 0.44

βi for Zi,t = Net Income 2.04 2.78 3.82 2.83 6.26 8.03 7.73 10.59 21.15 na

t-stat 3.00 3.60 2.33 2.93 4.25 3.38 4.65 2.98 1.85 na

γi for Zi,t = Net Income -1.32 -0.14 -4.03 -0.83 0.11 -2.86 -4.46 -7.03 -16.71 na

t-stat 1.23 0.08 1.65 0.41 0.05 1.23 1.78 2.22 1.81 na

R2 0.23 0.32 0.29 0.20 0.36 0.42 0.46 0.35 0.23 na

Table 10: Point estimates βi and γi, t-stats and R
2 of the time series regressions:

∆ logZi,t = αi + βi∆ logGDPt + γi∆ logwt + εi,t.

This OLS regression is run for each portfolio i, for Z = operating income (earnings)

and Z = net income. Sample 1963-2004 for earnings, and 1963-1991 for net income.

T-stat computed with Newey-West standard errors and 3 lags

The 25 Fama-French Portfolios

I apply the same analysis to the 25 size- and book-to-market sorted portfolios constructed by

Fama and French (1996; see Ken French’s website). These portfolios have attracted tremendous

39



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0.4

0.5

0.6

0.7

0.8

0.9

1
Sensitivity of Earnings to GDP Growth, and Mean Returns, for the Ten Book−to−Market Sorted Portfolios

M
ea

n 
M

on
th

ly
 E

xc
es

s 
R

et
ur

n 
(%

)

Coefficient Estimate (Sensitivity to GDP Growth)

1

2 3 4
5

6

7
8

9

10

R2=0.93

Figure 4: This figure plots the estimates of earnings sensitivity to GDP growth (Table 9), for

each of the 10 book-to-market sorted portfolios, and the mean excess return per month. (Data

from Ken French’s website and from Compustat.)
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Figure 5: This figure plots for each of the 10 book-to-market sorted portfolios, the inverse of the

mean over time of the ratio operating income over sales, against the mean monthly excess return.

(Data from Ken French’s website and from Compustat.)
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Figure 6: This figure plots the estimates of earnings sensitivity to GDP growth (Table A3), for

each of the 25 Fama-French portfolio, and the mean excess return per month. (Data from Ken

French’s website and from Compustat.)

interest in the empirical finance literature. Tables A3 and A4 in appendix give the estimated

βi.
16

Just as I did with the ten book-to-market sorted portfolios, Figures 6 and 7 summarize the

association between earning sensitivity to GDP growth (resp. profitability) and mean returns.

Again, the model explains very well

This explanation leaves us with a puzzle however. Why don’t these differences in cash flow sen-

sitivities show up in differences in betas? One possibility is that, as in Campbell and Vuolteenaho

(2004), there is a second risk factor with a smaller market price of risk, for which these stocks

have loadings in the opposite direction. It would be interesting to explain this second risk factor

in term of the model.
16In this case, many stocks have negative net income, and so I am not able to run the regression with net income

growth. As for earnings, only portfolio 1 (the small growth portfolio) has negative income, so it is (unfortunately)

excluded from this picture.
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Figure 7: This figure plots for each of the 25 size and book-to-market sorted portfolios, the inverse

of the mean over time of the ratio operating income over sales, against the mean monthly excess

return. (Data from Ken French’s website and from Compustat.)

5 Conclusions and Work in Progress

Key conclusions:

• This paper gives a full story of why some firms have higher reactions to macroeconomic
shocks → why they have higher loadings on the factors → why the stocks have higher

returns.

• Mechanism emphasized: difference in business cycle response of revenue and costs.

• “Old” operating leverage of corporate finance: costs are fixed b/c inputs are fixed. The
analysis here makes clear that what matters is not whether costs are fixed or variable as a

function of output but how these different costs respond to aggregate shocks.

• No need for growth options.

• Lots of testable empirical predictions, some right, some not so right - but this is in contrast
with factor models which typically do not provide additional testable implications.

• Macro implications to explore.
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Work in progress:

• More empirical work to bring directly the asset pricing relations of Section 2B to the data.
More robustness analysis for the regressions presented here.

• Try factor pricing with aggregate productivity.

• Calibration and numerical simulations to improve and finish (Fama-French portfolios, etc.).

• Work with different assumptions than competitive wage-setting in the DGSE model.

• Numerical solution using non-linear methods to verify and add some results for the DSGE
model.

Future Work:

• Modeling the different sensitivities to discount rate changes, an empirically important com-
ponent of returns (Campbell and Vuolteenaho 2004).

• Using portfolios sorted on margins.

• Across industries patterns.
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6 Appendix

A. Algebraic reminders for Section 2

Campbell and Shiller (1988)

rt+1 = log(1 +Rt+1)

= log (Pt+1 +Dt+1)− log(Pt)
= pt+1 + log 1 +

Dt+1
Pt+1

− pt
= pt+1 − pt + log (1 + exp (dt+1 − pt+1))

log (1 + exp (dt+1 − pt+1)) k + (1− ρ) (dt+1 − pt+1)

ρ =
1

1 + exp d− p
k = − log ρ+ (1− ρ) log(1/ρ− 1).

rt+1 = ρpt+1 − pt + k + (1− ρ)dt+1

pt = ρpt+1 + k + (1− ρ)dt+1 − rt+1

pt =
k

1− ρ
+
j≥1

ρj−1 ((1− ρ) dt+j − rt+j)

=
k

1− ρ
+
j≥0

ρj ((1− ρ) dt+1+j − rt+1+j)

Hansen and Sargent (1980) Prediction Formulas

First compute the expectation of a discounted sum. The [.]+ operator deletes terms with

negative powers.

Et
j≥0

βjA(L)εt+j = Et
j≥0

βjA(L)L−jεt

=

⎡⎣
j≥0

βjA(L)L−j
⎤⎦
+

εt

=
LA(L)

L− β
+

εt

=
LA(L)− βA(β)

L− β
εt.

Apply this formula to compute the expectation as of t− 1 :

Et−1
j≥0

βjA(L)εt+j = Et−1Et
j≥0

βjA(L)εt+j
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= Et−1
LA(L)− βA(β)

L− β
εt

=

LA(L)−βA(β)
L−β − −βA(β)

−β
L

εt−1

=
LA(L)− βA(β)−A(β)(L− β)

L (L− β)
εt−1

=
A(L)−A(β)
L− β

εt−1.

Thus

(Et −Et−1)
j≥0

βjA(L)εt+j =
LA(L)− βA(β)

L− β
− A(L)−A(β)

L− β
L εt

= A(β)εt.

B. Computations for the DGSE model of Section 3

Bellman Equation

V (M1,M2, z) = max
c,n,I

U(c, 1− n) + βEz /z [V (M1,M2, z )]

s.t. : c+ ψ(I) = z(n− cf ×M2)
αM1−α

1

M1 = (1− δ)ζM1 + Iυ

M2 = (1− δ)M2 + I

Social Planner Problem and First-Order Conditions

Social Planner Problem:

max
{ct,nt,It,M1,t+1,M2,t+1}∞t=0

E
t≥0

βtU(ct, 1− nt)

ct + ψ (It) = ztW (nt) = zt (nt − cf ×M2,t)
αM1−α

1,t .

M1,t+1 = (1− δ)ζM1,t + Itυ,

M2,t+1 = (1− δ)M2,t + It,

given M1,0 and M2,0.

Lagrangrean:

L = E
t≥0

βt

⎛⎜⎜⎜⎜⎜⎝
U(ct, 1− nt) + λt zt (nt − cf ×M2,t)

αM1−α
1,t − ct − ψ (It)

+μ1,t ((1− δ)ζM1,t + Itυ −M1,t+1)

+μ2,t (M2,t+1 − (1− δ)M2,t − It)

⎞⎟⎟⎟⎟⎟⎠
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First-order conditions:

Uc(t) = λt,

Ul(t) = λtαzt (nt − cf ×M2,t)
α−1M1−α

1,t ,

ψ (It)λt = μ1,tυ − μ2,t,

μ1,t = β(1− δ)ζEt μ1,t+1 + β(1− α)Et λt+1zt+1 (nt+1 − cf ×M2,t+1)
αM−α

1,t+1 ,

μ2,t = β(1− δ)Et μ2,t+1 + βαcfEt λt+1zt+1 (nt+1 − cf ×M2,t+1)
α−1M1−α

1,t+1 .

Steady-state

The nonstochastic steady-state (i.e. setting z = 1) steady-state variables (c, n,λ,μ1,μ2, I,M1,M2)

satisfy:

Uc(c, 1− n) = λ,

Ul(c, 1− n) = λα (n− cf ×M2)
α−1M1−α

1 ,

ψ (I)λ = μ1υ − μ2,

μ1 (1− β(1− δ)ζ) = β(1− α)λ (n− cf ×M2)
αM−α

1 ,

μ2 (1− β(1− δ)) = βαcfλ (n− cf ×M2)
α−1M1−α

1 ,

c+ ψ (I) = (n− cf ×M2)
αM1−α

1 ,

M1 (1− (1− δ)ζ) = Iυ,

M2δ = I.

Rewriting the system:

Uc(c, 1− n) = λ,

Ul(c, 1− n)
Uc(c, 1− n) = α

n

M1
− cf × M2

M1

α−1
,

ψ (I) =
μ1
λ
υ − μ2

λ
,

μ1
λ
(1− β(1− δ)ζ) = β(1− α)

n

M1
− cf × M2

M1

α

,

μ2
λ
(1− β(1− δ)) = βαcf

n

M1
− cf × M2

M1

α−1
,

c+ ψ (I)

M1
=

n

M1
− cf × M2

M1

α

,

M1 (1− (1− δ)ζ) = Iυ,

M2δ = I.
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One possible algorithm to solve this steady-state: first, pick a guess n/M1. Then compute

M2/M1 =
1−(1−δ)ζ

δυ
and n

M1
− cf × M2

M1
. Thus obtain μ1/λ, μ2/λ and I. Thus get M1,M2, n, and λ.

Use the labor supply equation to check that the guess n/M1 is correct. If not, adjust the guess.

Log-linearization

Let wt = αzt (nt − cf ×M2,t)
α−1M1−α

1,t . Log-linearizing the system around this nonstochastic

steady-state yields:17

ct = εcλλt + εcwwt

nt = εnλλt + εnwwt

ut =
n∗

n∗ − cfM∗
2

nt +
−cfM∗

2

n∗ − cfM∗
2

M2,t

wt = zt + (1− α)M1,t + (α− 1)ut
I∗ψ (I∗)
ψ (I∗)

It + λt =
μ∗1υ

μ∗1υ − μ∗2
μ1,t +

−μ∗2
μ∗1υ − μ∗2

μ2,t,

μ1,t = β(1− δ)ζEt μ1,t+1 + (1− β(1− δ)ζ)Et λt+1 + zt+1 + αut+1 − αM1,t+1 ,

μ2,t = β(1− δ)Et μ2,t+1 + (1− β(1− δ))Et λt+1 + zt+1 + (α− 1)ut+1 − (α− 1)M1,t+1 .

c

c+ ψ(I)
ct +

ψ(I)

c+ ψ(I)

Iψ (I)

ψ(I)
It = zt + αut + (1− α)M1,t

M1,t+1 = (1− δ)ζM1,t + (1− (1− δ)ζ) It,

M2,t+1 = (1− δ)M2,t + δIt.

C. Data Sources for Section 5

The macroeconomic data comes from the BEA (www.bea.gov) and the BLS (ww.bls.gov).

The stock returns and betas are from Ken French’s website. I used the Compustat database

and formed portfolios on book-to-market and on size and book-to-market as in Fama and French

(1996).

Sample Construction in Compustat

I keep only firms with a december fiscal-year, to make the timing comparable to macroeco-

nomics aggregates. I also keep only firms listed on the NYSE, the Nasdaq or the American

Exchange. I do keep foreign-owned firms. I show the results both for the manufacturing sample

and the full sample. I define book-to-market as Fama and French (1992, 1996) and drop outliers

(book-to-market > 20 or < 0.005).

17I use the Rotemberg-Woodford (1995) notation for the system Uc = λ, Ul = wλ.
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Industry Controls

The industry controls are industry dummies and industry dummies interacted with GDP

growth. The industries are the 30 industry classifications used by Fama and French (see prof.

French’s website), which closely follow the 2 or 4-digit SIC codes.

D. Additional Empirical Results for Section 5

Table A1 gives the results of the earning sensitivity regression (4.1) for the sample 1978-2004.

Table A2 gives the result of the regression (4.1) for Z = investment.

xj,t = Coverage Industry δ t-stat R2

OI/S Manuf. yes -2.56 6.3 0.14

no -2.86 7.1 0.12

All yes -0.98 3.9 0.10

no -1.71 7.8 0.07

B/M Manuf. yes 1.36 3.6 0.04

no 1.93 9.6 0.03

All yes 1.10 4.5 0.03

no 1.19 5.1 0.02

S/E Manuf. yes 1.22 2.3 0.03

no 0.38 0.9 0.02

All yes 0.34 1.3 0.02

no -0.40 1.8 0.01

Table A1: Results from the Pooled Panel Regression:

∆ logOIj,t = α+ β∆ logGDPt + γxj,t + δxj,t∆ logGDPt + εj,t

Compustat 1978-2004.
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xj,t = Coverage Industry δ t-stat R2

OI/S Manuf. yes -0.89 2.6 0.02

no -1.28 3.8 0.02

All yes -0.86 3.5 0.02

no -1.58 7.7 0.01

B/M Manuf. yes 0.44 1.4 0.03

no 0.63 2.2 0.03

All yes 0.52 2.3 0.03

no 0.60 2.8 0.03

S/E Manuf. yes -2.01 4.9 0.02

no -2.22 6.5 0.01

All yes -1.11 4.1 0.02

no -1.92 8.7 0.01

Table A2: Results from the Pooled Panel Regression:

∆ log Ij,t = α+ β∆ logGDPt + γxj,t + δxj,t∆ logGDPt + εj,t

Compustat 1963-2004.
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# βi Earnings t-stat R2 βi Empl. t-stat R2 βi Invt t-stat R2 βi Sales t-stat R2

1 na na na 1.32 2.02 0.04 3.36 1.81 0.07 0.88 1.23 0.02

2 2.45 0.61 0.02 1.89 1.33 0.11 2.83 0.74 0.03 1.69 0.46 0.01

3 2.84 3.50 0.24 2.17 6.45 0.37 5.31 6.13 0.36 1.94 4.47 0.30

4 4.65 3.69 0.27 1.75 5.85 0.40 5.93 3.57 0.41 2.59 6.64 0.46

5 4.43 7.32 0.47 1.71 5.55 0.46 5.86 3.59 0.38 2.39 4.88 0.44

6 0.79 0.71 0.02 1.56 2.24 0.09 2.58 1.68 0.05 2.02 2.08 0.12

7 3.16 5.13 0.45 2.26 5.03 0.42 5.17 5.15 0.35 1.56 3.84 0.33

8 2.94 3.42 0.32 2.39 8.33 0.45 5.37 3.80 0.26 2.33 8.14 0.46

9 5.02 4.71 0.35 2.33 4.75 0.32 7.81 6.85 0.47 2.99 3.74 0.19

10 4.42 7.52 0.37 1.47 5.68 0.40 3.50 2.83 0.12 1.72 6.07 0.28

11 2.51 5.10 0.24 2.47 3.86 0.10 1.29 1.01 0.02 1.66 4.31 0.23

12 2.68 5.77 0.35 1.24 5.16 0.21 3.12 3.49 0.16 1.64 6.47 0.32

13 3.95 4.51 0.37 1.27 5.89 0.33 4.46 4.20 0.27 1.65 4.19 0.28

14 3.49 5.60 0.43 1.75 3.87 0.34 5.18 5.08 0.31 1.89 5.30 0.39

15 3.54 4.96 0.25 1.20 2.87 0.21 2.83 2.54 0.10 1.89 3.38 0.25

16 1.89 2.93 0.31 1.92 4.97 0.38 3.25 3.53 0.19 1.36 4.42 0.20

17 2.58 5.65 0.37 1.60 5.85 0.37 3.24 2.94 0.19 1.45 4.55 0.22

18 3.03 8.12 0.44 1.20 6.20 0.38 3.32 3.90 0.21 1.25 5.56 0.29

19 3.59 4.42 0.32 0.86 2.91 0.16 3.50 5.99 0.16 1.45 4.51 0.29

20 3.87 4.86 0.25 1.01 3.53 0.22 2.62 1.95 0.07 1.10 3.46 0.12

21 1.23 3.67 0.22 0.63 4.06 0.10 1.92 2.02 0.09 0.69 3.53 0.12

22 1.34 1.76 0.08 0.82 3.73 0.24 1.16 1.80 0.04 0.32 0.81 0.02

23 3.61 6.18 0.41 1.18 4.64 0.36 1.48 2.23 0.07 1.16 3.04 0.15

24 3.20 6.28 0.32 1.17 6.67 0.38 2.52 3.84 0.14 1.13 4.10 0.16

25 5.25 4.52 0.32 1.56 7.81 0.40 4.65 5.08 0.24 1.90 5.64 0.28

Table A3: Point estimates βi, t-stats and R
2 of the time series regressions:

∆ logZi,t = αi + βi∆ logGDPt + εi,t.

This OLS regression is run for each portfolio i

and for each of the variable Z on the columns.

t-stat computed with Newey-West standard errors and 3 lags
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# βi t-stat γi t-stat R2

1 na na na na na

2 2.34 0.70 0.54 0.13 0.02

3 2.98 3.85 -0.72 0.70 0.25

4 4.72 3.48 -0.34 0.35 0.27

5 4.54 7.58 -0.55 0.57 0.47

6 0.87 0.97 -0.42 0.24 0.02

7 3.17 5.63 -0.04 0.04 0.45

8 3.03 3.17 -0.43 0.39 0.32

9 4.89 4.05 0.64 0.41 0.35

10 5.28 8.41 -4.20 2.66 0.49

11 2.70 4.99 -0.90 0.91 0.26

12 2.79 6.35 -0.53 0.78 0.36

13 4.11 4.05 -0.78 0.68 0.38

14 3.45 4.83 0.18 0.13 0.43

15 4.11 5.52 -2.77 2.30 0.31

16 1.92 3.16 -0.13 0.21 0.31

17 2.72 6.86 -0.68 0.69 0.38

18 3.28 6.38 -1.25 1.40 0.47

19 3.58 5.03 0.06 0.05 0.32

20 4.69 6.68 -4.04 3.19 0.35

21 1.27 4.12 -0.21 0.37 0.22

22 1.54 2.27 -1.00 0.93 0.09

23 3.88 5.83 -1.29 1.17 0.43

24 3.18 6.03 0.12 0.09 0.32

25 5.83 4.35 -2.81 2.14 0.36

Table A4: Estimates of ∆ logZi,t = αi + βi∆ logGDPt + γi∆ logwt + εi,t,

for the 25 Fama-French portfolios. This OLS regression is

run for each portfolio i, for Z = operating income (earnings).

Sample 1963-2004, T-stat computed with Newey-West standard errors and 3 lags
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