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Abstract

Unobserved factors in differentiated product models can generate
severe bias in price elasticities. We develop a generalized control func-
tion method and specification test for this setting based on the non-
parametric identification results from Petrin (2005), who shows the
assumptions under which price functions can be inverted to obtain
controls that condition on the part of the demand error that is not
independent of price. Unlike using product-market controls, our ap-
proach does not require additive separability between observed and
unobserved factors. We develop a “hybrid” approach that also loosens
this restriction for that setting. We compare results across approaches
on three data sets and demand specifications estimated elsewhere that
span a range of markets and levels of aggregation, including automo-
biles (the original Berry, Levinsohn, and Pakes (1995) application),
cable television, and margarine. The estimated elasticities are similar
across the control function and product-market control approaches,
and they both differ significantly from the uncorrected elasticity esti-
mates, which are significantly biased up in every case.



1 Introduction

Models of differentiated products are widely used for estimating demand
elasticities and substitution patterns. In applications of these models it is
rare that all relevant factors are observed by the econometrician. When
some factors are unobserved, price will typically be correlated with these
unobserved factors through the equilibrating mechanism in the market. For
example, products that display desirable attributes observed by consumers
and producers but not measured by the econometrician will often have prices
that are positively correlated with the demand error. Alternatively, if adver-
tising or other promotional activities are omitted from the specification, and
if prices are set simultaneously with these promotional levels, then price will
be correlated with the demand error.! The problem has arisen in both ag-
gregate (i.e. market-level) data and disaggregate (i.e., customer-level) data,
and empirically has tended to bias estimates of price elasticities in a positive
direction.

Since demand in discrete choice settings is not linear in price, standard
linear methods for correcting this endogeneity problem are not immediately
applicable. In this paper we develop a generalized control function approach
for endogenous prices in differentiated-product discrete-choice models. Un-
like the product-market control solutions of Berry (1994) and Berry, Levin-
sohn, and Pakes (1995), we do not require additive separability between
observed and unobserved factors, so advertising campaigns or other promo-
tional activities (e.g.) can affect the marginal impact of price or a product
characteristic on utility. We then extend our method to a hybrid “control-
function/product-market control” that also does not impose additive sepa-
rability.

We exploit the information that prices contain on unobserved factors.
The specifications are based on results from Petrin (2005), who extends Im-
bens and Newey (2003) to demand settings, showing the conditions under

which demand is non-parametrically identified using control functions. The

'In this case the bias could be positive or negative, depending upon how prices are set

with promotional activities.



intuition underlying the correction in non-linear settings is similar to that
in a linear environment, where a new control variable is included in the re-
gression to condition out the part of the error that is correlated with the
endogenous regressor (see the ideas discussed in Telser (1964), which are
more formally developed in Heckman (1976), Heckman (1978), and Haus-
man (1978)).2 The approach we adopt inverts prices to recover random
variables that are one-to-one functions with the error in the reduced form
pricing equation. Using these variables as controls in the demand equa-
tion conditions out the dependence of price on the demand error. Finally,
we develop a x? portmanteau specification test that has power against the
assumptions maintained by the control function approach.

We are not the first to look to the information that prices contain on
demand unobservables (see e.g. Trajtenberg (1989,1990), Villas Boas and
Winer (1999), Bajari and Benkard (2005), and Petrin and Train (2005).)
Our approach is perhaps most closely related to Bajari and Benkard (2005).
They extend the differentiated products setting of Rosen (1974) to an im-
perfectly competitive one, providing restrictions on the demand and supply
side such that price is only a function of own-product observed and unob-
served demand characteristics, and price is monotonic in the unobserved
factor. Finally, if “many products are observed in a single market,” they
can estimate the pricing equation to recover a one-to-one function of the
unobserved demand factor; they compare the prices of products with iden-
tical observed demand characteristics and attribute differences in prices to
differences in the unobserved demand factor.

Our control function approach generalizes their setup to differentiated-
product settings where the equilibrium pricing function cannot be expressed
solely as a function of a product’s own observed and unobserved character-
istics, and where product space is not full of “many” products. Specifically,
unlike the Bajari and Benkard (2005) setting, we can allow the supply side
to affect equilibrium prices, and we can allow consumers to have idiosyn-

cratic tastes for products, so the widely used generalized extreme value (e.g.

2Tt has been applied to a Tobit model by Smith and Blundell (1986) and binary probit
by Rivers and Vuong (1988).



logit and nested logit) and (multivariate) normal models are not ruled out.

Our control function approach has its roots in a broad literature on non-
parametric estimation of demand (see e.g. Brown (1983), Roehrig (1988),
Brown and Matzkin (1998), Benkard and Berry (2004), and Matzkin (2005)),
and relates closely to the literature using restrictions from economic theory
for identification in semi- and nonparametric settings, as in Matzkin (1994),
Olley and Pakes (1996), Levinsohn and Petrin (2003), and Matzkin (2003),
and to the literature on identification in nonseparable models (see Blundell
and Powell (2001) and Chesher (2003)).

We present three empirical demand applications that replicate specifica-
tions from earlier works - all of which use product-market controls - including
Berry, Levinsohn, and Pakes (1995), who look at automobiles, Goolsbee and
Petrin (2004), who look at cable television, and Chintagunta, Dube, and Goh
(2003), who look at margarine. These applications have been chosen because
uncorrected price elasticities have been shown to suffer from severe bias, and
because they span a range of markets and potential competitive pricing be-
haviors, and include three types of different data: aggregate (market-level)
data, household-level cross-sectional data, and household-level panel data.
We use them to show in practice how one implements the control function
approach for these different types of products and aggregation levels.

Our approach is to choose simple specifications for demand in our three
applications that are comparable across the product-market control ap-
proach and the control function approach in order to see whether parsi-
monious corrections yield similar results that are significantly different from
performing no correction. We leave for future work exploration of more
complicated specifications that explore when differences arise between the
approaches. QOur simplest formulations for the control function approach
use regression in the first stage and then maximize a likelihood in the sec-
ond stage, and can thus be run in standard programming packages. For
simple demand specifications the elasticities are almost identical across the
the control function approach and the Berry, Levinsohn, and Pakes (1995)
approach, and they differ significantly from the uncorrected elasticity esti-
mates, which are biased down in every case.



The paper proceeds as follows. Section 2 sets up a structural demand
model, describes in this setting how bias arises from unobserved factors, and
then develops the control function approach, the product-market approach,
and the hybrid model. Section 3 establishes conditions under which the
reduced form pricing function exists and is invertible, and discusses estima-
tion of the controls. Section 4 reports the results from the three applications

using real data, and Section 5 concludes.

2 The Demand Model and Approximations

We assume there are k = 1,...,J goods, and consumers purchase good j if

uj > u Vk # j. The choice probability for good j is given as

s = [ty 2wk £ 3} fulu| X, P)

where u = (uy,...,uy), and f,(u| X, P) denotes the density of u conditional
on the entire vector of observed product characteristics X = (X1,..., Xj)
and prices P = (P,..., Py) (we abstract from observed individual charac-

teristics here).> We let capital letters denote random variables and lower-
case letters denote realizations. The important question from the approxi-
mation standpoint is how one should write down a flexible parametric func-
tional form for f,(u| X, P) that does not impose strong separability between
observed and unobserved product-specific factors, is consistent in the pres-
ence of endogenous prices, and allows for idiosyncratic consumer-specific
tastes for product characteristics.

To simplify exposition we assume there is only one observed product
characteristic per product (in addition to price). We also maintain the stan-
dard assumption that consumers only derive utility from the characteristics
of the good that they actually consume. Utility consumer ¢ derives from
good j is then given as

uij = u(zj, pj, €ij)-

3This is without loss of generality as adding a vector s of individual characteristics to
the specification simply entails rewriting the density as f,(u| X, P, s) with s as one of the

conditioning vectors.



The error may reflect unobserved product and consumer specific factors that
affect utility, including unobserved physical characteristics, advertising and
promotional activities of which the researcher is unaware, and idiosyncratic
consumer-specific tastes for observed and unobserved factors.

As McFadden (1981) argues, there is little loss in generality of assum-
ing a utility structure that is linear in variables and parameters, because
the variables can be potentially complex transformations of the arguments
entering utility, and one can approximate any continuous indirect utility
function on a compact set arbitrarily well using a linear-in-parameters spec-
ification. We write u;; as linear and second order flexible in observed and

unobserved factors:

uij = Bopj + PLxj + Bapjm; + Bsp; + Bz + Bspjeij + Bowjei; + eijy (1)

We include the interactions and squared terms because, without them, un-
derlying preferences would have to be strongly separable in the arguments
of the utility function (see Goldman and Uzawa (1964)), requiring marginal
rates of substitution between observed and unobserved factors to be indepen-
dent of the levels of consumption of each factor. For example, unobserved
advertising campaigns or other promotional activities may change willing-
ness to pay, here given as the marginal utility of price, and this will likely
impact the marginal rate of substitution between x and p, violating strong
separability. The specification is easily extended to allow for more flexibility
along these dimensions.

To complete the utility specification we must characterize the distribu-
tion of f,x p(e| X, P). We assume there exists a product-specific vector of
random variables, denoted ¢ = (£1,...,&7), such that after conditioning on
&, the density of € is mean independent of (X, P), as in Berry, Levinsohn,
and Pakes (1995) (heretofore BLP). Specifically, we reformulate (1) as

wij = Popj + Prxj+ Papjxj+ Baps + Pax + Bspi&j + Pexi&i + & (

2)
+  Oppj€ip + 04T j€x + €.

with parameters 5 = (5, 51, B2, 53, B4, Ps,06) and 0 = (04,0,). The utility
specification maintains the second order flexibility of (1), but restricts it to



observed and unobserved product-specific factors.* The remaining variance

is then ascribed to a J + 2 element vector

€; = (€ip, €iz» €115 - - -, €0,

which has one idiosyncratic taste draw for each observed product charac-
teristic and one idiosyncratic taste draw for each product. This vector is
assumed to be a mean zero vector of errors that is independent of ¢ and of all
observed factors. It is also assumed to follow some parametric formulation
(e.g. i.i.d. logit, multivariate normal, or some mix of the two). The impor-
tant difference between this specification and the one proposed in BLP is
that this specification does not impose (85, 8s) = 0, and thus does not insist
on additive separability between observed and unobserved product-specific

factors.

2.1 Bias from Unobserved Factors

An econometric problem often occurs because standard choice models main-
tain that € is independent of (X, P), e.g. the logit model maintains that the

unobserved component of utility is independent of the observed variables:

feix.p(e| X, P) = fe(e)- (3)

GEV models, mixed logit and probit (e.g., Brownstone and Train (1999))
allow the covariance of the unobserved component to depend on observed
variables. However, the mean is assumed to be constant, which precludes
correlation with price (for example). If € in part reflects unobserved factors
that are not measured by the econometrician, and if sellers charge prices
based on these unobserved factors, then € and P will not be independent,
and parameter estimates under the maintained assumption in (3) will not

be consistent.?

4Using random coefficients it is straightforward to allow different consumers have dif-
ferent second-order expansions.

®One example would be if consumers willingness to pay increases in the unobserved
factor, and producers charge more for products with more of the unobserved factor, then
the price elasticity bias is likely to go in the positive direction; consumers look less price



Since Trajtenberg (1989)’s finding of upward sloping demand curves for
CT scanners, numerous empirical applications have shown that ¢ and P
can be so highly positively correlated in practice as to preclude the use of
the characteristics approach entirely. Other examples where the presence
of this correlation is important empirically include automobiles (BLP and
Petrin (2002)), cable television choices (Goolsbee and Petrin (2004) and
Crawford (2000)), supermarket goods like cereals (Nevo (2001)), yogurt and
ketchup (Villas-Boas and Winer (1999)), and margarine and orange juice
(Chintagunta, Dube, and Goh (2003)), to name a few.

2.2 Control Function Approximations to Demand

We return to the formulation of demand from (1), but for expository pur-

poses we focus on a single good “buy or not buy” setup

u; = Bop+ P17+ Popx + P3p’ + Puz® + Bspeip + Pozeis + € (4)

Extension to the multiple-good choice set is straightforward and is done
throughout the rest of the paper. The remaining specification question then
relates to f. x p(e| X, P).

The control function appeals to economic theory to determine other
equations in which ¢ enters as an argument. If ¢ is identified from these
equations, then one can condition on it to address the endogeneity prob-
lem.6 More generally, if a one-to-one function of ¢ is identified - defined as
é - it is sufficient to condition upon this variable to address the endogeneity
problem.

The control function approach proceeds in two stages. In the first stage
one recovers & for each product by inverting the relevant equation. In the

process, one also recovers the complete marginal distribution fé(f) Using

the law of iterated expectations we can write f,|x p(¢| X, P) as

fexp(e| X,P) = foxple| X, PE) fz(9). (5)

sensitive than they actually are because they are getting “more” for paying the observed

price they pay than the econometrician has taken into account.
5In this paper we focus on the reduced form pricing equation, which we discuss at

length in Section 3.



From (5), the remaining question is then how to parametrically approximate
fex,p(e| X, P, £), where the mean of ¢ will generally depend upon ¢ but is
now independent of (X, P).

While many alternative approximations are available, we adopt a simple

and flexible formulation for

Bspeip + PeTEiz + €i- (6)

We let f interact with both = and p, and allow for E and 52 as separate
arguments:

MpE + Aoz + A€ + M&?, (7)

with new parameters (A, Az, A3, A4).” We adopt the same formulation for
the (mean-zero) variance term from (1), assuming it is given as oppe;p +
02x€iz + €;. The two terms together provide the approximation for (6), and

together with (4), the final specification for utility is then given by

wi = Pop+Piz+Popz+ Pap? + Pax? + MpE + Aoz + A3€ + ME2
+  OpPEip + T4 TEi + €.

(8)

As long as the parametric approximation of ¢ in € is flexible enough, the
approach is consistent in the presence of price endogeneity, it allows for het-
erogeneity in tastes, and it does not impose strong separability. Intuitively,
the approach is consistent because conditioning on é holds constant the vari-
ation in ¢ that is not independent of price. The remaining variation in price
- which is independent of € - is then used to learn how varying price affects
demand.

If we take the approximation from (1) as the true model, a comparison
of (8) with (1) shows that the only difference between the models arises

because the product-specific error
M€ + Aozl + Xa€ + N 9)
is used to approximate the product-specific error

Bsp€ + Per€ + &.

"We could easily allow x and p to interact with £ also.




If (1) is the correct specification, in the limit observed and predicted shares
will match exactly. A direct test of specification for the control function
model is then to evaluate whether the predicted shares from the estimated
model for (8) are statistically different from the observed shares in the data.
Indeed, the motivation for including ¢ as a new error, as noted by BLP, is
that models without product-specific errors often “overfit;” only sampling
error can explain the difference between the data and the model, and there
is often insufficient variance to account for the discrepancy, leading x? tests
for fit to reject the specification. Thus, if the control function specification
passes this test and the uncorrected model does not, the main symptom
has been addressed by the addition of (7) to the specification. If the test
rejects, then either a more flexible formulation for (7) is required, or there is
a problem with the control variable . Thus, as long as there is reasonable
power under the alternative, the test is informative, and its ease of use

suggests it should generally be reported if this approach is taken.

2.3 Product-Market Control Approximations to Demand

If utility is given by the specification in (1), the product-market control
approach is not identified. To see this, denote the product-market control

&, and note in the single good “buy or not buy” specification of (1) we have

ui = Pop+Biz+ Bepz+ Pap? + Pax® + Bspé + Bewé + €

(10)
+  Oppeip + 0z T€ix + €.

Direct estimation is not possible because there are an infinite number of
values of (53,0, &) consistent with any observed data set. Thus, for this spec-
ification, the product-market control approach is not very useful empirically.

To shed light on the necessary restriction for identification, it is useful
to rewrite (11) as Berry (1994) does, decomposing it additively into three

components:
u =0+ pi + €, (11)

one that is common across consumers (§ = d(z,p,&;5)), one that allows

for idiosyncratic consumer tastes for observed product characteristics (u; =

10



(T, P, €iz; €ip; 7)), and one that allows for idiosyncratic consumer-product
specific tastes (¢;). When expressed in this manner, it is clear that (J, o) are

identified. Given that ¢ is identified, and given as

§=Pop+ L1z + Popx + Pap® + Puz® + Psp + Lo + & (12)

it is now clear that insisting on strong separability between observed and
unobserved characteristics is sufficient for identification. Intuitively, if we
assume (S35, Bs) = 0, then

§=PBop+ B+ Popz+ Psp® + Paz® + &, (13)

and with £ now additively separable, (8o, 51, 52,83, 84) are identified. Thus,
additive separability of the error from observed factors is a necessary condi-

tion for identification of any product-market control approach.

2.4 A Hybrid Control-Function/Product-Market Control Ap-
proach

As noted in the previous section, the product-market control approach does
identify

§=Pop+Piz+Papz+ B3p® + Pax® + Bspé + Lozt + . (14)

If € is indeed one-to-one with &, then projecting é onto (p,z,pz,p*, 2%) and a
sufficiently flexible specification in (p, z, 5 ) will produce consistent estimates
of (Bo, B1, B2, B3, P4). Consistent estimates of price elasticities (e.g.) for any
value of € can be constructed, as can consistent estimates of the aggregate

price elasticity which averages over the marginal distribution of 5 .

2.5 Discussion

There are some important estimation and econometric issues that arise with
respect to all three approaches that we now explore. First, the latter two
approaches include controls for each product in each market. These are ef-

fectively fixed effects, meaning the usual fixed-effect concerns are relevant.

11



Specifically, if the number of observations on the fixed effects is not increas-
ing at a sufficiently rapid rate, the incidental parameters problem (Neyman
and Scott (1948)) causes the estimator for the fixed effects to be inconsis-
tent. In the non-linear setting this is particularly problematic, as the bias
in the fixed effects is transmitted to all of the parameters being estimated.
Additionally, the objective function is neither linear in parameters nor gen-
erally globally concave in them, leading to a curse of dimensionality as there
are often several hundred extra parameters to estimate with product-market
controls. This curse of dimensionality can also be a problem for the control
function setting if the specification for (7) is flexible.

Berry (1994) proves the existence and uniqueness of a set product-market
controls that match observed to predicted market shares. BLP provide a
method for locating them which is applicable for either of the latter two
approaches. While useful in many settings, this approach tends to exacer-
bate the “fixed-effects-in-a-non-linear-setting” problem, because the prod-
uct market controls are concentrated out by matching observed to predicted
shares, leading sampling or simulation error in these shares to enter the es-
timating equations in a highly non-linear manner. Berry, Linton, and Pakes
(2003) work out the exact cost; the estimator is consistent and asymptot-
ically normal if the number of observed purchasers (or simulation draws)
increases at an exponential rate relative to the number of products.®

There are two other potential advantages to avoiding the contraction
algorithm that locates the product-market controls. First, for it to be a
contraction an independent and identically distributed (i.i.d.) logit error
must be appended to the utility function.® This assumption is problematic in
many settings, as noted in Petrin (2002), Berry and Pakes (2003), Goolsbee
and Petrin (2004), and Song (2003). Second, the computational burden of

the approach can be severe, especially when used in settings with micro-

81f the number of products is indexed by J, then the number of purchasers and simu-
lation draws must grow at the rate J2.

®The algorithm is likely to work well with an i.i.d. error that does not depart signif-
icantly from the logit distribution. The algorithm becomes problematic when the errors
begin to covary significantly across the choices, as potentially with a multivariate normal
specification (see Goolsbee and Petrin (2004)).

12



level data and/or random coefficients, where integration up to the product-
market shares must be done by simulation.'® This computational burden

has effectively precluded its use by many practitioners and policy-makers.!!

3 Inverting Prices to Recover Control Variates

We write the reduced form for prices as
P = p(Zla Z?ag)a

where Z = (Z1, Z53), with p(-) determined by demand shifters Z;, cost-side
factors Zs, and the error(s) £&. For now we assume that it is sufficient to
consider only one error per product in the reduced form. We establish
sufficient conditions for the existence of a reduced form price equation that
is invertible in £ for the single-product monopolist. We then show sufficient
conditions for the differentiated product setting with multi-product vendors,
where there is a system of J price equations and the vector of product
errors & has J elements. Finally, we provide estimators for 5 , the one-to-one
function of £&. The discussion draws heavily on Petrin (2005), and readers
are referred to that paper for more details and results (see also Appendix
D).

0Because error in the simulated integral enters the estimation equations non-linearly,
the simulated integrals must be evaluated for many more simulation draws than is typically
done (e.g. thousands). Furthermore, for any candidate value of parameters, evaluation
of the objective function requires the calculation of these simulated integrals possibly
hundreds of times because the error remaining from the contraction procedure must be
sufficiently small, again because this error enters the estimator non-linearly. For alterna-
tive approaches that do not use the contraction (like the control function approach) only

one evaluation of this integral is necessary, with possibly many fewer simulation draws.
"In our view this burden is why the BLP approach has yet to be widely adopted by

regulatory agencies, who are often under time-constraints in antitrust/merger cases. On
computational burden, all of the heretofore cited papers that use product-market controls
are coded in either Matlab or Gauss, and many of them call C routines to speed up the
computational algorithm that locates the fixed effects to reduce run-times to a manageable
level.

13



3.1 Single-Product Setting

We start with the single-product monopolist. We broadly define product
characteristics to include physical or perceived physical characteristic of the
good (like style), and advertising or promotional activities undertaken by
firms to encourage demand for the good. Let x be this vector of product
characteristics, where the scalar £ might be one of the characteristics ob-
served to consumers and producers but unobserved to the practitioner. Let
z be other potential demand and cost shifters (the remaining elements of
Z), q(p,z, z) be quantity demanded at price p given (z, z), and mc(z, z) be

the marginal cost of production. Profits are given as

IT = (p — me(z, 2)) * q(p, z, 2), (15)

and the optimal (static) price p* solves

M(p”, x, z)

G =0, (16)

Lemma 1 provides a set of sufficient conditions that relates changes in char-

acteristics to changes in price.

9q dmc dq
Lemma 1 Assume ap < 0, Ozy >0, and Dar > 0. For product character-
istic Ty, if
dq dme , Oq * d%q
op
Proof

Total differentiation of the first-order condition with respect to p and z

coupled with the implicit function theorem leads to the comparative static:

o _ _<a2n(p*))‘1 o°1(p)
oxy, Op op’ Op Oxy,
_ _ (2*n(p) *1* D44 (p* — me) * &g _ dmec , Oq (18)
- Op op’ oxy, p mc 0z 0p oz, op ) -

2 *
The result follows because —aagg;,) is positive from profit maximization. ||

14



The first three assumptions are reasonably weak, requiring respectively
that demand is downward sloping, marginal cost is increasing in the amount
of the characteristic, and demand is increasing in the amount of the char-
acteristic (consumer’s value the characteristic). The left hand side of (17)
is positive under these assumptions, which means the result depends on
7ex 5
the characteristic increases. If demand becomes less price elastic, then the

which characterizes how the price elasticity of demand changes as

result holds. If demand becomes more price elastic as the characteristic in-
creases, then the left hand side of the inequality must exceed the right hand
side. When these sufficient conditions hold, price is monotonically increas-
ing in x, which implies both that price can be written as a function of the

unobserved factor, and that price is invertible in this factor.

3.2 Multi-Product Setting

We focus on static Bertrand-Nash price competition, which is perhaps the
most popular maintained competitive assumption in the applied discrete
choice literature. Let £ = (£1,...,&s) denote the vector of unobserved fac-
tors, one for each product. For the Bertrand-Nash setup, define II¢(p, Z, £)
as the profits for firm f, f = 1,..., F, which produces a subset of the goods
J € Jy and chooses prices to maximize static profits. Let p enter as the first
J arguments and £ enter as the last J arguments in every profit function.

For fixed Z, let p* = (p},...,p%) denote a vector that satisfies

a]'_‘[fj (p*,Z,¢)

=0, j=1,...,J 19
o, J (19)

Lemma 2 Given Z, if each of the first order conditions in (19) is continu-
ously differentiable in its first and last J arguments, then p* can be expressed

as an implicit function of &,

p"(Z,€) = (p1(Z,€),---.p5(Z,9)), (20)
in a neighborhood of . If

ap o€’

(21)

15



has full rank, then the matriz of derivatives g—g’, is invertible in this neigh-
borhood.

Proof
Total differentiation of the first order conditions from (19) yields

PN (7,8,2.8) P (Z,6),%8)
Ap O P = ap OE'

de. (22)

The matrix )
Op op’

is full rank by profit maximization, so the first claim follows directly from

(23)

the implicit function theorem. Solving for the JXJ matrix of derivatives

g—g yields

O _ (62H<p*<z,e>,z,s))‘1 PUP (26,28 )

o¢ op op' dp O

g—g is equal to the product of two full rank matrices, which is also full rank

and thus invertible. ||

Lemma 2 shows that the conditions under which prices can be written
as a one-to-one function of the vector of unobserved factors. Full rank of
(23) comes directly from profit maximization. Thus, the invertibility turns
on the full rank of (21). This requires the vector of first order conditions
to vary in J independent directions when differentiated with respect to the

vector £.

3.3 Estimation of the Control Variates

Given invertibility, which we now maintain throughout, the final step that
remains is to show the conditions under which ¢ is identified. In our empirical
approaches we will be using repeated observations on markets to recover the

control variables, so we add a market index m to the pricing equation:

ij :pj(Zmagm), (25)

16



where Znj = (Zmj1, Zmj2) is the set of the observed characteristics for prod-
uct j that affect demand Z,,;; and costs Z,,;2, and all observed characteris-
tics in market m relevant for the determination of prices in equilibrium are
included in the vector Z,, = (Zm1, Zm2,-- -, Zms).'2 The product-specific
errors are denoted &, = (&m1,---,&ms). ™ can serve as an index for the
same market observed repeatedly over time, a cross-section of markets at a
given point in time, or a combination of the two.

In the univariate case, identification of 5 is achieved by extending the
estimator proposed in Imbens and Newey (2003) to demand systems. The-
orem 1 in Appendix D provides the details, showing that if p(Z,,, &) is
monotonic in ¢, and ¢ is independent of Z, then the conditional distribution

of P given Z is equal to the marginal distribution of ¢:

Fp|z(P|Z) = F¢(§).

In words, if two markets are observationally equivalent and one market has
higher prices than the other market, the higher-price market has a higher
unoberved £. The proof is constructive, suggesting the empirical cumulative
distribution function for Fp|z(P|Z) as an estimator for F¢(-). Specifically,
the control function is defined as £ = Fp|z(P|Z), a random variable that is
one-to-one with ¢ and uniformly distributed over the unit interval.

In the multivariate setting, which we focus on in the empirical results,
the results for identification from Matzkin (2005) are relevant. She spells
out the general conditions for identification that can be used in conjunction
with a “Closest Empirical Distribution” estimator (e.g. Manski (1983) and
Brown and Matzkin (1998)) to recover the one-to-one function of £. Petrin
(2005) provides a complete discussion of available options, and Theorems
3 and 4 provide estimators for particular formulations of the reduced form
pricing equations (see Appendix D). We exclusively use Theorem 3 in the
empirical results later, but emphasize the availability of many alterative

approaches.

2In a setting with multi-product sellers Z,,; will include indicators for sellers of each
product because the same set of products divided up differently across the set of producers
will generally result in different equilibrium prices.
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When there are multiple sellers in the market(s), multiplicity of equilib-
ria can present an econometric problem. If we can condition on the different
equilibria, and the functions are allowed to differ across the equilibrium
index, then there is no econometric problem. However, if markets where
different equilibria are being played are pooled together when estimating
the equilibrium pricing function, estimates of the control variates will not
be consistent, because the underlying relationship is not a function but in-
stead a correspondence. This problem is likely to be most pronounced when
the same market over time is not observed, but instead cross-sections of
markets are used in the estimation. This problem is well-known in the lit-
erature that estimates dynamic games, where it is usually assumed that,
conditional on the covariates, only one equilibrium is played in the data.'
In terms of testing, if results change when pricing functions are estimated by
geographic region (say), or some other observable by which equilibria might
differ, pricing functions should be allowed to vary across these observable
factors. If control variates are not consistently estimated because of multi-
plicity of equilibria, the specification test proposed in section 2.2 has power
against “no multiplicity”, as observed and predicted shares should diverge.

A computationally simple approach to obtaining control variates is to
assume that prices are additively separable in the unobserved factors. Be-
cause it is so straightforward to implement, we use it in our base comparisons
between the control function and product-market control approaches later.

Under additive separability, P,; can be written as

Pri = 915(Zm) + 92i(ém)
= E[Pj | Zm] + Nj(fm)a

where in the second line we define the difference between price and its ex-

(26)

pected value conditional on observed exogenous factors as fiy; = pj(&m)-
Repeated use of OLS can be used to estimate the vector of conditioning

variables, given as

Em = (p1(&m)s 2(&m), - - - s (Em))s

13See, for example, Aguirregabiria and Mira (2003), Pakes, Ostrovsky, and Berry(2003),
Pesendorfer, and Schmidt-Dengler (2003), Seim (2003).
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which is one-to-one with &, as Theorem 3 shows.

If in the data the number of observed markets is large relative to the di-
mension of Z,,, variation in prices and observed characteristics are typically
sufficient to identify and estimate the proxies. This is the setting for both
the cable television and margarine cases, where there are four product types,
and variants of them are observed in a cross-section (U.S. cable franchise
markets in 2001) and a time-series (margarine sales at a supermarket over
117 weeks).

When the dimension of Z,, is large relative to the number of observed
markets, there may be “too many” regressors to use in the estimation of
the residuals. We suggest using an approximation from Pakes (1994), who
provides a parsimonious basis for equilibrium pricing functions that are par-
tially exchangeable (that is, when one can change the order in which some
of the arguments enter the function without changing the value of the func-
tion). This result has wide applicability to differentiated product markets,
and we discuss its usefulness further in the context of the control function
approach in the BLP automobile case-study.

In summary, the control function approach can fail if: we need to allow
for more than one error per product, there are multiplicity of equilibria
across markets that are not appropriately indexed, and/or the inverse 5 it
not identified. We note that the x? test we proposed in section 2.2 has
power against any of these potential problems, and thus provides a very

useful portmaneau specification test.

4 Three Empirical Applications

Our empirical applications span three commonly used data types: aggregate
(market-level) data, household-level cross-sectional data, and household-
level panel data. For each case we briefly describe the data, the demand
side model, the instruments, and different options for control functions. Our
approach is to choose simple specifications for demand in our three applica-
tions that are comparable across the product-market control approach and

the control function approach in order to see whether parsimonious correc-
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tions yield similar results that are significantly different from performing
no correction. We leave for future work exploration of more complicated
specifications that explore when significant differences arise between the ap-

proaches.

4.1 Multi-Channel Video (Television)

Our first application applies the uncorrected and both correction methods
to households’ choice among television reception options in 2001, where
Goolsbee and Petrin (2004) have emphasized the importance of omitted

attributes.

4.1.1 Data and Demand Specification

The specification is similar to Goolsbee and Petrin (2004). Four alternatives
are available to households: (1) antenna only, (2) expanded basic service,
(3) expanded basic cable with a premium service added, such as HBO, and
(4) satellite dish. The data used is a sample of 11,810 households in 172
geographically distinct markets, where each market contains only one cable

franchise. Utility is specified as:

5
Uij = APy + Z 0gPmjlig + BoTmj + Vidi + ovicj + /\QEm +ej. (27)
g9=2

Zm; are the observed characteristics of the product (including a product
intercept term). The price effect varies across five income groups, with the
lowest income group taken as the base and the binary variable 1;, indicating
whether household i is in income group g¢.' Byzm; denotes the base utility
derived from observed product characteristics. Demographic variables for
household 7 are given by d; and enter each choice j with a separate coeffi-
cient vector ;. A random coefficient is included to allow for correlation in
unobserved utility over the three non-antenna alternatives. In particular,

c;j = 1 if j is one of the three non-antenna alternatives and c¢; = 0 otherwise,

" The price coefficient for a household in the lowest income group is o while that for a

household in group g > 1 is a + 6.
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and v; is an i.i.d. standard normal deviate. The coefficient o is the stan-
dard deviation of the random coefficient, reflecting the degree of correlation
among the non-antenna alternatives. Finally, €;; = /\gém + €5, with \; the
vector of parameters associated with the controls, and ¢;; is i.i.d. extreme
value.'®

The utility specification with product-market controls is given as:

5
i = Omj + »_ Ogpmilig + Vjdi + ovic; + €ij, (28)
g=2
where all of the elements of utility that do not vary within a market are
subsumed into the product-market controls, which are a function of price

and other observed attributes:

ij = apm; + ,mej + Emja

with ij the unobserved factor, which we write with the overscore because

it is chosen such that
s(0,0(0)) = ghata,

where 6 includes all parameters but the product-market control, and d,,; is
obtained from matching observed to predicted shares, as discussed in section
2.5.

The Forrester survey provides various demographic characteristics. In
the estimation we include family income, household size, education, and
type of living accommodations. The survey also includes an identifier for
the household’s television market, which can be used to link households
exactly to their cable franchise provider (whether they subscribe to cable or
not).

The cable system information comes from Warren Publishing’s 2001

Television and Cable Factbook. The attributes we include, which vary over

15The error specification in Goolsbee and Petrin (2004) uses a fully flexible multivariate
normal specification in place of the logit error. Here we use a logit error specification
(with the random coefficient common across multichannel video alternatives) to stay close
to the BLP approach that’s applied in practice.
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markets, are the channel capacity of a cable system, the number of pay chan-
nels available, whether pay per view is available from that cable franchise,
the price of expanded basic service, the price of premium service, and the
number of over-the-air channels available. Many of the cable operators are
owned by multiple system operators (MSQO’s) like AT+T and Time-Warner,
and we include MSO dummy variables. As mentioned earlier, satellite prices
do not vary geographically, and the price of antenna-only is assumed to be
zero, so the price variation that is used to estimate elasticities arises from
the cable alternatives. For the price of satellite, we use $50 per month plus
an annual $100 installation and equipment cost. More details are given in

Appendix A.

4.1.2 Instruments

For both approaches we use Hausman (1997)-type price instruments. The
price instrument for market m is calculated as the average price in other
markets that are served by the same multiple system operator as market
m. A separate instrument is created for the price of expanded-basic cable
and the price of premium cable. These instruments are appropriate if the
prices of the same multiple system operator in other markets reflect common
costs of the multiple system operator but not common unobserved demand

attributes.

4.1.3 The Control Functions

For the base specification we construct the price residuals for expanded basic
by regressing the expanded-basic price on all the product attributes listed
above for both choices plus both Hausman (1997)-type price instruments
(the expanded basic and the premium one). Premium residuals are con-
structed in a similar manner. Since price does not vary across geographic
location for antenna-only and satellite, we are not able to construct price
residuals for these products.

Many alternatives to the first order approximation for the control func-

tion specification are available in this case because the ratio of markets to
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products is high. We experimented with a number of them. When construct-
ing residuals, we included average demographics in the first stage pricing
equations in addition to the product characteristics and instruments. In the
likelihood maximization stage we experimented with many different spec-
ifications for entering the price residuals. We used a series expansion on
the residuals (both signed and unsigned), entered the price residuals with
random coefficients on them, and interacted the price residuals with other
variables. In every case the extra generality did not result in elasticities
that differed much from the control function specification described above.
In fact, the price residuals for expanded basic and premium were highly
collinear, so we could not reject the more parsimonious specification that
just included the own-product residual (the elasticities were virtually iden-
tical). We report results for just this simplest base specification given by

E; = )\jgmj + €ij-

4.1.4 Estimation and Results

For the BLP approach we estimate the model with product-market controls
using the contraction procedure to solve for the 516 (172*3) additional pa-
rameters (conditional on parameters 6 not captured in the (5mj’s).16 The
value of the likelihood function is then computed at this value of (0,4(8)),
and the function is maximized over #. After the likelihood function is max-
imized, the Smj’s are regressed on the product attributes using 3SLS. A
separate equation is used for the expanded-basic cable and premium cable,
with the coefficients of the product attributes constrained across equations
(consistent with the usual differentiated products approach). These param-
eter estimates are reported in Appendix A in Table A2.

Estimation of the control function approach proceeds first by obtaining
estimates of the price residuals (as described above). Then, the likelihood
function is maximized using the equation for utility from (27).

Table 1 gives price elasticities from the models for each approach. With-

out any correction for price endogeneity the correlation between price and

1 . . .
50ne control in each market is normalized out.
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Table 1
Television Choice Elasticities: Uncorrected,
Control Function, and BLP

No Control BLP
Correction Function

Price of expanded-basic cable

Antenna-only share U 0.96 0.79
Expanded-basic cable share p -1.18  -0.97
Premium cable share w 0.99 0.88
Satellite share a 0.95 0.87
Price of premium cable r
Antenna-only share d 0.60 0.52
Expanded-basic cable share 0.65 0.57
Premium cable share S -2.36  -2.04
Satellite share 1 0.64 0.58
Price of satellite 0
Antenna-only share p 0.43 0.42
Expanded-basic cable share i 0.48 0.43
Premium cable share n 0.48 0.45
Satellite share g -3.79  -3.59
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the unobserved characteristics is so strong that demands are upward slop-
ing (consumers like to pay more). Parameter estimates and standard errors
from both the control function approach and the BLP approach reject the
uncorrected model. The elasticities from these approaches are very similar,
with expanded basic at either -0.97 or -1.18, premium at -2.04 or -2.36, and
satellite at -3.59 or -3.79.17

4.2 Margarine

Our second application uses household-level panel data to estimate the de-
mand for margarine. The framework and data exactly follows that outlined
in Chintagunta, Dube, and Goh (2003), who use product-market controls
to demonstrate that unobserved brand characteristics result in a price en-

dogeneity problem for margarine.'®

4.2.1 Data and Demand Specification

The data are weekly purchase histories of 992 households between January
1993 and March 1995 and were collected by Nielsen for the Denver area
using checkout-counter scanners. The data for margarine are restricted to
the 16 oz. category and the four observed products are Blue Bonnet, I Can’t
Believe It’s Not Butter (ICBINB), Parkay, and Shedd’s. Weekly prices and
marketing mix variables - including whether the product is on display and
whether it is featured - are recorded for every product available in these
categories for all 117 weeks. Posted prices may respond to changes in shelf-
space, the availability of in-store coupons, or promotions in complementary
or substitute categories, all of which are unobserved by the econometrician.
Omitted inventories, if correlated across households because of persistence

in prices, can also lead to a correlation in price and the unobserved demand

17We also tested for specification issues unrelated to the control function, including
random coefficients of other variables, and other types of error components. The sim-
pler specifications for either of the corrected approaches could not be rejected, and the
elasticities were virtually unchanged.

18They also show this to be true for orange juice. We are greatly indebted to JP Dube
for running the control function specification with his data.
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shock.

The utility specification for the control function approach is given as

uijt = (a0 +ai)pje+ (Boj + Bij) + (Bor + Bir) Fjt + (Bop + Bin) Djt + Niét +€ije.

(29)
where pj; is the posted price for brand j at time ¢, F;; and D;; are indicators
that are on if the brand is on feature or display respectively at time ¢, and
ét is the vector of control variates. The common-across-consumers price
sensitivity term is given by «g, and similarly the brand specific intercepts
and feature and display intercepts are given by Bo; 7 = 1,...,4, Bor, and
Bop respectively. Consumer specific tastes vary around these mean taste
parameters and are given by «o;, 8;; 7 = 1,...,4, Bir, and B;p, which are
mean zero multivariate normal draws. These random taste coefficients freely
vary and covary across price, feature, display, and the brand intercept terms
(seven factors), adding a total of 28 additional parameters that summarize
the variance covariance matrix of unobserved taste heterogeneity. Finally,
€;j¢ is i.i.d. logit.

The utility specification for the fixed effects model is given as:
uijt = 05t + aipji + Bij + Bir Fyjt + Bip Djt + €iji- (30)

All of the elements of utility that do not vary for product j in week t are

subsumed into the fixed effects, so

djt = agpjt + Boj + Bor Fjt + BopDji + &ji-

Wholesale prices are the instruments for the reported shelf price. The
price instruments vary weekly for each brand of margarine. These instru-
ments are appropriate if, for example, the unobserved promotional activities
at the retail level are uncorrelated with the wholesale price. For the control
function specification, the estimator for & is the (vector of) residuals from
the regression of each product’s retail price at time ¢ on an intercept, the list
price at the wholesale level, and the discount off list price (at wholesale).!®

Since the number of products is small relative to the number of markets, we

19Wholesale prices of the other products at time ¢ did not enter significantly.
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Table 2
Margarine Own-Price Elasticities: Uncorrected,
Control Function, and Fixed Effects
No  Control Fixed
Correction Function  Effects

Blue Bonnet -1.74 -2.09 -2.05
ICan’tBINB -4.64 -5.33 -5.44
Parkay -2.69 -3.31 -3.34
Shedd’s -3.32 -4.23 -4.20

are again able to enter all of the residuals into each product’s expression for
utility. However, we found again that elasticity estimates were very similar
when only the own-product residual entered, and it was the only residual
entering significantly. For the results we report the specification where each

product has its own coefficient for its residual, so ¢; = /\jémjt + €.

4.2.2 Results

Table 2 gives price elasticities across the three models. Appendix B reports
the point estimates and standard errors for each of the three specifications.
Without any correction for price endogeneity the correlation between price
and the unobserved brand characteristics is strong enough for margarine
such that the own-price elasticities are substantially underestimated with
no correction. Across brands they increase between 20-35% with either
correction. In each of these cases the control function and the fixed effects
approach provide elasticity estimates that are very similar: -2.09 vs. -2.05,
-5.33 vs. -5.44, -3.31 vs -3.34, and -4.23 vs. -4.20.2°

20Dube reported to us similar findings using orange juice, that is, without a correction,
results are biased down, but either correction produces similar elasticities (see early ver-
sions of their paper for exact details of their orange juice specification, which is similar in
flexibility to the margarine specification described here).
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4.3 Automobiles (the BLP case study)

Our third example is the original BLP (1995) example: price endogeneity
in the automobile market. The application is identical to the reported BLP
case in almost every respect: data, demand specification, instruments, and
estimation. The only difference is that we do not use a supply side model
when we estimate the demand side model (so our point estimates only ex-

actly match their estimates for the cases they examine without the supply
side).?!

4.3.1 Data and Demand Specification

The application uses the same 2217 market-level observations on prices,
quantities, and characteristics of automobiles sold in the 20 U.S. automobile
markets beginning in 1971 and continuing annually to 1990. The utility
function used in BLP is??

uij = adn(Yi — Pmj) + Omj + D_f OkVikTmjk + €ijy

where

with Emj the unobserved factor, which we write with the overscore because
it is chosen such that

s(0,5(0)) = Pt

where ¢ includes all parameters but the product-market control, and 0,
is obtained from matching observed to predicted shares, as discussed in
section 2.5. « is the marginal utility of income parameter and income is

assumed to follow a log-normal distribution.?® Characteristics z,,; include

2'We focus on the demand side for three reasons: it makes the comparison more trans-
parent, most researchers do not impose a supply side model when estimating demands,
and the results are easier to replicate.

?2Consumer 4 is in one and only one market m, and m(3) is a function of i (we do not

explicitly write m in ¢’s presence below).
23The mean varies annually and the variance assumed to be constant across the twenty

years.
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a constant term, the ratio of horsepower to weight, interior space (length
times width), whether air-conditioning is standard (a proxy for luxury), and
miles per dollar. The random coefficients on characteristics are assumed
to be normally distributed and independent across characteristics with the
mean (fyx) and variance (o) (so vy, are the mean zero standard normal

deviates).?*

€;j is i.i.d. extreme value, so the differenced errors - what’s
relevant for choice data - are distributed i.i.d. logit.

The control function specification is similar, and is given by
_ ! ! &
wij = 0dn(Yi — Pmj) + BoTms + Y OkVikTmgk + Nibm + €55 (32)
k

The only difference is, without the §’s, 8z is included directly, along with

the control function and the new error component.

4.3.2 Instruments

Important for both BLP and the control function approach are the deter-
mination of prices in the automobile market. BLP consider an equilibrium
pricing function of the general form from (25). They follow the literature and
assume that observed product characteristics (except price) are uncorrelated
with unobserved characteristics ¢,,;. (25) implies that in any market m ev-
ery product characteristic affects every price in the market, so any product
characteristic is a valid instrument for any price. This leads to an abundance
of instruments, most of which are likely to be very weak. Pakes (1994) de-
rives the first order basis for the optimal instruments, which amounts to
three instruments for each demand characteristic: the characteristic itself
(because characteristics are exogenous), the sum of the characteristic across
own-firm products (excluding that product), and the sum of the character-
istic across rival firm products. The intuition comes from the first order
conditions of the oligopoly pricing equilibrium (from BLP, pg. 855):

products that face good substitutes will tend to have low markups,

whereas other products will have high markups and thus high

24 A variance term is included for the constant to allow for heterogeneity in taste for the
outside good.
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prices relative to cost. Similarly, because Nash markups will re-
spond differently to own and rival products, the optimal instru-
ments will distinguish between the characteristics of products
produced by the same multi-product firm versus the character-

istics of products produced by rival firms.

With 5 characteristics per vehicle, this yields 15 instruments for each prod-

uct, and we denote this vector z,,;.

4.3.3 The Control Functions

We construct an estimate of the expected price for each product conditional
on all exogenous factors observed by the econometrician. With the automo-
bile data, very few observations are available on the same nameplate (i.e. the
same product) over time, because cars change characteristics and/or exit.
This means some restrictions on E[ P; | Z,,] across vehicles will be necessary.
Some possibilities include assuming that the expected price function is the
same across vehicles in the same year, or across similar vehicles, or both. We
make a stronger assumption, imposing that the parameters of this function
are the same across all products and all years. This yields 2217 observations
on this one function.

A second issue arises because of the abundance of arguments in this
function (similar to the abundance of instruments in BLP). We follow the
logic outlined in Pakes (1994) - described above - and use as arguments for
each product j the 15 regressors given by ij, which reflect both demand
and cost factors relevant for each product. The only demographic variable
is average annual income, and it has little effect on the predicted values for

price, so we define
Hmj(gm) = Ppj — E[Pj | ij],

and estimate the expectation using ordinary least squares.? Because the
expectation is estimated with error, an additional source of error arises. We

describe the correction for the standard errors in Appendix A.

25 A second order approximation yielded nearly identical results.
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The dimensionality problem also arises with the specification for f (e; | €m).
We consider two parsimonious specifications that are based on the assump-
tion that the own-product residual is principally a function of the own-
product unobserved factor. For the first specification, only the own-product
residual p,,; from the pricing function enters utility for product j. A, the

parameter scaling the price residual, is allowed to vary by year, so
€ = Ampimj + €5,

where ¢;; is i.i.d. logit.
The second control function specification we use has three terms in the

control function and adds only three new parameters. It is given by

e = Mpimj(€m) + A2( Y. pek(&m)) +As( D pimi(Em)) + €ij-

k#j,ked(4) k¢ J(5)

The motivation for this control function is similar to the motivation for the
instruments in Pakes (1994). The first term is the own-product residual
(here with one parameter common across years given as A1). The sum of
other products’ price residuals may also contain information on the mag-
nitude of the own-product’s unobserved demand factor (conditional on all
observed factors). We use the same two sums that are proposed for pric-
ing instruments; the sum of all of the other residuals of the products made
by the same firm, or (Zk#,kle Pk (&m)), where J¢ is the set of products
produced by the firm that produces the product j, and the sum of all the
residuals of all the products made by other firms, or (Zk¢ I ok (Em)). 26

4.3.4 Estimation and Results

The estimation approach for BLP starts with candidate values of parameters
(a,0), where o is the vector of oj’s. The contraction algorithm locates the
d's that match observed to predicted market shares for all 2217 automobiles
(the logit error ensures that it converges). These product-market controls

are then used in an instrumental variables regression for equation (31) to

26 Other specifications (for example) might allow the residuals of cars “close” in product
space to j to enter the utility for j.
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obtain estimates of Sy. The residuals from the estimated equation (31) are
then interacted with the instruments to generate the moments that enter
the GMM objective function. Minimizing over («, o) is achieved by iterating
over these steps.

Estimation for the control function approach proceeds in two steps. In
the first step estimates of ji,,; are obtained. In the second step the likeli-
hood function is maximized. Common parameters for both of the control
function specifications are («,fp,0). Specification one includes 20 addi-
tional parameters, (A71,...,Ag), each indexed by the year of the data. The
second specification, motivated by Pakes (1994), includes three additional
parameters (A1, Az, Az).

The point estimates and standard errors from these specifications are
reported Table C1 (in Appendix A), and table 3 translates these estimates
into elasticities. The first column uses the uncorrected logit specification
from Column 1 of Table ITT in BLP (1995); because the data sets are the
same, these are the same elasticities that result from the coefficients of their
Table III. As they report, ignoring price endogeneity severely biases price
elasticities towards zero; overall, 67% of them are inelastic.

Columns 2, 3, and 4 report, respectively, specifications one and two of
the control function approach and the BLP approach. Column 2, which uses
only the own-product price residual with coefficients that vary by year, is
very similar to the Column 3 results, which use the three functions of the
price residuals and three coefficients (common across years). Both are very
similar in almost every respect to the BLP results in Column 4. Across
the corrected specifications no automobile price elasticity is inelastic, and
the median elasticity is -2.16 for the BLP case, and either -2.08 or -2.23,
depending on which control function specification is examined. The one
difference is that the spread of elasticities is slightly larger for BLP, with
a one standard deviation spread of 0.19 vs. 0.10 for the control function
approaches. All of the results from Columns 2-4 strongly contrast with
the uncorrected results from Column 1; for example, at -0.77, the median
uncorrected elasticity is only one-third that from the corrected approaches.

BLP report elasticities for selected automobiles from 1990, so we do the
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Table 3
Automobile Elasticities: Uncorrected,
Control Functions, and BLP
No  Control  Control BLP

Correction! Function Function

1) 2)

Results for 1971-1990

Median -0.77 -2.08 -2.23  -2.16

Mean -1.04 -2.08 -2.22 =217

Standard Deviation 0.76 0.10 0.10 0.19

No. of Inelastic Demands 67% 0% 0% 0%
Elasticities from 19902

Mean -1.24 -2.11 -2.24  -2.22

Standard Deviation 0.83 0.14 0.14 0.20

No. of Inelastic Demands 53% 0% 0% 0%
1990 Models (from BLP, Table VI):

Mazda 323 -0.44 -1.82 -1.94 -1.92

Honda Accord -0.82 -2.10 -2.27  -2.17

Acura Legend -1.67 -2.25 -2.37  -2.42

BMW 735i -3.32 -2.06 -2.21  -2.24

Notes: The uncorrected specification is that from Table III of BLP (1995).
1990 is the year BLP focus on for the individual models; we choose every
fourth automobile from their Table VI (the other elasticities were also very
similar). The first control function specification allows A to vary by year;
the second specification follows Pakes (1994) (as defined in the text).
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same, choosing every fourth automobile from their Table III, in which ve-
hicles are sorted in order of ascending price (the overall average elasticities
for 1990 are again very similar between BLP and the control function spec-
ifications, and substantially different from the uncorrected approach). The
discrepancies between the individual elasticities across the three approaches
are small; the absolute value of the difference between BLP and the sec-
ond control function specification for the Mazda 323, Honda Accord, Acura
Legend, and BMW 735i are respectively 0.02, 0.10, 0.05, and 0.03. The
discrepancy in the spread of elasticities across all vehicles is also smaller
for 1990, as the standard deviations are now 0.14 for the control function
approaches vs. 0.2 for the BLP approach. Overall, the corrected approaches

[

in this application yield very similar elasticity estimates and reject the “no

correction” results from Column 1.27

5 Conclusion

In applications of differentiated product models it is rare that all the relevant
factors are observed by the econometrician. When some demand factors are
omitted, price will typically be correlated with these unobserved factors
through the equilibrating mechanism in the market, and this correlation
will bias estimated price elasticities.

In this paper we develop generalized control function method and spec-
ification test for this setting that does not impose the additive separability
between observed and unobserved factors required by the popular product-
market control approaches. Our specifications are based on the results from
Petrin (2005), who extends Imbens and Newey (2003) to demand settings,
showing the conditions under which demand is nonparametrically identified
when the errors are not additive. The approach inverts prices to recover
a random variable that is a one-to-one function of the unobserved product
attribute, and then uses this control to condition out the dependence of

the demand error on price. We develop a hybrid “control-function/product-

2"The control function specification nests the uncorrected specification, so one formal
test asks whether the A’s from the control function approach enter significantly.
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market control” approach that loosens the additive separability assumption
for product-market controls, so (e.g.) advertising campaigns or other pro-
motional activities can affect the marginal impact of price or a product
characteristic on utility.

We present three empirical demand applications that replicate specifica-
tions from earlier works - all of which use product-market controls - includ-
ing Berry, Levinsohn, and Pakes (1995), who look at automobiles, Goolsbee
and Petrin (2004), who look at cable television, and Chintagunta, Dube, and
Goh (2003), who look at margarine. These applications are chosen to span
a range of markets and potential competitive pricing behaviors, and include
three types of different data: aggregate (market-level) data, household-level
cross-sectional data, and household-level panel data. We use them to show
in practice how one implements the control function approach for these dif-
ferent types of products and aggregation levels. The estimated elasticities
are almost identical across the BLP and control function approaches and dif-
fer significantly from the uncorrected elasticity estimates, which are biased

upward in every case.
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6 Appendix A: Television Case-Study Details

The information on households’ television choices, the characteristics of
households, and the prices and attributes of the cable franchise serving the
household’s geographic area comes from two sources, the Forrester Techno-
graphics 2001 survey and Warren Publishing’s 2001 Television and Cable
Factbook. The Forrester survey was designed to be a nationally representa-
tive sample of households. It asks respondents about their ownership and use
of various electronic and computer-related goods. To these data we match
information about cable franchises from Warren Publishing’s 2001 Factbook,
which is the most comprehensive reference for cable system attributes and
prices in the industry.

To minimize sampling error in market shares, we restricted our analysis
to markets where there are at least 30 respondents in the Forrester survey.
This screen yields 300 cable franchise markets with a total of almost 30,000
households. We randomly choose 172 of these 300 markets. From these
172 markets, we randomly selected 11810 households, oversampling those
households from smaller markets (again, to minimize sampling error). These
11810 households are used in the estimation with weights equal to the inverse
of their probability of being sampled.

As stated in the body of the paper, the alternatives in the discrete choice
model are: expanded basic cable, premium cable (which can only be pur-
chased bundled with expanded basic), Direct Broadcast Satellite, and no
multi-channel video (i.e., local antenna reception only). In the Forrester
survey, respondents reported whether they have cable or satellite, and the
amount they spend on premium television. We classified respondents as
having premium if they reported that they have cable and spend more than
$10 per month on premium viewing, which is the average price of the most
popular premium channel, HBO. We classified respondents as choosing ex-
panded basic if they reported that they have cable and they spend less than
$10 per month on premium viewing.

Table Al gives the estimated parameters and standard errors. Since f

are used to approximate y in the estimation routine, the standard errors from
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the traditional formulas (and output by standard estimation routines) are
biased downward. To approximate the additional source of variance arising
from using fi, we add a new term to the estimated variance of the param-
eters obtained from treating 4 as the true pu. This new component comes
from bootstrapping the price regressions. That is, we repeatedly estimate
the price regressions with bootstrapped samples, calculate the residuals,
and re-estimate the model with the new residuals. The variance in param-
eter estimates over the bootstrapped price samples is added to the variance
estimates from the traditional formulas (which are appropriate when p is
observed without error). These total standard errors are given in the table.
The adjustment is important for the standard errors of the base price coeffi-
cient, the coefficients for the residuals, and the coefficients of the product at-
tributes, which increase between 50-100%. As noted earlier, Karaca-Mandic
and Train (2002) provide a formula for the asymptotic standard errors in
this type of two-step estimation; they find that in our application the for-
mula gives standard errors that are very similar to those obtained with the
bootstrap procedure.

The first column of Table Al gives the model without any correction
for the correlation between price and omitted attributes; utility is the same
as specified above except that the residuals y,,; and the error component
are not included. The second column applies the control function approach.
Without correction, the base price coefficient « is small, sufficiently so that
the price coefficient o + 6, is positive for three of the five income groups,
rendering the model implausible and unusable for policy analysis. Inclusion
of the control functions raises the magnitude of the estimated base price
coefficient, as expected. A negative price coefficient is obtained for all income
groups, with the magnitude decreasing as income rises.

Several product attributes are included in the model. In the model
without correction, one of these attributes enters with an implausible sign:
number of cable channels. With correction, all of the product attributes
enter with expected signs. The magnitudes are generally reasonable. An
extra premium channel is valued more than an extra cable (non-premium)

channel. The option to obtain pay-per-view is valued highly. Note that
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Table Al: Control Function Approach
to Modeling TV Reception Choice

Alternatives: 1. Antenna only, 2. Basic and expanded cable, 3. Premium cable, 4. Satellite

Variables enter alternatives in parentheses and zero in other alternatives.

Explanatory variable Uncorrected

With control functions

(Standard errors in parentheses)

Price, in dollars per month (1-4) -.0202 (.0047) -.0969 (.0400)
Price for income group 2 (1-4) .0149 (.0024) .0150 (.0025)
Price for income group 3 (1-4) .0246 (.0030) .0247 (.0031)
Price for income group 4 (1-4) .0269 (.0034) .0269 (.0035)
Price for income group 5 (1-4) .0308 (.0036) .0308 (.0038)
Number of cable channels (2,3) -.0023 (.0011) .0026 (.0029)
Number of premium channels (3) .0375 (.0163) .0448 (.0233)
Number of over-the-air channels (1) .0265 (.0090) .0222 (.0111)
Whether pay per view is offered (2,3) 4315 (.0666) .5813 (.1104)
Indicator: ATT is cable company (2) .1279 (.0946) -.1949 (.1845)
Indicator: ATT is cable company (3) .0993 (.1195) -.2370 (.1944)
Indicator: Adelphia Comm is cable company (2) .3304 (.1224) .3425 (.1898)
Indicator: Adelphia Comm is cable company (3)  .2817 (.1511) .2392 (.2246)
Indicator: Cablevision is cable company (2) .6923 (.2243) 1342 (.3677)
Indicator: Cablevision is cable company (3) 1.328 (.2448) .7350 (.3856)
Indicator: Charter Comm is cable company (2) .0279 (.1010) -.0580 (.1441)
Indicator: Charter Comm is cable company (3)  -.0618 (.1310) -.1757 (.1825)
Indicator: Comcast is cable company (2) .2325 (.1107) -.0938 (.2072)
Indicator: Comcast is cable company (3) .5010 (.1325) .1656 (.2262)
Indicator: Cox Comm is cable company (2) .2907 (.1386) -.0577 (.2496)
Indicator: Cox Comm is cable company (3) .5258 (.1637) .0874 (.2954)
Indicator: Time-Warner is cable company (2) .1393 (.0974) -.0817 (.1507)
Indicator: Time-Warner cable company (3) .2294 (.1242) -.0689 (.1891)
Education level of household (2) -.0644 (.0220) -.0619 (.0221)
Education level of household (3) -.1137 (.0278) -.1123 (.0280)
Education level of household (4) -.1965 (.0369) -.1967 (.0372)
Household size (2) -.0494 (.0240) -.0518 (.0241)
Household size (3) .0160 (.0286) .0134 (.0287)
Household size (4) .0044 (.0357) .0050 (.0358)
Household rents dwelling (2-3) -.2471 (.0867) -.2436 (.0886)
Household rents dwelling (4) -.2129 (.1562) -.2149 (.1569)
Single family dwelling (4) 7622 (.1523) .7649 (.1523)
Residual for expanded-basic cable price (2) .0805 (.0416)
Residual for premium cable price (4) 38 .0873 (.0418)
Alternative specific constant (2) 1.119 (.2668) 2.972 (1.057)
Alternative specific constant (3) .1683 (.3158) 2.903 (1.487)
Alternative specific constant (4) -.2213 (.4102) 4.218 (2.386)
Error components, standard deviation (2-4) ..5087 (.6789) .5553 (.8567)
Log likelihood at convergence -14660.84 -14635.47

Number of observations: 11810




this attribute, unlike the others, is not on a per-channel basis; its coefficient
represents the value of the option to purchase pay-per-view events. The
point estimates imply that households are willing to pay $6.00 to $8.88 per
month for this option, depending on their income.

Several demographic variables enter the model. Their estimated coeffi-
cients are fairly similar in the corrected and uncorrected models. The esti-
mates suggest that households with higher education tend to purchase less
TV reception: the education coefficients are progressively more highly nega-
tive for antenna-only (which is zero by normalization), expanded-basic cable,
premium cable, and satellite. Larger households tend not to buy expanded-
basic cable as readily as smaller households. Differences by household size
with respect to the other alternatives are highly insignificant. A dummy for
whether the household rents its dwelling is included in the two cable alter-
natives and separately in the satellite alternative. These variables account
for the fact that renters are generally less able to install a cable hookup or
mount a satellite dish. The estimated coeflicients are negative, confirming
these expectations. Finally, a dummy for whether the household lives in
a single-family dwelling enters the satellite alternative, to account for the
fact that it is relatively difficult to install a satellite dish on a multi-family
dwelling. As expected, the estimated coefficient is positive.

The residuals enter significantly and with the expected sign. In particu-
lar, a positive residual occurs when the price of the product is higher than
can be explained by observed attributes and other observed factors. A pos-
itive residual suggests that the product possesses desirable attributes that
are not included in the analysis. The residual entering the demand model
with a positive coefficient is consistent with this interpretation.

The results for the BLP approach are given in Table A2. The bottom
part of the table gives the estimates of the demographic coefficients from
the first stage. The top part of the table gives the results of the regression
of the product-market controls on product attributes. The first column at
the top gives the OLS results, which do not account for omitted attributes,
and the second column gives the 3SLS results.

As with the control function approach, the correction for omitted vari-
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Table A2: BLP Approach
to Modeling TV Reception Choice

Alternatives: 1. Antenna only, 2. Basic and expanded cable, 3. Premium cable, 4. Satellite
Variable enters alternatives in parentheses and is zero in other modes.

Explanatory variable OLS 3SLS
(Standard errors in parentheses)

Price, in dollars per month (1-4) -.0245 (.0091) -.0922 (.0409)
Number of cable channels (2,3) -.0024 (.0027) .0017 (.0042)
Number of premium channels (3) .0132 (.0502) .0463 (.0329)
Number of over-the-air channels (neg.) (1) .0168 (.0132) .0196 (.0186)
Whether pay per view is offered (2,3) .5872 (.1326) .7144 (.1814)
Indicator: ATT is cable company (2) -.3458 (.2127) -.2934 (.2353)
Indicator: ATT is cable company (3) .0158 (.2262) -.0017 (.2541)
Indicator: Adelphia Comm is cable company (2)  .4883 (.2943) .3837 (.2733)
Indicator: Adelphia Comm is cable company (3)  .6111 (.3121) .5219 (.3065)
Indicator: Cablevision is cable company (2) 1905 (.5368) -.1912 (.5596)
Indicator: Cablevision is cable company (3) 1.215 (.5829) .7400 (.6193)
Indicator: Charter Comm is cable company (2)  -.1807 (.2387) -.1871 (.2196)
Indicator: Charter Comm is cable company (3)  -.0408 (.2539) -.0685 (.2488)
Indicator: Comcast is cable company (2) -.4097 (.2601) -.4034 (.2755)
Indicator: Comcast is cable company (3) .1427 (.2755) .0989 (.3002)
Indicator: Cox Comm is cable company (2) -.6419 (.4302) -.6336 (.4225)
Indicator: Cox Comm is cable company (3) -.0398 (.4564) -.1563 (.4827)
Indicator: Time-Warner is cable company (2) -.3756 (.2335) -.3439 (.2281)
Indicator: Time-Warner cable company (3) .0527 (.2503) -.0009 (.2597)
Alternative specific constant (2) 1.659 (.3486) 3.185 (1.007)
Alternative specific constant (3) .6462 (.4725) 2.819 (1.480)
Alternative specific constant (4) .6583 (.1733) 4.635 (.2193)
Price for income group 2 (1-4) .0156 (.0021)

Price for income group 3 (1-4) .0273 (.0023)

Price for income group 4 (1-4) .0299 (.0027)

Price for income group 5 (1-4) .0353 (.0029)

Education level of household (2) -.0521 (.0173)

Education level of household (3) -.1385 (.0203)

Education level of household (4) -.2525 (.0308)

Household size (2) -.0984 (.0240)

Household size (3) -.0155 (.0277)

Household size (4) -.0235 (.0363)

Household rents dwelling (2-3) -.1494 (.0772)

Household rents dwelling (4) 40 -.5470 (.1349)

Single family dwelling (4) 1967 (.1023)

Error components, standard deviation (2-4) L7775 (.1664)

Log likelihood at convergence -13927.40

Number of observations: 11810




ables raises the price coefficient. Without correction, three of the five in-
come groups receive a positive estimated price coefficient. With correction,
all groups obtain a significantly negative price coefficient.

The estimated base price coefficient is -.0922, compared to the -0.0969
obtained with the control function approach. The difference is not statis-
tically significant at any reasonable confidence level. The estimates of 0,
the incremental price coeflicient for higher income groups, are very similar
under the two approaches. As in the control function approach, the number
of cable channels obtains a negative coefficient when endogeneity is ignored
and becomes positive as expected when the endogeneity is corrected. Gen-
erally, the coefficients on the product attributes are similar to the control
function estimates.

The demographic coefficients in Table B2 are also similar to those from
the control function approach. Education induces households to buy less
TV reception. Larger households tend not to buy expanded-basic cable,
and other differences are not significant. Renters tend not to buy cable and
satellite as readily as owners. And single-family dwellers tend to purchase
satellite reception more readily than households who live in multi-family

dwellings.
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7 Appendix B: Margarine Case-Study Detalils

Table B1 contains the estimated demand parameters and standard errors
for the margarine data. These parameters yield the reported elasticities in
Table 3. In addition to the parameters listed in the table, there are 28 ad-
ditional parameters that are associated with the fully flexible multivariate
normal taste distribution across the seven variables: price, the four brands,
and the feature and display variable. Since the variance covariance matrix
of 1m; is not separately identified from the variance in taste for the brand,
we do not estimate a separate variance term for each product (it is absorbed
into the brand variance covariance matrix). The fixed effects approach has
117*4=468 additional parameters, or 464 more than the control function
specification, which has four additional parameters relative to the uncor-
rected approach, one for each of the brand residuals: App, A\;¢, Apa, AsH-
The first column of estimates is the standard logit model with the addi-
tional taste heterogeneity, but without controls for price endogeneity. The
next columns report coefficient estimates for the control function and the
fixed effects approach respectively. The point estimates associated with price
are very similar, at -74.55 and -73.98, and are approximately 25% larger than

1.28 The control function

the price coefficient from the standard logit mode
parameters enter significantly and differ across each of the four products,

although moving to a common control function parameter (not reported

28 The standard errors in this model are biased down because there is no correction for
the sampling variance arising from the estimated first stage price equation, as we did for
the automobile and television cases that we estimated ourselves. Almost all of the first
stage regression parameters were precisely estimated, suggesting this source of variance is
probably small.
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Estimated Parameters for Margarine Demand: Uncorrected,

Table B1

Control Function, and Fixed Effects

No  Control Fixed
Parameter Variable Correction Function Effects
Term on Price (ap) price -59.88 -74.55  -73.98
(2.30)  (3.48) (5.48)
Brand means (f5y’s) Blue Bonnet -1.90 -1.22 -1.50
(0.10) (0.13)  (0.20)
I Can’t BINB 1.11 2.56 2.38
(0.22) (0.35)  (0.54)
Parkay -0.73 -0.04 -0.29
(0.13) (0.18)  (0.29)
Shedds -1.04 -0.30 -0.33
(0.15) (0.22)  (0.33)
Promotional controls (8y’s) Feature 0.17 0.20 0.23
(0.06) (0.06)  (0.06)
Display 1.38 1.28 1.59
(0.27) (0.29)  (0.30)
Control Function (\’s) ABB 17.94
(1.74)
Aic 43.71
(7.14)
Apa 2.39
(4.09)
AsH 10.66
(1.77)
Log-likelihood -23703 -23633  -23021
Total trips 56138 56138 56138
Total households 992 992 992

Note: All three specifications include a fully-flexible normal variance co-

variance matrix for taste heterogeneity across the seven variables (a total

of 28 parameters): price, four brands, and feature and display.
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below) only changed the price coefficient to -72.36.
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8 Appendix C: Automobile Case-Study Details

Table C1 contains the estimated demand parameters and standard errors
for the automobile data. These parameters yield the reported elasticities in
Table 3. The first column of estimates is the specification reported in col-
umn one of Table IIT in BLP (1995), where the dependent variable is the log
of good j’s market share minus the log of the outside good’s market share.
This log-odds ratio is regressed on price and characteristics to estimate the
parameters of the utility function (this specification has no random coef-
ficients). The price parameter is sufficiently biased towards zero to result
in 67% of the estimated price elasticities being inelastic, which is incon-
sistent with profit maximizing behavior.?? We emphasize again that these
parameter estimates and inelastic elasticities have already been reported in
BLP (1995) (these results are virtually identical to the results reported there
because the data set has almost been perfectly replicated).

The parameter estimates from the control function approach and BLP
approach respectively are reported next. The demand specification and data
are identical to BLP (1995). The specifications include random coefficients
on the characteristics, and price and income enter as In(y; — pm;). The
price parameter for BLP we obtain here is similar to that reported in their
second specification in Table IV. Again, the BLP results reported here do not
impose the supply side model during estimation, and are thus not identical
to their point estimates in Table IV.

For the control function approach, i are used to approximate p in the
estimation routine, so the standard errors from the traditional formulas (and
output by standard estimation routines) are biased downward. To approx-
imate this additional source of variance in the control function approach,
we bootstrap the price regressions. Specifically, we reestimate the expected
price with a bootstrapped sample, calculate the implied residuals, and re-
estimate the model with these new residuals (otherwise using the original

data). We then repeat this exercise over many bootstrapped samples. The

*®These price (and other) parameters are not directly comparable to the parameters
from the control function and BLP specifications.
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Table C1
Estimated Parameters for Automobile Demand: Uncorrected,
Control Function, and BLP
No  Control BLP

Parameter Variable Correction®* Function
Term on Price () price -0.088
(0.004)
In(y —p) 29.743  23.565
(0.828)  (0.341)
Means (B’s) Constant -10.071 -4.319 -6.768
(0.252)  (0.115) (27.781)
HP /Weight -0.122 1.851 -1.157
(0.277)  (0.032)  (3.076)
Air -0.034 0.548 -0.067
(0.072)  (0.033)  (2.657)
MP$ 0.265 -0.150 0.260
(0.043)  (0.004) (18.624)
Size 2.342 2.100 3.272
(0.125)  (0.009) (37.989)
Std. Deviations (og’s) Constant 0.022 0.003
(0.005)  (0.322)
HP /Weight 0.048 3.817
(0.020)  (0.173)
Air 0.001 1.233
(0.069)  (0.059)
MP$ 0.001 0.001
(0.001)  (6.794)
Size 0.008 0.033
(0.002)  (0.081)
Control Function (X's) A\ 0.065
(0.003)
A2 -0.002
(0.001)
A3 0.001
15 (0.001)

The demand specification and data are identical to BLP (1995). Column 1
is virtually identical to results reported in Table III. We do not impose the
supply side model, so column 3 is not identical to their results reported in

Table IV, although some coefficients (including price) are very similar.



variance in the parameter estimates across the bootstrapped samples is then

added to the variance from the traditional formulas (which are appropriate

when p is observed without error).3°

30Karaca-Mandic and Train (2002) provide a formula for the asymptotic standard errors
in this type of two-step estimation.
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9 Appendix D: Selected Results from Petrin (2005)

9.1 Single-Product Markets
Assumption 3.1  With probability one p(Z,£) is monotonic in €.
Assumption 3.2 (£,e) are jointly independent of Z.

Theorem 1 is the identification result for the control function.
Theorem 1 If 8.1 and 3.2 hold, then Fp z(P|Z) = F¢(£).

Proof
Let p~!(z,p) denote the inverse of P = p(z,£) in its second argument, which

exists by assumption A1l. Then

Fpiz(plz) = Pr(P<p|Z=2)
= Pr(p(2,§) <p|Z=2)
= Pr(¢<p (z,p)|Z=2) (33)
= Pr(<p'(zp)
Fe(p~'(z,p)),

where the third equality follows from A1l and the fourth line follows from
A2. The conclusion follows from A2, which implies £ = p~1(Z, P)). ||

The proof is constructive, suggesting the empirical cumulative distribution
function for Fp|z(P|Z) as an estimator for Fg(-). Specifically, the control
function is defined as £ = Fp|z(P|Z), a one-to-one function of . Given this
definition, ¢ is a random variable that is uniformly distributed over the unit

interval.

9.2 Multi-Product Markets

The full triangular system with J goods is given as

Qj:qj(PaZhS)a ,7:1’5‘]
where P = (Py,...,Py) and € = ({1, ...,&s) denote the vector of prices and

errors, Z1 continues to denote consumer demographics and now potentially

(34)
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all observed product characteristics for the J goods, and the scope of Z and
¢ are similarly extended. The setup allows, for example, for differentiated
products’ settings, where observed and unobserved characteristics can in

general affect the demand and prices of all of the goods in the market.

Assumption 4.1 With probability one the JXJ matriz of derivatives g—g

18 invertible.

Assumption 4.2 (£,e) are jointly independent of Z, and &; and & are
independent for k # j.

Assumption 4.3 Prices can be written as additively separable in observed

and unobserved factors:

P = 91j(Z2) +925(8) j=1,....J (35)

Theorem 2 Let
€ = g2i(€) — Elgoj(€)] = Pj — E[Pj|Z) j=1,...,J.
If 4.1, 4.2, and 4.3 hold, then
£=(6,6,...,&)
is a one-to-one function of £.

Proof
Invertibility of P(Z,€) in ¢ (holding Z constant) implies go.(§) is a one-

to-one function of &, where

92-(5) = P—gl-(Z) (36)

(all of these objects are JX1 vectors). Let the JX1 vector of constants
denoted K equal

Elg2(9)] = (Elg21(8)], -, Elg2s(9)])"- (37)
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Then

78 29
Il

P—E[P|Z]
P —g1.(Z) — E[g2(8)] (38)
= g2.(§) — E[g2(§)]

is also invertible in &, because subtracting off a vector of constants from a

function invertible in £ yields a function that is still invertibile in €. ||

We now consider the second case.

Assumption 4.1 guarantees that with probability one p;(Z,€) is mono-
tonic in ¢; holding Z and {_; constant, j = 1,...,J. Assumption 4.4 requires
the unobserved factors to enter the pricing functions in a triangular manner,
S0 one price is a function only of its own unobserved factor, a second price is
a function of the first product’s unobserved factor plus its own unobserved

factor, and so forth.

Assumption 4.4 Prices satisfy a triangularity assumption in unobserved

factors, so for some indexing of products

P = pl(Za§1)7
P, = p2(Z7§17§2)a"' (39)
P, = pJ(Za§17£25"'7€J)'

Theorem 3 Let éj = F¢; (&) Vi, and let 5; denote the realized value of éj.
Define €171 = (£1,&,, ... ,éj_l) and let £3-1* denote the vector of realized
values. If 4.1, 4.2, and 4.4 hold, then

Fe(§) = Fpyz(pl2),
Fg, (&) = Fp, 6 (0202,8),. . (40)
FfJ (€J) = FPJ\Z,él,...,éJ_l (pJ|27£ika et ’Ejfl)'
Proof
Let p}l(z,pj,fj_l) denote the inverse of P; = p;(z,£7) in ;. which exists
by assumption 4.1b. Fg (€1) = Fp,|z(p1]2) follows directly from Theorem
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1. The proof proceeds by induction, showing that given &1, Fe (&) is

identified.

Fy -1 (sl E71) =

Pr(P; <p;|Z = 2,£~1 = £i-1¥)

Pr(p](gla 5 &js Z) < pj ‘ Z=z fj_l _~§~j_1’*)

r(& < 7z psn €71 | 2 = 2,671 = @71y (41)
T(fj <pj (z p]afj 1))

e (07 (2,05, 87Y),

SR>l

where the third equality follows from monotonicity (4.1b), and the fourth

line follows from independence of Z and ¢, the independence of &; and &,
and the fact that &/—! = £/=1* which makes ¢/~! a deterministic function,

so the integral over f(£/7') reduces to the integral over f(&;). ||

Again, the proof is constructive, suggesting the empirical cumulative distri-

bution function FPj|Z£~j_1(pj|z, £7=1#) as an estimator for Fe, ().
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