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1 Introduction

Economists have long recognized the necessity to vary prices to allocate congestible re-
sources efficiently when demand changes over time. Peak load pricing, which deals with
the simplest case where demand changes are predictable, constitutes the most celebrated
application.! In this paper, we investigate the extent to which responsive pricing, a pric-
ing scheme introduced by Vickrey in 1971 that proposes to vary prices in real time as a
function of the level of capacity utilization, can increase efficiency when demand changes

are unpredictable.? The class of applications that are relevant include:

e Telephone use: This was the original application used by Vickrey to motivate re-
sponsive pricing. Vickrey proposed to quote each new user a charge that would vary
as a function of the level of network congestion. Other economists have proposed to
vary price in real time in electricity markets (Borenstein, 2001) and Internet pricing

(Varian and MacKie-Mason, 1994).3

e Road pricing: The San Diego’s Regional Planning Agency has used responsive pric-
ing to allocate fast track lanes in highways. Cars that want to use the fast track
lanes have to pay a fee that varies in real time as a function of congestion. Con-
sumers face a trade-off between the amount of time they want to save and the fees

they are willing to pay (http://argo.sandag.org/fastrak/).

e Ski resorts: Prices could vary in real time to give an incentive to ski less during
high demand periods thus reducing lines, and to ski more when demand is low thus
achieving a more efficient use of capacity. The same principle could be applied to

price access to other sport facilities and theme parks.*

!See the seminal work of Boiteux (1956 and 1960), and for a recent review, Crew, Fernando and
Kleindorfer (1995).

2Vickrey’s main message was to “call attention to the possibilities that arise if one attempts seriously
to promote efficiency through causing prices to fluctuate so as to clear the market [...] even in response
to those fluctuations that can not be fully predicted in advance.”

3To illustrate, easyEverything, the largest chain of Internet café in the world, followed Vick-
rey’s proposal and gives discounts that are a function of the number of vacant terminals
(http://www.easyeverything.com/ and Courty and Pagliero, 2003).

4To deal with waiting on popular rides, some theme parks sell fast track passes that en-
ables holders to bypass queues (http://www.sixflags.com/parks/wyandotlake/parkinfo/fastlane.asp)



Other examples can easily be found. In these applications, traditional allocation
schemes, such competitive resale markets, auctions, or even advance booking, would be
difficult to implement in practice. Responsive pricing is much simpler. It only requires
to measure congestion (i.e. utilization rate) in real time and to be able to communicate
congestion-contingent prices to consumers. Responsive pricing proposes to increase access
prices as utilization rates increase — that is, as the level of capacity utilization gets closer
to congestion.

To understand why prices have to respond to demand shocks, consider what happens
under unresponsive pricing. If prices are set according to the expected level of demand at
a given time, as predicated under peak load pricing, the very nature of the randomness of
the arrival process implies that there are times when the number of new arrivals exceeds
or falls short of available capacity. If prices do not vary as a function of realized demand,
some potential buyers are denied access when there is a sudden arrival of consumers and
capacity is wasted when there is a low demand realization.

The set of applications where responsive pricing could be used have the characteristics
that although demand variations, due to changes in the number of consumers requesting
access, are to some extent impossible to predict, it may be possible to influence the length
of time consumers use the service. When this is the case, one can seriously think of using
prices to achieve more efficient allocations of the congestible resource between users. The
welfare gains from using responsive pricing are potentially great since congestion and/or
unused capacity otherwise prevail. For example, lines in ski resorts and unused telephone
capacity are common.

There are two basic elements to responsive pricing. First, responsive pricing charges
consumers in real time, as consumption takes place. If w denotes an arrival realization
and t time, responsive pricing computes and announces the price for consumption in
interval t 4+ dt, p;(w), only at time ¢. This rules out, for example, advance bookings.
Second, the instantaneous price depends on a single state variable: the level of capacity

utilization. If capacity utilization is ¢;(w), then the instantaneous price is set according

while others offer reservation systems which replace waits with virtual lines assigning ride times
(http://www.themeparksonline.org/).



to py(w) = r(q:(w)) where 7() is a given non-decreasing function. Once the function r() is
set, consumers play a game of incomplete information. They try to guess future prices to
make their consumption decisions. In turn, their consumption decisions determine future
prices in equilibrium.

This work presents a welfare analysis of responsive pricing. We consider a social
planner who sets the responsive pricing function r() to maximize social welfare. Can
the social planner achieve, or at least approach, the efficient allocation with responsive
pricing? Stated formally, does there exist a function r() such that the allocation that
result from the game that consumers subsequently play, be arbritrarly close to the efficient
allocation?

We model the dynamic allocation problem as follows. At every point in time a random
arrival flow of consumers request access. Consumers consume one unit of service per
unit of time and have downward sloping demands. They value each additional unit less
than the previous one. For tractability reasons, we focus the core of the analysis on a
simple consumer decision problem where each consumer only chooses when to terminate
consumption. The analysis proceeds in three steps. We first derive the efficient allocation.
Second, we compute the equilibrium under responsive pricing and show that there is no
function r() that implements the efficient allocation. Finally, we investigate whether it
is possible to construct a sequence of responsive pricing functions () that approach the
efficient allocation.

Our analysis establishes several results. We show that responsive pricing achieves
full capacity utilization in the limit — when the price is extremely responsive to changes
in the level of capacity utilization. Sudden demand shocks trigger immediate changes
in prices and consumers adjust their length of use, resulting in an elimination of excess
demand or unused capacity. We also show that the limit outcome is efficient under
a simple condition on consumer demands, called the no-crossing condition. When this
condition holds, equilibrium consumption strategies are very simple. Consumer terminate
consumption when their marginal willingness to pay is equal to the instantaneous price.
The efficiency result, however, does not generalize to the case where the no-crossing

condition does not hold. In fact, we present an example where consumer demands may



cross and where no responsive pricing function can approximate the efficient allocation.

This work stresses the distinction between the concepts of full capacity utilization and
efficiency. These two concepts are equivalent in the standard textbook model of supply
and demand. In our application, these two concepts are not always equivalent. Although
responsive pricing achieves outcomes that are arbitrarily close to full capacity utilization,
these outcomes are not always efficient.

The closest work to our analysis is Vickrey (1971). Vickrey introduced the concept
of responsive pricing and speculated that it may achieve efficiency. Vickrey’s conjecture
is often taken for granted. For example, Joskow and Tirole (2004) argue that “the case
of price-sensitive consumers who react efficiently to real time prices is the textbook rep-
resentation of consumer demand.” Our analysis qualifies this conjecture and shows that
efficiency is not always warranted under responsive pricing. Our analysis builds on a con-
cern already identified by Vickrey (in the context of an application to telephone pricing)
in his original proposal: “one significant imperfection would remain with such a system: a
user upon being informed of the current rate may still be unclear as to whether he should
let the call go through at the current rate or defer the call until later, since he has no
assurance of what the rate would be at the later time.” Our model formalizes Vickrey’s
conjecture that consumer forward looking behavior may impede efficiency.® In addition,
we identify a condition under which the efficient outcome is always achieved.

The paper is organized as follows. The next section presents the model. Section
3 analyses the steady state version of the model and introduces the main themes of the
paper. Section 4 analyzes the dynamic version of the model and presents the main results.

Section 5 discusses an important extension. Section 6 concludes.

2 Model

We consider a congestible resource and we denote the resource’s capacity (). We treat ()

as exogenously given and we assume that all costs are fixed. The marginal cost of serving

5Vickrey focused on consumers’ decision to strategically postpone the start of consumption while our
model focuses on the decision to strategically postpone the decision to end consumption. The logic for
inefficiency is the same in both cases and rests on the idea that a single instantaneous prices may not be
enough to communicate the right consumption incentives.
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an additional consumer is zero up to capacity ) and infinite once capacity is reached.

The aim of the model is to capture a class of applications where consumers have
some discretion over the amount they consume which could be measured in units of time
(Internet access, telephone) or number of rides (theme park, ski resorts). Formally, we
make two assumptions: (a) consumers have decreasing marginal valuation for the service
and (b) consumers can terminate the service at any time. These assumptions are realistic
in the applications just mentioned.

There are I types of consumers. A consumer of type ¢ who has already consumed n
units gets utility v*(n) > 0 for the marginal unit where v’ is continuous, differentiable,
and “Lvi(n) < 0. The assumption v*(n) > 0 implies that it is never efficient that a
consumer terminates consumption if there is capacity available. We start by assuming
that consumers have identical demands (I = 1) and then discuss how the argument
extends to heterogeneous demands (/ > 1). Consumers have discount factor 0 < p < 1.
To simplify, we assume that consumers are risk neutral.

The arrival process is a vector ¢; = (€});—. ;. €:(w)dt is an integrable continuous sto-
chastic process on some probability space with increments distributed over E = [¢], €} ] X
.. X [¢f, €] such that 0 < € < €}, < 00.® Sample path w €  captures an entire history
of arrival realizations €!(w) for t > 0. fot €' (w)dz consumers of type i arrive between 0
and t in sample path w. In the steady state analysis (Section 3) we impose the additional
assumption €(w) = €(w). In the dynamic analysis (Section 4) we do not make any further
assumption on € (w). There could be a seasonal component (distribution of ¢, depends on
t) and also a random component that could be correlated over time.

To simplify the exposition, the core of the analysis presented in Section 4 focuses on the
simplest possible formulation of the problem where consumers only decide when to stop
consumption. This assumption rules out the possibility to temporarily delay consumption.
It is appropriate as long as consumers have to pay a sufficiently high cost for doing so.

We clarify this point in Section 5 where we discuss more general consumption rules.

6The assumption that the increments of €;(w)dt are positive and bounded greatly simplifies the deriva-
tions because it guarantees that all equilibrium outcomes are bounded and continuous functions of time.
Without the assumption ef > 0 we would have to keep track of the periods when no consumers ar-
rive/leave.



The level of capacity utilization is denoted by ¢ (w). We normalize go(w) = 0 without
loss of generality. The instantaneous price when the level of capacity utilization is q is
7(q) where 7(.) is an exogenously given, non-negative, continuous, function with support
[0, Q] that is differentiable and increasing on the set {x s.t. r(x) > 0}. This captures the
spirit of Vickrey’s proposition that “it seems entirely satisfactory to base rates on levels
of activity.” Finally, we assume that 7(0) < v'(0) to warranty that consumption takes
place.

Throughout the paper, we use subscript to denote the time when a variable is measured
and superscript to denote the time when a consumer arrives. A consumption rule is a set
of indicator functions dy*(w) defined for s < t where d’*(w) = 1 if the consumer of type
i who arrived at time s is consuming at time ¢ and d;*(w) = 0 otherwise. Consumption
rule d*(w) is feasible if it is non-increasing in ¢ (to rule out interruptions). The level of

capacity utilization at time ¢ is
t ) ]
0@) = [ S d @) w)ds g
0

Finally, Ji(w) = {e,(w) € E,z € [0,t]} denotes the realization of the arrival process up to
time ¢ in sample path w. Jy(w) € Q, where €, represents the set of possible realizations

up to t.

Perfect Bayesian Equilibrium: Consumers play a continuous game of incomplete infor-
mation. Although we present the game in its full generality, it is important to keep in
mind that matters will greatly simplify in most of the cases we consider. In particular,
the consumers’ beliefs will not play a role and the optimal consumption strategies will
follow simple rules. Consumers are privately informed about their arrival time and about
their types but they may not know Jy(w). In contrast with standard games of incom-
plete information, consumers do not observe directly other consumers’ actions d*(w).
This assumption is realistic for the applications we have in mind. Consumers observe
only the realized price. We define p,(w) the equilibrium price at time ¢ in sample path
w. A consumer who arrives at s and has consumed till ¢ > s observes price history

H} (w) = {p:(w),x € [s,t]} € N7 where N/ is the set of non-negative functions defined on



[s,t]. We denote pl®(Jy;w, HY) the belief held at ¢ by a type i consumer (who arrived
at s in sample path w and has obseved information H; € W) that the arrival history is
J; € Q. We leave the initial belief p’*(J,;w) unspecified beyond the assumption that
pis(Js(w);w) > 0 and we restrict to beliefs that are computed according to Bayes rule

where possible.
i (T, Hy) = Pr (J; | " (i), Hy) (2)
The consumption strategy of consumer s maximizes for any ¢ > s and for any w
vientty) = B ([ ) (0o - o) = ) o i)

subject to feasibility and to the condition that di*(w) depends only on Hj(w). The

equilibrium price at time t is

pe(w) = r(g(w)) (3)
We say that equilibrium capacity utilization is implementable if ¢;(w) < @ and we restrict
to equilibrium that satisfy this constraint. If ¢;(w) > @ then demand is greater than
capacity at time ¢ in sample path w. In such events, one would have to supplement the
pricing rule r(.) with a rationing rule to determine how capacity is allocated. In contrast,
the implementability constraint narrows down the analysis to equilibrium allocations that
are solely defined by responsive pricing. We acknowledge that understanding the rationing
property of responsive pricing is interesting in itself, but this issue can be investigated
independently of question of whether responsive pricing can approximate the efficient
allocation.
A perfect Bayesian equilibrium is a pair (di’s(w), /Li’s(Jt;w,Hf)) such that the con-
sumption strategy profile di’s(w) maximizes consumer utility, prices p;(w) are given by

pricing rule (3), and the level of capacity utilization is implementable ¢;(w) < Q.

Efficient Consumption Rule: The social planner discounts the utility of a consumer who
arrives at time s by p®. This implies that all consumption that takes place at time ¢ is

discounted by p’. The social planner maximizes
) 00 t ) )
W(d (W) = E / p / S d (w)u(t — 5)el (w)dsdt
0 05
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subject to the constraint that dy*(w) depends only on J;(w) and is non-increasing in t,
and subject to the implementability constraint.

What distinguishes the current capacity allocation problem is the fact that we restrict
to allocation rules defined by responsive pricing. To clarify this point, consider a slightly
different version of the model that can be interpreted in terms of inter-temporal general
equilibrium theory. To start, assume that the arrival history is public information and
assume that one can define state contingent claims for future consumption where states
are conditional on the realization of Jy(w). If state contingent markets were open for
consumption in all future dates, or if consumers could continuously trade in a sufficiently
large set of intermediate markets, then one could investigate whether the first welfare
theorem would apply. Alternatively, the allocation problem could be interpreted as a
mechanism design problem. Under that interpretation, the designer would request new
consumers to reveal their types and would define an allocation rule that depend on con-
sumers’ messages. We rule out these solutions to the allocation problem, because such
allocation rules are not realistic for the applications we have in mind. Opening future
markets in the absence of those consumers who have not yet requested access would be
meaningless, or would require the intervention of intermediaries which again is not real-
istic, at least in some of the applications considered. Similarly, requesting consumers to

send messages in real time is unrealistic.

3 Steady State Example

In the simplest version of the model, the arrival rate does not vary over time. This
benchmark case introduces the different steps we will again follow later to solve the model,
and reveals some basic properties of responsive pricing that can be illustrated graphically.
To simplify, we also assume homogeneous consumer demand (I = 1). We later generalize
the argument to heterogenous demands. In terms of our notations, this means that we
ignore the time subscript as well as the type superscript. The number of consumers who
request access per unit of time is €(w)dt. We refer to e(w) as the state of the world.

To start, we derive the efficient allocation. Let d,(w) = 1 if consumers are still con-



suming z units of time after arriving.The social planner sets d,(w) to maximize expected

steady-state surplus.

subject to the constraint that d,(w) is non-increasing and the level of capacity utilization
is implementable [ d,(w)e(w)dr < Q. Let n(w) = [;° dy(w)da represent the number of
units consumed in steady state. The efficient consumption rule specifies that consumers

should equally share the capacity

Under that consumption rule no capacity is wasted and it is not possible to reallocate
capacity to increase welfare.
Next, we derive the equilibrium under responsive pricing. Consumers observe the
steady state price p(w) and decide how long to consume. They maximize [;° p"d,(w) (v(z) — p(w)) d
where d,(w) € {0,1} and is non-increasing in z. Consumers consume 7 units of time such
that v(n) = p(w). The level of capacity utilization is given by (1), ¢(w) = ne(w), and
the price is determined by the pricing function (3), p(w) = r(g(w)). After replacement,

equilibrium consumption in state e(w) must satisfy

There exists a unique solution, n(w),to the above equation. If n(w) is such that g(w) =
n(w)e(w) < @ for all w then the equilibrium is well defined. This will hold if and only
if r(Q) > v (%) Under this condition, consumers demand at most % and capacity is
sufficient to meet demand even for the highest possible arrival rate since g(g,) < 5h5% = Q.
If this condition does not hold, then the demand in state ¢, is higher than capacity, and
the equilibrium is not well defined. Note that consumers’ initial beliefs about the state do
not play a role because once consumers have observed the price they automatically know
the true state.

Higher arrival rates imply that consumers consume less (dn/de < 0), the level of

capacity utilization is higher (dg/de > 0), and the price is higher (dp/de > 0). Figure 1

illustrates these properties. To simplify, the figure assumes that the arrival rate is either
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high or low. The equilibrium level of capacity utilization is located at the point where the
inverse demand (v(g/€)) and the pricing curve intersect. The realized price is higher in
the high state when capacity is scarcer, and consumers respond by sharing the capacity
available more (lower n).

To understand what is specific to responsive pricing, we contrast the outcome under
responsive pricing with the outcome under fixed pricing. Under fixed price (r(q) = )
consumers consume 7 units such that v(n) = r. Length of use does not depend on the
state of the world, e(w), because consumers do not have any incentive to vary consumption
as a function of congestion.

To conclude, we investigate the efficiency properties of responsive pricing. To start,
note that there does not exist a function r(.) that implements the efficient allocation if
there are more than 2 states with different arrival rates e, > ¢;. The only prices that
decentralize the efficient allocation are p, = v <Q> and p; = v <§) but the efficient

en
allocation is such that ¢, = ¢, = Q. It is not possible to set r such that r(Q) = v <Q> =

Eh
v(8)

£l :

Next, we show that responsive pricing can implement the efficient outcome in a limit
sense. Consider the class of pricing functions 7, such that 7,(¢) = 0 for ¢ < @ — « and
Ta(q) = v(Q/en)(1 — %) otherwise. These functions are equal to zero up to () — a and
then linear with 7,(Q) = v(Q/e). Since 7, (Q) > v (%) the equilibrium is always well
defined. The equilibrium level of capacity utilization is given by 7, (¢(w)) = v(g(w)/e(w)).

But 7, (¢(w)) > 0 since v(.) > 0. An upper bound for unused capacity is,

Q—qw) <a

More responsive schemes (lower «) increase capacity utilization and therefore efficiency
(see Figure 2). Capacity utilization converges to full occupancy as « converges to zero.

This limit case corresponds to the consumption rule that maximizes social welfare.”

7 Alhtough there are several ways to define the limit of pricing scheme 7, independently of the concept
used, the limit does not implement the efficient allocation. One can define the limit as a correspondance

such that 7(Q) € [0, v (%)] This pricing scheme, however, has little practical interest because it does

not identify a unique price when occupancy reaches capacity. Another way to define the limit is 7(¢) = 0
for ¢ < @ and 7(Q) = v(Q/en). There is no equilibrium for this pricing rule.

10



The analysis generalizes to the case of heterogeneous consumers. Denote n'(p,w) the
number of units consumed by type i when price is p, v!(n’(p,w)) = p. The equilibrium

price in state e(w) is uniquely defined by

plw) =r (Z éwn’ <p<w>,w>>

i
and the equilibrium level of capacity utilization is given by ¢(w) = >, €(w)n'(p (w) ,w).
The analysis of efficiency carries through.

The analysis of the steady state version of the model shows that responsive pricing
endogenously sets prices in response to demand realizations and implements an outcome
that both achieves full capacity utilization and is efficient in the limit. In this version of the
model, prices do not vary over time and consumers face a simple decision problem. When
the arrival rate changes over time, however, prices continuously change and consumers
face a more complex decision problem because they have to anticipate future prices to
decide whether to retain access or quit. The rest of this paper generalizes the analysis to
non-stationary arrival processes and asks whether the results on efficiency carry through.
As we will see, the efficiency analysis carries through for homogeneous consumer demands

but not always for heterogeneous demands.

4 Dynamic Analysis

We start by focusing on the case where consumers have identical demands (I = 1). The
analysis mirrors the argument just presented. We first characterize the first-best con-
sumption rule and then the perfect Bayesian equilibrium. Then, we investigate whether
responsive pricing can approach the efficient allocation. We conclude by considering the

case of heterogeneous demands ({ > 1).

4.1 Efficient Consumption Rule

We reintroduce the time subscript but we ignore type superscript since we assume in this
subsection that consumers are homogeneous. Define #(w) as the first point in time when

capacity is reached if consumers do not terminate consumption fg(w) ez(w)dxr = @ and

11



~

bi(w) as the solution to

~ y such that f e (w)dr = Q if t > t(w)
bt ((_U)

0if t < t{w)
Bt(w) is increasing in ¢. It corresponds to the ‘oldest’ consumer (where consumer a is
‘older’ than consumer b if a has arrived before b) who can consume at time ¢ if all consumers
who have arrived after that consumer are also consuming and capacity utilization is
implementable.

llfbt() S<t

Proposition 1: The efficient consumption rule is c?f(w) =
0if s < bt( )

Proof c/i\f (w) is feasible and implementable by construction. The proof that c/i\f (w) is the
only consumption rule that achieves the efficient outcome goes by contradiction. Assume
that there exist an alternative consumption rule d:(w) different from di(w) such that

W (d; (w)) > W (d;(w)).

Claim: There does not exists a sample path w and a ¢y such that

(fo CZ;SO (w)v(to — s)es(w)ds > fto di (w)v(to — s)es(w)ds
(5) { Oto c?fo (w)es(w)ds < Q

Since fgt(; () €3 (w)ds = @, the capacity constraint condition (second inequality in S) im-

plies that



A contradiction with S’s first inequality.

The above claim rules out the possibility that W (d(w)) > W(c?f(w) The only possibility
is W (d; (w)) = W (d3(w)) but this implies that [1° ¢, (w)v(to—s)e,(w)ds = [1° d; (w)v(ty—

s)es(w)ds for any sample path w and to. Therefore, d(w) = &\f(w) A contradiction.O

Efficiency occurs if all consumers who arrive up to #(w) consume and for ¢ > #(w) only
those consumers who arrive between Zt(w) and t consume. The intuition for the first
best consumption rule in the case of homogeneous demands is simple. Once full capacity
utilization is reached, it is efficient to share the capacity so that for every new consumer
who arrives, the consumer who has been using the service the longest terminates con-
sumption. Under that allocation, new consumers replace older consumers, who value the
service less. Define py(w) = v(t — b, (w)) as the valuation of the consumer who has been
using the service for the longest length of time at time ¢. p;(w) is the marginal social

value of capacity for ¢ > #(w) (the marginal social value of capacity is 0 for t < t(w)).

4.2 Perfect Bayesian Equilibrium

We show that in any equilibrium consumers terminate consumption as soon as their
willingness to pay for a unit of consumption falls below the price.

Lemma 1: In any equilibrium, d§(w) = 1 if and only if v(f — s) > py(w) for t € [s, 1].

Proof The ‘if ’ part is obvious. The proof of the ‘only if * part goes by contradiction.
Assume there exists a pair s < t and a sample path w such that s receives negative
instantaneous net utility at time ¢, that is, dj(w) = 1 and v(t — s) < ps(w). Let so denote
the consumer that first experiences negative instantaneous net utility (3¢ s.t. v(t — sg) <

pe(w) and df°(w) = 1 and 3(5,1) s.t. t < t, v(t —3) < pr(w), and dg(w) =1).

v(to — So0) = pry(w)
Claim 1: There exist co > t; > tg > 5o and w such that {  v(t — sg) > pr(w) for t € [sg, to)
v(t — s9) < pr(w) for t € (to,t1)
We only need to show that there exists ty > sg such that the top two conditions hold since

the existence of ¢; then follows from the definition of sy. Assume that there does not exist
a top > s¢ such that the top two conditions hold. This implies two claims (a) v(0) < ps,(w)
and (b) d(w) = 0 for s < sg. Claim (b) follows by contradiction. If (b) does not hold,

13



then there exists a consumer who arrived before sy and receives negative instantaneous
net utility at sqo; a contradiction with the definition of sy. Claim (b) implies that sq is the
only consumer consuming at time so. The price is ps,(w) = 7(0). A contradiction with

claim (a) since r(0) < v(0).

Claim 2: d} (w) = 0 for s < sp and d} (w) =1 for sy < s < 1.

For s < sq, v(to—s) < v(to—S0) = pr,(w). Since s is by definition the first consumer who
experience negative instantaneous net utility, we must have dj (w) = 0. For s < s < 1o,
v(t —s) > p(w) for t € [s,tp]. Consumer s should keep consuming until ¢, that is,

dj (w) = 1.

Claim 3: For any t > tg, v(t — so) — pt(w) < 0.

We distinguish two cases. If no consumer has stopped consumption in [so,t], that is,
di(w) = 1 for s € [sg, t], then v(t—s¢) < v(to—50) = Pty (W) < pr(w) and v(t—s0) —pe(w) <
0. If not, denote s the last consumer who has stopped consumption since ¢, and denote
t the time when 3 has stopped consumption. We have v(t — sq) < v(t —3) < v(t — 3) <
pi(w) < pi(w) where the first inequality holds because s has arrived after sg, the second
inequality holds because ¢ < ¢, and the last inequality holds because no consumer has left

between ¢ and . Again, we have v(t — so) — pi(w) < 0.

Claim 3 implies that
Uit (w, H(w)) = E (/ P~ 0d0 (w) (v(x — sp) — pa(w)) do | /Lfé’) <0
to

Consumer s is better off setting d;°(w) for ¢ > ¢, in history H;°(w). A contradiction.O

Lemma 1 implies that consumers leave in a first-in first-out fashion in any equilibrium.
Formally, df(w) is non-decreasing in s. The reason is simply that consumer s consumes
at time t only if v(t — s) — py(w) > 0 for £ € [s,t]. But this implies that any consumer who
arrived after s should also consume since v(t — 5) — pp(w) > 0 for t € [3,] if 3 > 5. The

‘oldest’ consumer consuming at time ¢ arrived at Inf {s > 0, s.t. dj(w) = 1}.® Lemma 1

8We assume without loss of generality that the Inf {s, s.t. dj(w) = 1} exists.
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implies that the level of capacity utilization at time ¢ is equal to the mass of consumers

who have arrived after the oldest consumer,

w)= [ eo(w)ds

nf{s, s.t. dj (w)=1}
The equilibrium does not exist if ¢;(w) > @. Next we identify the minimum condition

that the pricing rule must satisfy to assure that the equilibrium always exists.

Lemma 2: ¢;(w) < @ for any arrival process if and only if 7(Q) > v (Q )

€h

Proof To start we show that r(Q) > <Q) is a necessary condition. The proof goes

/l) —_—
> v
by contradiction. Assume 7(Q) < v (%) and consider the arrival process e(w) = €.
Consumers consume at least v (7(Q)) > % The equilibrium level of capacity utilization
is at least e,v71 (r(Q)) > Q. A contradiction.

Next, we show that r(Q) > v <Q> is a sufficient condition. The proof again goes by

en
contradiction. Assume there exist w and ¢ such that gy, (w) > Q. Let so = Inf {s s.t. dj (w) =1}.

The level of capacity utilization at time ¢y, can be expressed as g, (w) = f;(? es(w)ds <

(to — so)€n. This implies that g — so > % The consumer who arrived at sy gets negative
instantaneous utility at ¢y since v(to — sp) < v (%) < 7r(Q). A contradiction with Lemma

1.0

In the rest of this section, we focus on pricing functions that satisfy r(Q) > v <Q )

en
The functions t(w) and b;(w) are introduced to characterize the equilibrium consumption

t(w

strategy profile. Define ¢(w) such that v(t(w)) = r ( 0

) es(w)ds> and define the function
b(w) such that

_ t .
by(w) = x such that v(t —z) =r (fx es(cu)ds> if t > t(w) (5)
0if t <t(w)
By the implicit function theorem, the identity v(t — by(w)) =7 < fbtt ) es(w)ds> defines a
continuously differentiable function for ¢ > ¢(w). In addition b;(w) is increasing since
1t /
d P (foy €6(@)ds) er(w) = /(= by(w)

—by(w) = P
dt 1 (o € (@)ds) e (@) = v/(t = bi(w))

> 0.
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The next Proposition characterizes the equilibrium.

Proposition 2: In any perfect Bayesian equilibrium, the consumption strategy profile is

) 1if v(t — s) > pr(w)
di (w) = { Oifo(t—s) < gt(w)

where py(w) = v(t — by(w)).

Proof We first show that d(w) is an equilibrium. The level of capacity utilization implied
by the consumption strategy profile is ¢;(w) = fbi () €3 (w)ds. Lemma 2 implies that ¢;(w)
is implementable. The equilibrium price satisfies 3 since p;(w) = v(t — bi(w)) = r(g:(w)).
The consumption strategy profile is optimal since any consumer s € [b;(w),t] weakly
prefers to consume (v(t — s) > v(t — b(w)) = pr(w)) and any consumer s € [0, b (w)]
weakly prefers not to consume (v(t — s) < v(t — by(w)) = p(w)).

Next, we show that df(w) is the unique equilibrium consumption strategy profile.
Consider an alternative equilibrium with consumption strategy profile c?f(w) and let p;(w)
be the associated price. Define b (w) = Inf {s, s.b. di(w) = 1}.

Case a: by(w) < by(w). But Lemma 1 implies that dS(w) is non-decreasing in s. Therefore,

pt(w) > pi(w), and
o(t _gt(w>> —p(w) <ot —b(w)) — pe(w) =

A contradiction with Lemma 1.

Case b: by(w) > by(w) then py(w) < pi(w), and
o(t = bi(w)) = Bulw) > v(t = bi(w)) = pe(w) =0

for t € [b(w),t]. The consumer who arrived at by(w) — 7, where 7 is a small positive

number, should not have terminated consumption. A contradiction.O

For any ¢ > t(w), the price is equal to the marginal valuation of the consumer who
arrived at b;(w). This consumer, call it consumer b;(w), is the oldest consumer consuming
at time ¢ and is indifferent between continuing and terminating consumption. The equi-

librium dynamic consumption strategy profile simplifies to a simple rule specifying that
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consumers terminate consumption as soon as their instantaneous utility fall below the
instantaneous price. Equilibrium strategies are independent of consumers’ initial belief
pi¥(w). One could generalize the setup by assuming that some consumers receive signals
about the arrival process and show that no consumer can benefit from this information
although this information could help to predict future prices more accurately.

One may argue that consumers should keep consuming, even if they get negative
instantaneous utility, if they expect that prices will decline fast enough so that expected
future surpluses eventually outweigh short-term losses. This, however, cannot happen in
equilibrium. A consumer may initially believe that she has arrived in a sample path
where prices are likely to decrease. But as her net instantaneous utiliy gets close to zero,
that consumer’s beliefs have to adjust. In any deviation, a consumer cannot believe that

expected future utility could be non negative if net instantaneous utility is negative.

4.3 Pricing Responsiveness, Capacity Utilization, and Efficiency

As in Section 3, no responsive pricing can implement the efficient allocation. We show,
however, that efficiency can be achieved in a limit sense. Let {r3(¢), 8 > 0} be a class
of pricing functions indexed by parameter §. Many classes of pricing schemes implement
the efficient outcome in the limit. Since our goal is to show only that this is possible, we
focus on a very simple subset of such classes. We say that scheme r is a—responsive if
Max{q s.t r(q) = 0} > Q—«. For example, scheme 7,(q) defined earlier is c«—responsive.

Consider a class of a—responsive schemes. We ask whether the equilibrium consump-
tion strategy profile under scheme r,(q) converges to the efficient consumption rule as «
converges to 0. We use the notation ¢;(w;«) to define the equilibrium level of capacity

utilization for scheme a and we use the same notations for other equilibrium variables.

~

Proposition 3: As a converges to 0, t(w; a) converges to t(w) and ¢ (w; ) converges to

Q for t > t(w).

Proof t(w;a) is defined by v(t(w;a)) = 74 <f0t(w;a) es(w)d8>. Since v(.) > 0, @ >

fot(w;a) es(w)ds > Q — a, and t(w; @) converges to £(w) as a converges to 0. For t > t(w),
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v(t —by(w; ) = ry(qi(w; ) > 0 and this implies that ¢ (w; a) > @ — . The claim follows

from the observation that ¢;(w; @) < @ in any equilibrium.O

This proposition says that responsive pricing achieves full capacity utilization in the limit.

Next, we show that efficiency is achieved in a limit sense.
Proposition 4: As a converges to 0, b;(w; ) converge to Et(w).

Proof For t > t(w;a), fbtt(w.a) es(w)ds > Q — a. Subtracting fEtt(w) éz(w)dz = @ on each

be (w;ar)
a > [ es(w)ds

side gives

In addition, f@i(w) w)dr = Q > q(w;a) = fbtt(w,a) €s(w)ds, which implies b;(w; ) —

gt(w) > 0. Therefore a > by (w; @) —/b\t(w) > 0 and b;(w; @) converges to Et(w).D

In the limit, there is no wasted capacity and responsive pricing approaches the efficient
outcome. The price at date ¢ converges to p;(w) = v(t — Bt(w)) which corresponds to the
marginal social value of capacity under the efficient outcome.

The result on efficiency holds for a general class of arrival processes, since we have
not made any assumption on ¢; besides the support of the increments. Our results ap-
ply equally for arrival processes with unexpected demand shocks and for processes with
predictable demand shocks. Stated differently, we have shown so far that responsive pric-
ing could approach the efficient allocation when consumers were only privately informed
about their arrival times. We consider next the case where consumers are also privately

informed about their demand types.

4.4 Heterogeneous Demands

We turn to the full version of the model. We show that the results presented in the
previous section generalize to the case of heterogeneous demands under a ‘no-crossing’
condition on consumer demands. This condition is important because we show that when

it does not hold, inefficiencies can occur.
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4.4.1 No-Crossing Residual Demands

We introduce the type superscript to capture heterogeneous demands. We say that the

set of demands {v'(.)};=;.r satisfies the no-crossing condition if for any pair of types (i,1%)

there do not exist n,n’,d > 0 such that
V(6 +n)>v'(n) and v'(§+n) < vi(n).0

The no-crossing condition has a clear economic interpretation. Define the residual de-
mand of a consumer who has already used the service for some time as the consumer’s
willingness-to pay for future units. The no-crossing condition says that no two consumers
who arrive at different points in time can have residual demands that cross. This condi-
tion imposes a fairly strong restriction on the set of demands v?. In fact, we will see that
it is equivalent to say that demands are horizontal shift of one another.

The efficiency analysis generalizes when the v* satisfy the no-crossing condition. To
show that, assume without loss of generality that v'(0) > v%(0) > ... > v!(0) and define
a’ such that v'(a’) = v*™1(0) and A" = a' + ... + a’ with A° = 0. For § > 0, define the
function 7(§) as the highest type who values the first unit at least as much as v*(), 7(6) =
Mazx {i such that v*(0) > v*(d)}. Define ¢ (s,w) as the mass of consumers who have ar-
rived before ¢ and value the service more than v!(t —s), ¢;(s,w) = Z;Sl_s) fst+Aj_1 e (w)d.

To characterize the efficient consumption rule, we define the pair of functions tA(w) and

/b}(w) such that g, (0,w) = @ and qt(/l;g(w),w) = Q for t > t(w).

Proposition 5: The efficient consumption rule is

Py = ! b (W) + A< s <t
! 0if s < bi(w) + A= orif bl (w) + AL > ¢

Proof Before proceeding, we need to establish a preliminary result. The no-crossing
condition implies that v*(n) = v!'(A"1 4+ n) for i = 1...I. The proof goes by contradiction.
Assume that there exist (i,n) such that i # 1 and v'(n) # v'(A"! + n). Assume for

9An example of a class of demands that satisfies the no-crossing condition is the class vi(n) = a* — bn
where a' and b are positive numbers.
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example that v'(n) > v!'(A™ + n). (The proof is similar if the inequality if reversed.)
Then, by continuity vi(n) > v'(A™! 4+ n — €) for € small. But v'(A"!) = v*(0) implies
that v'(A"™! — €) > v(0). These two inequalities contradict the assumption that v' and
v' satisfy the no-crossing condition.

The rest of the proof follows the steps of the proof of proposition 1. The proof of the

claim that there does not exists a sample path w and a ty such that

Oto Z (’ﬁf(w)v(tg — s)el(w)ds > fgo Z C/sz((,d)v(tg — s)el(w)ds

(2

(S)y
o A (wW)es(w)ds < Q

is established by multiplying the equivalent of (4) by v!(¢ —?5} (w)). No consumer values
consumption at time ¢ less than v!(t — /b}(w)) since a consumer of type ¢ who is still
consuming in ¢ had to arrive at b}(w) + A" or after and the lowest valuation among
those type 7 consumers is v'(t — (/l;% (W) + A1) = vl (¢ —/b} (w)). O
Under the no-crossing condition, the efficient consumption rule changes slightly. For any
t> f(w), the consumers with the lowest demands are replaced by new consumers, starting
with those consumers with highest demands up to the point where no new consumer values
consumption more than the marginal consumer. As a result, no consumer terminating
consumption ever values consumption more than any consumer retaining consumption.
Similarly, the derivation of the perfect Bayesian equilibrium still holds after straightfor-
ward generalizations. Proposition 2 characterizing the equilibrium must take into account
the fact that the rule defining the oldest consumer of type 1 consuming at time ¢, call it

bl(w), will determine the oldest consumer of type i # 1 consuming at time ¢ according to,
bi(w) = Min(t,b}(w) + A1),

Although consumers of a same type terminate consumption in a first-in, first-out fashion,
consumers of different types may not do so. For example, a consumer of type i # 1
who arrived at ¢ will terminate consumption before a consumer of type ¢ — 1 who arrived
between ¢t — a;_; and ¢. In the perfect Bayesian equilibrium, the oldest consumer of type

one is defined by
vt = b (W) = 7 (@b (W), w)) -
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The equilibrium price is py(w) = 7 (¢:(b}(w),w)) and the equilibrium level of capacity
utilization is ¢;(w) = ¢;(b} (w),w). Lemma 2 extends to heterogeneous demands under the
condition that r(Q) > 7 where T is the lowest level of price that rules out excess demand.!°
Propositions 3-4 extend, and the equilibrium responsive price at time ¢ converges to
vt — Z} (w)) as a converges to 0, so that efficiency can be achieved in a limit sense.

The extension to no-crossing demand is important for the following reason. Assume a
social planner can record the realizations of aggregate arrival rate Z €(w) which is in
principle possible. In the homogeneous demand case, this informatiélzllfécorded from 0 up
to t, is identical to J;(w). A social planner can directly compute the marginal social value
of capacity since Bt(w) depends only on J;(w) and py(w) = v(t ~b (w)). There is no need for
responsive pricing. In the heterogeneous demand case, however, the history of aggregate
arrival rate is not sufficient to compute the marginal social value of capacity. Consumers
have private information about their types and the social planner cannot compute p;(w)
without this information.

The no-crossing condition is restrictive. This condition is necessary because we have
made no restriction on the arrival process ¢;. The results would still hold under more
general demands if one is willing to impose some restrictions on the arrival process. Stated
loosely, the main message of this section is that the results generalize as long as no two
consumers who can overlap have residual demands that cross over the length of time
over which they overlap. For example, the demand of two consumers who never overlap
could cross. Similarly, the demand of two consumers could cross after one terminates
consumption. This more general interpretation of the no-crossing condition is important
because the analysis does not always hold when this condition is not met, as we show in

the next section.

4.4.2 An Example of Inefficiency

The analysis does not follow when the no-crossing condition does not hold. To start,

one cannot show anymore that the consumer with the lowest marginal valuation should

19Formally, 7 is uniquely defined by Y, €; n*(7) = Q where n‘(z) is defined as v'(n'(z)) = z if v*(0) > =
and 0 otherwise.
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leave first in the efficient allocation (Proposition 5 does not hold). Similarly, we cannot
characterize the equilibrium by focusing on the behavior of the consumer with the lowest
marginal valuation. Specifically, the proof of claim 2 in Lemma 1 does not hold.

We show that when the no-crossing condition does not hold, it is possible that respon-
sive pricing cannot approximate the efficient allocation in the sense defined by Proposition
4. An example is sufficient to establish this claim. For tractability concerns, we present
an example with discrete arrival process and step-function demands. It is important to
recognize that these features violate some of the continuity assumptions of the model. As
we argue later, however, this is not with complete loss of generality.

Time is finite, ¢ € [0, 2], and we use the terminology period 1 to mean t € [0, 1], and
period 2 for t € (1,2]. The capacity is 3. A demand is a pair of numbers (See also Table
1). A consumer with demand (a,b) who arrives at ¢, is willing to pay a from ¢ to ¢t + 1 and
b from ¢t + 1 to ¢t + 2 and 0 after ¢ + 2. There are four types of consumers v' = (20, 20),
v? = (25,0), v¥ = (30,30) and v* = (10,0). To simplify, we assume that consumers do
not discount the future.

The arrival process is the following. Consumers arrive only at ¢t = 0 or t = 1. At
t = 0, there are two possible states of the world, state m and state 1 —, which occur with
respective probabilities 7 and 1 — 7 with 7 € [0,1] and © # 1/2. In state 7 the arrival
realization at date 0 is €§ = (2,4, 0, 0) while in state 1 — 7 the arrival realization is ¢, " =
(2,3,1,0). At date one, the arrival realizations are €] = (0,0,0,4) and ¢; ™ = (0, 3,0,0) .
Arrival realization €], for example, means that 2 consumers of type v! and 4 consumers
of type v? arrive at date 0 in state 7. We denote by v! the consumer of type i who arrive

at date t.

Table 1: Consumer Preferences

State m State 1 — 7
Type t=0 t=1]|t=0 t=1
vt =(20,20) | 2 0 2 0
v?=(25,0) |4 0 3 3
v3=(30,30) | 0 0 1 0
vt =(10,0) |0 4 0 0

The efficient consumption rule maximizes total surplus subject to feasibility and imple-
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mentability constraints. (See also Table 2). In state 7, all consumers v} should consume in
both periods, 1 unit of consumers v2 should consume in period 1, and 1 unit of consumers
v} should consume in period 2. In state 1 — 7, 2 unit of consumer v2 should consume in
period 1, all consumers v} should consume in both periods, and 2 unit of consumer v?
should consume in period 2. The expected consumer surplus in the first-best consumption

rule is 160 — 457.

Table 2: Consumption Rules and Surplus

Consumption Expected Surplus
State 7 State 1 — 7
t € [0,1] tel,2] t€10,1] tel,2]
Efficiency | 2 x vi+1 x v3 2 x vg+1 x v] | 2 X v2+1 x v 2 x v3+1 x v] | 160 — 457
Equilibrium
T>1/2 | 2x 0+l x 02 2xvi+l x ol [ 2 X vp+1 x v 1 x vi+2 x v? | 150 — 357
T<1/2|3x0v3 3 x vf 2 X V241 x vf 2 x vi4+1 x vl | 160 — 557

Consider next responsive pricing. Assume that the information structure is common
knowledge but consumers privately know their types. This implies that at date zero
the consumers of type 1 and 2 do not know the state of the world. The next Lemma

establishes that responsive pricing cannot approximate the efficient outcome.

Lemma 3: There does not exist a sequence of state prices (pJ,ps ", p¥,p} ") such that
if consumers are announced the realized state prices in each period they make efficient

consumption decisions.

Proof Consumer v2 has to be indifferent between consuming and not consuming in both

states.
25 —p5 =25—py " =0

Since p§ = p;~ ™ = 25, the date 0 price cannot reveal the state of the world. Consumer
vy uses his prior to compute the expected surplus from starting consumption in period 1.

Consumer v§ has to weakly prefer to consume in state .
20 — pg + mMaz(20 — p7,0) + (1 — 7)Maz(20 — p;~™,0) > 0
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and not to consume in state 1 — 7.
20 — py " + mMaz(20 — p},0) + (1 — 7)Maz(20 — p;™,0) <0

Since consumer v and v? have to be indifferent between consuming and not consuming
in state 7 and 1 — 7 respectively, the date 1 prices are p7 = 10 and p} ™ = 25. Plugging
these values in the above inequalities, we have 10m — 5 > 0 > 10m — 5. A contradiction

since m # 1/2.0

Lemma 3 shows that is not possible that consumer v} consumes in state m and not
in state 1 — 7. Therefore, the efficient allocation cannot be arbitrarly approximated. To
further illustrate, consider the equilibrium under scheme 7, defined in section 3 where
To(Q) = 35 and « close to 0. To understand the construction of the equilibrium, note
first that prices will change only at ¢ = 0,1, and 2 since these are the only dates when
new consumers arrive or terminate consumption. Next, consider consumers’ consumption
decisions. Consumers v} will consume in state 1 — 7 because their demand (weakly)
dominates any other consumer. Consumers v3’s consumption decision is also simple.
They are willing to pay 25 and no more than 25 at date 0. Solving the decision problem
of consumers v} is more complicated. How much is a consumer v} willing to pay at date
0?7 This decision depends on her expectations about the second period price. In state m
(respectively 1 — ), she expects that the price will be 10 (respectivelyn 25) in period 2.
She expects a period 2 surplus of 20 — 10 with probability 7 and of 0 with probability
1—m. A consumer v is willing to pay 20+710+ (1 —m)0 = 20+ 710 at ¢ = 0. Since 7 > 0
consumers vy are willing to pay more than their period 1 valuation. When 20 + 710 > 25,
the equilibrium price is 25 in period 1 and all consumers v} consume. When 20+710 < 25,
the price is 20 + 710 in period 1 and no consumers vj consume. An inefficiency occurs
because consumer v}’s decision to consume does not depend on the state of the world as
it should under the first best outcome.

The problem identified in the example is general and can be summarized as follows.
The no-crossing condition does not hold for consumer v} and v3. It is not optimal for

consumer v} to terminate consumption when the price is equal to her instantaneous valu-

ation 20. To achieve efficiency, consumer v§ would need to know whether only consumers
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v or also consumers v} have arrived at ¢ = 0. This information, however, is not revealed
by the price. More generally, under crossing demands a consumer with high long-term
demand may prefer to retain consumption and bear negative instantaneous utility if she
believes that (a) there are some consumers with weak long-term demands who are about
to terminate consumption, and (b) few consumers are likely to arrive.

Consumers’ decision problems differ dramatically when the no-crossing condition holds
and when it does not. Under no-crossing, consumers need to know only the current
price to decide whether to continue or terminate consumption. The fact that consumers
do not know who is consuming at the time they arrive (incomplete information about
arrival times and types) does not prevent efficiency from being achieved. When the no-
crossing condition does not hold, however, consumers do not decide when to terminate
consumption only on the basis of the current price. They have to predict future prices.
They do so using their prior belief and the price histories, H(w). As a consequence,
consumers’ beliefs matter. The example offers an illustration of this point. The period
1 price and the level of inefficiency depend on the consumer v}’s initial belief about the
likelihood that state 7 will occur. In the example, we assumed that v}’s initial belief was
equal to the true probability (common knowledge assumption) but this does not have to
be the case.

To conclude, we point out that although the example does not satisfy all the as-
sumptions of the model, it stresses the importance of the no-crossing condition. To
illustrate, assume that the no-crossing condition holds as would be the case for example
if v2 = (25,25). Lemma 3 does not hold since it is possible to define a sequence of state
prices (p%,ps ", pT,p; ") that implements the efficient allocation. Similarly, responsive

pricing approaches the efficient allocation.

5 Consumption Interruption

The analysis has assumed so far that consumers never postpone consumption. This was
imposed by the restriction that the consumption rules di’s(w) had to be non-increasing

in ¢t. This section generalizes the analysis in two ways. First, we assume that consumers
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can interrupt the service (or delay initial start) but have to pay a cost each unit of time
they do so. We identify a lower bound on the cost of delaying consumption that rules out
interruptions. This formalizes the claim made earlier that the analysis is valid as long as
the cost of delaying consumption is sufficiently high. Second, we briefly discuss the case
where the opportunity cost of delaying consumption is low.

To simplify the presentation, we return to the case where there is a single consumer
type. Consumers have to pay k per unit of time when they delay consumption. This could
be because consumers have to physically wait or because there is a cost of monitoring
prices. Let dj(w) = 0 when the consumer who arrives at s delays consumption at ¢
and let [*(w) denote the time when that consumer terminates consumption definitely. A

consumer who arrives at s gets expected utility
Pl
Us(w, Hy(w)) = E / P (W) (v(@ = 8) = po(W)) + (1 = dy(w))k) da | g
under consumption strategy df(w). Let c/l\f(w) represent the efficient consumption rule.

Proposition 6: The efficient consumption rule, c?f(w), is non-increasing in ¢ for ¢t > s if

k>v(Qfen) —v(Q/a).

Proof Consider the efficient consumption rule under the constraint that interruptions
are ruled out. Consumers consume ()/¢; when the arrival rate is fixed at ¢, and never
consume more than that amount. They consume ()/€;, when the arrival rate is fixed
at €, and never consume less than that amount. The social opportunity cost of capacity
varies between v(Q/€;,) and v(Q/¢;). The maximum possible social gain from interrupting

consumption is (v(Q/en) — v(Q/€)) dt. Interrupting consumption is never efficient when

v(Q/en) —v(Q/e) < k.O

It is never efficient for consumers to wait when v(Q/e,) — v(Q/€) < k. Consider the
equilibrium analysis. The pricing function influences the decision to delay consumption.
Does there exist a responsive pricing function that rules out waiting and still allocates
capacity efficiently”? Consider first the conditions that one needs to impose on the pricing

function to rule out waiting. The benefit from waiting corresponds to the expected savings
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from lower prices. This amount is bounded from above by r(Q)) —r(0). Consider a pricing
rule that sets 7(Q) = v(Q/ex) and r(0) = v(Q/¢). This pricing rule eliminates both
excess demand and interruptions since r(Q) — r(0) < k. The condition r(0) = v(Q/¢) is
not restrictive because prices never go below that level in the equilibrium analysis without
interruptions. The analysis follows and responsive pricing still implements the efficient
consumption rule in a limit sense. This simple extension demonstrates that the analysis
presented earlier holds when v(Q/e€;) — v(Q/€¢) < k.

When k& < v(Q/en) — v(Q/€;), on the other hand, consumer waiting may occur both
under responsive pricing and in the first best consumption rule. To make this point
clear, consider the extreme case where the opportunity cost of waiting is zero. Under
responsive pricing, consumers will prefer to delay consumption if they anticipate that
prices are likely to decrease in the future. But it is not efficient anymore that a consumer
terminates consumption for every new consumer who arrives, since there is no welfare
cost associated with consumers waiting. More generally, even when consumers have a low
but positive cost of waiting, it is not efficient anymore to rule out waiting, since there is a
trade-off between the welfare cost of waiting and the opportunity cost of cutting off some

consumers.'! We leave a full treatment of this problem for future research.

6 Summary and Conclusions

This paper investigates the efficiency properties of responsive pricing, a simple and easily
implementable scheme initially proposed by Vickrey to eliminate inefficiencies that re-
sult from last minute demand shocks. Responsive pricing changes prices in real time in
response to demand realizations, increasing prices when the resource gets close to conges-
tion and decreasing prices when unused capacity increases, thus promoting full capacity
utilization. Responsive pricing is simple. Consumers only have to decide whether they

want to consume. The seller, in turn, only needs to be able to measure congestion and to

HPositive but low cost of waiting may explain why country clubs and ski resorts do not use prices to
allocate capacity although waiting is often observed in equilibrium. In these situations, consumers may
have a low cost of waiting and it would be suboptimal to cut some consumers short to free up capacity
when there is a sudden arrival flow of consumers. This conclusion is reminiscent of the analysis of ski
lifts presented in Barro and Romer (1987).
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update prices in real time.

An important contribution of this paper is to establish a condition under which the
strategic complexity of the game that takes place under responsive pricing dramatically
simplifies. Under the no-crossing condition, consumers stop consuming as soon as their
willingness to pay for a marginal unit falls below the instantaneous price. Consumers can-
not benefit from predicting future prices. When demands can cross, however, consumers
may optimally keep consuming even if they receive negative net instantaneous utility. As
a result, the equilibrium allocation may depend on consumers’ initial beliefs.

We show that responsive pricing can implement the efficient outcome but only in
a limit sense and when consumer demands satisfy a no-crossing condition. When this
condition is violated the analysis does not follow, and responsive pricing sometimes fails
to achieve efficiency. The problem with responsive pricing is that consumers can bid
only for the current unit of consumption, and the equilibrium price does not always
aggregate consumers’ private information efficiently. An implication for policymaking is
that responsive pricing will work well when consumer demands satisfy the no-crossing
condition, such as among homogenous populations of consumers.

One could easily conceive more sophisticated information revelation schemes than
responsive pricing. We believe, however, that one should focus on simple schemes, such
as the one proposed by Vickrey and considered in this work, because such schemes are
more likely to be used in applications where highly unpredictable last-minute demand
shocks play an important role. If one accepts this view, a relevant question for future
research is to generalize the class of pricing mechanisms, possibly incorporating more
state variables than just current utilization rates or offering partial advance booking, that
implements the efficient outcome.

Another limitation of this work is that we have focused on a welfare analysis. Our
results are relevant to regulated industries considering introducing responsive pricing.
Some of the applications discussed in the introduction, however, have to do with non-
regulated firms concerned about firm surplus rather than total surplus. An important
extension would be to derive the profit maximizing pricing scheme and to contrast it with

responsive pricing. Would a private firm find it optimal to vary prices as a function of
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occupancy realizations? Under what conditions?
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Figure 1: The 2-States Steady State Case
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