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Abstract

Robust control allows policymakers to formulate policies that guard against

model misspecification. The principal tools used to solve robust control prob-

lems are state-space methods (see Hansen and Sargent, 2005, and Giordani and

Söderlind, 2004). In this paper we show that the structural-form methods devel-

oped by Dennis (2005a) to solve control problems with rational expectations can

also be applied to robust control problems, with the advantage that they bypass the

task, often onerous, of having to express the reference model in a state-space form.

Interestingly, state-space and structural-form methods do not necessarily return the

same equilibria for robust control problems. We apply both state-space and struc-

tural solution methods to an empirical New Keynesian business cycle model and find

that the differences between the methods are both qualitatively and quantitatively

important. In particular, with the structural-form solution methods the specifica-

tion errors generally involve changes to the conditional variances in addition to the

conditional means of the shock processes.
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1 Introduction

The precision with which economic models can be expressed mathematically belies the

fact that they cannot claim to be anything more than approximations to an unknown,

and possibly unknowable, data-generating process. This unfortunate reality means that

economic decisions are inevitably made in situations where important aspects of the en-

vironment are cloaked, hidden behind a cloud of uncertainty. While such uncertainty is

hardly welcome, it need not render decisionmakers powerless, as its effects can in principle

be mitigated through the application of robust control methods. Robust control provides

a set of tools to assist decisionmakers confronting uncertainty who are either unable or

unwilling to specify a probability distribution over possible specification errors. While

robust control methods hold special appeal to policymakers, such as central banks, for

whom models often play an explicit role in the decisionmaking process, they also allow

private agents to express concern, or pessimism, when forming expectations.

The theory establishing that robust control methods can be applied to economic prob-

lems has been developed largely in a series of contributions by Hansen and Sargent, con-

tributions that are well summarized in Hansen and Sargent (2005). Among other things,

Hansen and Sargent show how to set up and solve discounted robust control problems,

and they develop methods to solve for robust policies in backward-looking models and in

forward-looking models with commitment. Giordani and Söderlind (2004) extend these

methods to forward-looking models with discretion and to simple rules.

A critical component in the application of robust control is the reference model. A

reference model is a structural model, possibly arrived at through some (nonmodeled)

learning process, that is thought to be a good approximation to the underlying data-

generating process. The methods developed in Hansen and Sargent (2005) and Giordani

and Söderlind (2004) require that this reference model be written in a state-space form,

following the literature on traditional (non robust) optimal control. As discussed in

Dennis (2005a), while state-space methods allow models to be expressed in a form that

contains only first-order dynamics, they also have drawbacks. In particular, many mod-

els cannot be expressed easily in a state-space form, especially medium- to large-scale

models for which the necessary manipulations are often prohibitive. For robust control

problems, the state-space formulation has an additional important implication in that the

policymaker and the fictitious “evil agent” are not treated symmetrically. Specifically,

the planner’s decisions can affect current period outcomes both directly and through pri-

vate sector expectations, while the evil agent’s decisions can only affect current period

outcomes through private sector expectations. As we show in this paper, this feature of

the traditional robust control setup means that the evil agent will introduce specification
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errors by changing the conditional means of the shock processes, but not their conditional

volatility.

In this paper we develop an alternative set of tools to solve robust control problems,

tools based on the solution methods developed by Dennis (2005a) that have the advantage

that they do not require the reference model to be written in a state-space form. Instead

they allow the reference model to be written in structural form, which is more flexible and

generally much easier to attain than is a state-space form. As we show, the structural

form also allows us to treat the policymaker and the evil agent symmetrically, giving rise

to the result that the evil agent will optimally choose to change the conditional volatility

of the shocks in addition to their conditional means.

To illustrate how the structural-form solution methods work and to show how they

differ from state-space methods, we apply both methods to the empirical New Keynesian

business cycle model estimated by Rudebusch (2002a). We find that the differences be-

tween the state-space and the structural-form methods have effects on the economy and

implications for monetary policy that are both qualitatively and quantitatively important.

The paper is structured as follows. Section 2 describes the standard state-space

method to applying robust control and documents the properties of the resulting equi-

libria. Section 3 describes how robust control problems can be formulated and solved

when the model is kept in a structural form rather than expressed in a state-space form.

This section argues that the equilibria obtained using the structural-form methods are

not necessarily the same as those obtained using the state-space form and shows that the

differences have important behavioral implications. Section 4 shows why the two meth-

ods can give different solutions, showing that for robust control problems the state-space

methods restrict the state variables in a way that is not necessarily desirable. In Section 5

we apply the two methods to an empirical New Keynesian model of the U.S. economy.

Section 6 concludes.

2 Robust control using state-space methods

Hansen and Sargent (2005) describe how robust control methods, which allow for model

uncertainty, can be used to design robustly optimal policies. They show that robust

control problems can be cast in a form that allows them to be solved using methods that

are standard in situations where expectations are rational. In particular, Hansen and

Sargent (2003) show that state-space methods, such as those developed by Oudiz and

Sachs (1985), Currie and Levine (1985, 1993), and Backus and Driffill (1986), can be

applied to robust control problems to obtain Ramsey, or commitment, equilibria.

When solving robust control problems there are generally two distinct equilibria that
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are of interest. The first is the “worst-case” equilibrium, which is the equilibrium that

pertains when the policymaker and private agents design policy and form expectations

based on the worst-case misspecification and the worst-case misspecification is realized.

The second is the “approximating” equilibrium, which is the equilibrium that pertains

when the policymaker and private agents design policy and form expectations based on the

worst-case misspecification, but the reference model transpires to be specified correctly.

In this section we outline how state-space methods can be used to obtain these two

equilibria, setting the scene for the structural-form analysis that follows. We focus on

commitment, leaving the solution under discretion to Appendix A (see also Giordani and

Söderlind, 2004).

2.1 Constraints and objectives

According to the state-space formulation, the economic environment is one in which the

behavior of an n × 1 vector of endogenous variables, zt, consisting of n1 predetermined

variables, z1t, and n2 (n2 = n−n1) non-predetermined variables, z2t, are governed by the

reference model

z1t+1 = A11z1t + A12z2t + B1ut + C1ε1t+1, (1)

Etz2t+1 = A21z1t + A22z2t + B2ut, (2)

where ut is a p× 1 vector of control variables, ε1t ∼ iid [0, Is] is an s× 1, s ≤ n1, vector

of white-noise innovations, and Et is the mathematical expectations operator conditional

upon information available up to and including period t. The reference model is the

model that private agents and the policymaker believe most accurately describes the data

generating process. The matrices A11, A12, A21, A22, B1, and B2 contain structural

parameters and are conformable with z1t, z2t, and ut as necessary. The matrix C1 is

determined to ensure that ε1t has the identity matrix as its variance-covariance matrix.

The policymaker’s problem is to choose a sequence for its control variables, {ut}∞0 , to

minimize the objective function

E0

∞∑
t=0

βt [z′tWzt + 2z′tUut + u′
tRut] , (3)

where β ∈ (0, 1) is the discount factor. The weighting matrices, W, U, and R reflect the

policymaker’s preferences; W and R are assumed to be positive semidefinite and positive

definite, respectively.

Acknowledging that their reference model may be misspecified, private agents and the
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policymaker surround their reference model with a class of models of the form

z1t+1 = A11z1t + A12z2t + B1ut + C1 (vt+1 + ε1t+1) , (4)

Etz2t+1 = A21z1t + A22z2t + B2ut, (5)

where vt+1 is a vector of specification errors, to arrive at a “distorted” model. The

specification errors are intertemporally constrained to satisfy

E0

∞∑
t=0

βt+1v′
t+1vt+1 ≤ η, (6)

where η ∈ [0, η̄) represents the “budget” for misspecification.

Because private agents form expectations that are “rational” according to the distorted

model, the non-predetermined variables and their expected values are linked according to

z2t+1 = Etz2t+1 + ε2t+1, where ε2t is a martingale difference sequence, and the distorted

model can be written as

z1t+1 = A11z1t + A12z2t + B1ut + C1 (vt+1 + ε1t+1) , (7)

z2t+1 = A21z1t + A22z2t + B2ut + ε2t+1, (8)

or, more compactly and in obvious notation, as

zt+1 = Azt + But + Cvt+1 + C̃εt+1. (9)

To guard against the worst case misspecification, the policymaker formulates policy

subject to the distorted model with the view that the misspecification will be as damaging

as possible. Private sector agents form expectations with the same view. The fear

that the misspecification will be as damaging as possible is operationalized through the

metaphor that vt+1 is chosen by an evil agent whose objectives are diametrically opposed

to those of the policymaker.1 Hansen and Sargent (2001) show that the constraint problem

in which equation (3) is minimized with respect to {ut}∞0 and maximized with respect to

{vt}∞1 , subject to equations (9) and (6), can be recast in terms of an equivalent multiplier

problem, whereby

E0

∞∑
t=0

βt
[
z′tWzt + 2z′tUut + u′

tRut − θv′
t+1vt+1

]
(10)

is minimized with respect to {ut}∞0 and maximized with respect to {vt}∞1 , subject to

1Note that vt+1 is dated at t + 1 although it is chosen at t. This convention is due to the fact that
the specification errors are disguised by the innovations occurring at t + 1.
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equation (9). The parameter θ ∈ [θ,∞) is a shadow price that is inversely related to the

budget for misspecification η, Specifically, as η approaches zero, θ approaches infinity.

2.2 Robust policymaking with commitment

In the commitment solution both the policymaker and the evil agent are assumed to

commit to a policy strategy and not succumb to incentives to renege on that strategy.

Employing the definitions

ũt ≡

 ut

vt+1

 , B̃ ≡
[

B C1

]
, (11)

Ũ ≡
[

U 0
]
, R̃ ≡

 R 0

0 −θI

 , (12)

the optimization problem can be written as

min
{ut}

max
{vt+1}

E0

∞∑
t=0

βt
[
z′tWzt + 2z′tŨũt + ũ′

tR̃ũt

]
, (13)

subject to

zt+1 = Azt + B̃ũt + C̃εt+1, (14)

which, because the first-order conditions for a maximum are the same as those for a

minimum, has a form that can be solved using the methods developed by Backus and

Driffill (1986). Those methods involve formulating the optimization problem as a dynamic

program. Recognizing that the problem is linear-quadratic, the value function has the

form V (zt) = z′tVzt + d and the dynamic program can be written as

z′tVzt + d ≡ min
ut

max
vt+1

[
z′tWzt + 2z′tŨũt + ũ′

tR̃ũt + βEt

(
z′t+1Vzt+1 + d

)]
. (15)

It is well known that the solution to this optimization problem takes the form ut

vt+1

 = −FT−1

 z1t

p2t

 , (16)

z2t =
[

V−1
22 V21 V−1

22

]  z1t

p2t

 , (17)
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 z1t+1

p2t+1

 = T
(
A− B̃F

)
T−1

 z1t

p2t

 + Cε1t+1, (18)

where p2t is an n2 × 1 vector of shadow prices associated with the non-predetermined

variables, z2t. The matrix T provides a mapping between the state variables, z1t and

p2t, and zt and is given by

T =

 I 0

V21 V22

 , (19)

where V21 and V22 are submatrices of V. Finally, V and F are obtained by solving for

the fix-point of

V = W − 2ŨF + F′R̃F + β
(
A− B̃F

)′
V

(
A− B̃F

)
, (20)

F =
(
R̃ + βB̃′VB̃

)−1 (
Ũ′ + βB̃′VA

)
. (21)

When the worst case misspecification is realized, the economy behaves according to

equations (16)–(18). While the worst case equilibrium is certainly interesting, it is also

important to consider how the economy behaves when the reference model transpires to

be specified correctly. Partitioning F into [ F′
u F′

v
]′ where Fu and Fv are conformable

with ut and vt+1, respectively, Dennis (2005b) shows that the approximating equilibrium

has the form

z1t+1 = (A11 + A12H21 + B1F
u
z1) z1t +

(
A12H22 + B1F

u
p2

)
p2t + C1ε1t+1, (22)

p2t+1 = M21z1t + M22p2t, (23)

z2t = H21z1t + H22p2t, (24)

ut = Fu
z1z1t + Fu

p2p2t, (25)

where H21 ≡ V−1
22 V21, H22 ≡ V−1

22 ,
[

Fu
z1 Fu

p2

]
≡ −FuT

−1, and

 M11 M12

M21 M22

 ≡ T
(
A− B̃F

)
T−1. (26)

Interestingly, the worst-case equilibrium and the approximating equilibrium share cer-

tain features. For instance, the worst-case equilibrium and the approximating equilibrium

differ only with respect to the law of motion for the predetermined variables and, as a

consequence, following innovations to the system the initial-period responses of the pre-
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determined variables are the same for the approximating equilibrium as for the worst-case

equilibrium. But since the decision rules for z2t and ut are also the same for the two

equilibria, it follows that the initial-period responses by the non-predetermined variables

and by the policy variables are also the same. With respect to impulse response func-

tions, differences between the approximating equilibrium and the worst-case equilibrium

then only occur one period after innovations occur.

Furthermore, because the coefficient matrix on the innovations is C1, which scales the

standard deviations of the innovations, it follows that adding noise to the innovations

or changing their correlation structure is not part of the evil agent’s strategy. Instead,

the optimally designed misspecification has the effect of changing the law of motion for

the predetermined variables. More precisely, since the specification errors enter only the

stochastic component of z1t, the evil agent’s strategy is to change the conditional means of

the shock processes but not their conditional volatility. As shown in Appendix A, these

relationships between the worst-case and the approximating equilibria also hold under

discretion.

3 Robust control using structural-form methods

While state-space solution methods have many advantages, being generally compact and

containing only first-order dynamics, they are not always convenient. In particular,

problems can arise from the fact that it is often difficult, sometimes prohibitively so, to

manipulate a model into a state-space form, making state-space methods better suited

to small models. But policymakers often employ medium- to large-scale models, and

for this reason alone it is desirable to be able to solve robust control problems without

relying on state-space methods. In this regard, Dennis (2005a) has developed numerical

methods that solve for optimal commitment policies and optimal discretionary policies

in rational expectations models that allow the optimization constraints to be written in

a structural form. These structural-form solution methods are easy to apply and offer

considerable flexibility with regard to how the model is expressed.

One contribution of this section is to show that these structural-form methods can

be readily applied to solve robust control problems. In fact, the advantages to using

structural-form methods may extend somewhat further than convenience and flexibility.

Leitemo and Söderström (2004, 2005) use a Lagrangian method—with the constraints

in a structural form—to solve analytically for robustly optimal discretionary policies in

closed- and open-economy models, respectively. They find that the evil agent’s optimal

strategy is to change the variances of the shocks, not their persistence, a strategy that

differs from what the state-space methods outlined above would suggest.
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In addition to illustrating how structural-form methods can be used to solve robust

control problems numerically, we demonstrate that they need not generate the same worst

case equilibrium as the state-space methods and explain why. We note that whereas with

state-space methods the evil agent’s strategy is to change the conditional means of the

shocks, with structural-form methods the evil agent will generally choose to change both

the conditional means and the variance/covariance structure of the shocks. As we show,

these differences arise because the structural-form solution methods change slightly the

nature of the game played between the agents in the model, accommodating a more

general class of specification errors in the process. Finally, we outline how detection-

error probabilities, essentially, the probability that an econometrician would make a model

selection error, can be calculated given this more general class of specification errors.

3.1 Constraints and objectives

The basic model representation that Dennis (2005a) works with is the second-order struc-

tural form. Therefore, let the reference model be represented as

A0yt = A1yt−1 + A2Etyt+1 + A3ut + A4εt, (27)

where yt is an n×1 vector of endogenous variables, ut is a p×1 vector of policy instruments,

εt is an s× 1, 0 < s ≤ n, vector of innovations, and A0, A1, A2, A3, and A4 are matrices

with dimensions conformable with yt, ut, and εt that contain the structural parameters.

The matrix A0 is assumed to be nonsingular and the elements of A4 are determined to

ensure that the shocks are distributed according to εt ∼ iid [0, Is]. The dating on the

variables is such that any variable that enters yt−1 is known by the beginning of period

t; by construction the variables in yt−1 are predetermined. Binder and Pesaran (1995)

show that this second-order structural form encompasses an enormous class of (log-) linear

macroeconomic models.

With the reference model written in second-order structural form, private agents and

the policymaker acknowledge their concern for misspecification by surrounding their ref-

erence model with a class of models of the form

A0yt = A1yt−1 + A2Etyt+1 + A3ut + A4 (vt + εt) , (28)

where vt is a vector containing specification errors and equation (28) represents the “dis-

torted” model. Just as earlier, the specification errors are intertemporally constrained to
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satisfy:

E0

∞∑
t=0

βtv′
tvt ≤ ω, (29)

where ω ∈ [0, ω) represents the evil agent’s total budget for misspecification.

The policy objective function is taken to be

E0

∞∑
t=0

βt [y′
tWyt + u′

tQut] , (30)

where W (n×n) and Q (p×p) are matrices containing policy weights and are symmetric

positive semidefinite, and symmetric positive definite, respectively. Penalty terms on

the interaction between yt and ut could be included, but are unnecessary because such

terms can be accommodated through a suitable construction of yt, reflecting the greater

flexibility offered by the structural form.

Analogous to the state-space approach, the problem of minimizing equation (30) with

respect to {ut}∞0 and maximizing with respect to {vt}∞0 subject to equations (28) and (29)

can be replaced with an equivalent multiplier problem in which

E0

∞∑
t=0

βt [y′
tWyt + u′

tQut − φv′
tvt] , (31)

is minimized with respect to {ut}∞0 and maximized with respect to {vt}∞0 , subject to

equation (28). The multiplier φ ∈
[
φ,∞

)
is inversely related to the budget for misspec-

ification, ω. This method of formulating the robust control problem with the reference

model and the distorted model in structural form parallels Hansen and Sargent (2005)

closely. Nevertheless, we distinguish between ω and η and between φ and θ to acknowledge

that φ and θ, while they are both shadow prices, need not share the same interpretation

and that ω and η need not take on the same value. A generalization that we do not

pursue here, but that is discussed and implemented in Leitemo and Söderström (2005),

is to assign separate budgets to each of the evil agent’s controls.

3.2 Robust policymaking with commitment

To solve the robust control problem with commitment when the constraints are in second-

order structural form the optimization problem is formulated using the Lagrangian

L = E0

∞∑
t=0

βt
[
y′

tWyt + ũ′
tQ̃ũt + 2λ′

t

(
A0yt −A1yt−1 −A2yt+1 − Ã3ũt − ρt

)]
, (32)
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where

Q̃ ≡

 Q 0

0 −φI

 , Ã3 ≡
[

A3 A4

]
, ũt ≡

 ut

vt

 , (33)

and ρt ≡ A4εt−A2ε
y
t , with εy

t ≡ (yt+1 − Etyt+1). The first-order conditions with respect

to ũt, λt, and yt, respectively, can be written as

∂L

∂ũt

= Q̃ũt − Ã′
3λt = 0, t ≥ t0, (34)

∂L

∂λt

= A0yt −A1yt−1 −A2Etyt+1 − Ã3ũt −A4εt = 0, t ≥ t0, (35)

∂L

∂yt

= Wyt + A′
0λt − β−1A′

2λt−1 − βA′
1Etλt+1 = 0, t ≥ t0, (36)

with the initial condition that λt−1 = 0.2 Equations (34)–(36) describe a standard

system of expectational equations, in which the expectations are formed rationally from

the perspective of the distorted model and can be solved in a variety of ways. However

this system is solved, the solution can be written as λt

yt

 =

 Hλλ Hλy

Hyλ Hyy

 λt−1

yt−1

 +

 Gλε

Gyε

 εt, (37)

ũt =
[

Fλ Fy

]  λt−1

yt−1

 + Fεεt. (38)

Equations (37) and (38) describe how the economy behaves in the worst-case equilibrium.

Given the worst-case equilibrium, the approximating equilibrium, which is the equi-

librium that pertains when the reference model is actually correctly specified, is

λt = Hλλλt−1 + Hλyyt−1 + Gλεεt, (39)

ut = Fu
λλt−1 + Fu

yyt−1 + Fu
εεt, (40)

yt = A−1
0

[
A1 + A2 (HyλHλy + HyyHyy) + A3F

u
y

]
yt−1

+A−1
0 [A2 (HyλHλλ + HyyHyλ) + A3F

u
λ] λt−1

+A−1
0 [A4 + A2 (HyλGλε + HyyGyε) + A3F

u
ε ] εt. (41)

Recall that for the state-space solution methods there were certain relationships be-

tween the worst-case equilibrium and the approximating equilibrium, relationships that

2This initial condition is not arbitrary; it emerges from the optimal program through the fact that all
promises made prior to period 0 are ignored in period 0.

10



held for both commitment and discretion. Specifically, the evil agent’s strategy involved

changing the persistence properties of the shocks, but not the volatility of the innovations,

which meant that the initial period responses of the predetermined variables, the non-

predetermined variables, and the policy controls to innovations would be the same for the

worst-case equilibrium and the approximating equilibrium. Using the structural-form

solution methods described above, however, these relationships do not necessarily hold.

To see this, note that the contemporaneous response of yt to εt is Gyε in the worst-case

equilibrium (see equation (37)) and A−1
0 [A4 + A2 (HyλGλε + HyyGyε) + A3F

u
ε ] in the

approximating equilibrium (see equation (41)). When these structural-form methods are

employed the evil agent’s strategy may well involve a change to the variance-covariance

matrix of the innovations as well as a change to the conditional means of the shock

processes. It follows that the initial period responses by the endogenous variables, and

hence also by the policy controls, to innovations may also differ between the worst-case

and the approximating equilibria.

3.3 Robust policymaking with discretion

In the discretionary environment the optimization problem remains to

min
{ut}∞0

max
{vt}∞0

E0

∞∑
t=0

βt
[
y′

tWyt + ũ′
tQ̃ũt

]
(42)

subject to

A0yt = A1yt−1 + A2Etyt+1 + Ã3ũt + A4εt, (43)

but, of course, neither the policymaker nor the evil agent can commit. The policymaker

and the evil agent are Stackelberg leaders with respect to their future selves, but play a

Cournot game between themselves. The problem described by equations (42) and (43)

conforms to the class of problems studied and solved by Dennis (2005a), where it is shown

that the solution takes the form

yt = Hyt−1 + Gεt, (44)

ũt = F1yt−1 + F2εt. (45)

The matrices H, G, F1, and F2 that govern the solution are arrived at through an iterative

procedure. The first step involves conjecturing values for H and F1 and using these to
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solve for the matrix D and the fix-point P according to

D ≡ A0 −A2H, (46)

P ≡ W + βF′
1Q̃F1 + βH′PH. (47)

Next, the values for D and P that solve equations (46) and (47) are used together with

the conjectured values for H and F1 to update F1, F2, H, and G according to

F1 = −
(
Q̃ + Ã′

3D
−1PD−1Ã3

)−1

Ã′
3D

′−1PD−1A1, (48)

F2 = −
(
Q̃ + Ã′

3D
′−1PD−1Ã3

)−1

Ã′
3D

′−1PD−1A4, (49)

H = D−1
(
A1 + Ã3F1

)
, (50)

G = D−1
(
A4 + Ã3F2

)
. (51)

From equations (48) - (51), updates of D and the fix-point P are generated, which in turn

give rise to updated values for F1, F2, H, and G. This iterative procedure continues

until a fix-point in which F1, F2, H, G, and P no longer change with successive iterations

is obtained.

Equations (44) and (45) govern the economy’s behavior in the worst-case equilib-

rium. From this worst-case equilibrium, the approximating equilibrium can be easily

constructed; it is given by

yt = A−1
0 [(A1 + A2HH + A3F

u
1 )yt−1 + (A4 + A2HG + A3F

u
2 ) εt] , (52)

ut = Fu
1yt−1 + Fu

2εt, (53)

where equation (52) exploits the fact that A0 has full rank.

As one might expect, in the discretionary solution, just as in the commitment solution

discussed above, the evil agent’s strategy will generally involve changing both the per-

sistence properties of the shocks and the variance-covariance matrix of the innovations.

To see this, observe from equations (44) and (52) that the coefficient matrices on the

innovations, G, and A4 + A2HG + A3F
u
2 , respectively, are not necessarily equal.

3.4 Detection-error probabilities

Anderson, Hansen, and Sargent (2003) describe the concept of a detection-error proba-

bility and introduce it as a tool for calibrating φ, the multiplier on the misspecification

constraint, which would otherwise be a free parameter. A detection-error probability is

the probability that an econometrician observing equilibrium outcomes would make an

incorrect inference about whether the approximating equilibrium or the worst-case equi-
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librium generated the data. The intuitive connection between φ and the probability of

making a detection error is that when φ is small, greater differences between the distorted

model and the reference model (more severe misspecifications) can arise, which are more

easily detected.

Let A and B denote two models; with a prior that assigns equal weight to each model,

Hansen, Sargent, and Wang (2002) show that detection-error probabilities are calculated

according to

p (φ) =
prob (A|B) + prob(B|A)

2
, (54)

where prob(A|B) (prob(B|A)) represents the probability that the econometrician erro-

neously chooses model A (model B) when in fact model B (model A) generated the data.

Let model A denote the approximating model and model B denote the worst-case model,

then any sequence of specification errors that satisfies equation (29) will be at least as dif-

ficult to distinguish from the approximating model as is a sequence that satisfies equation

(29) with equality. As such, p(φ) represents a lower bound on the probability of making

a detection error.

To calculate a detection-error probability we require a description of how the econo-

metrician goes about choosing one model over another. Hansen, Sargent, and Wang

(2002) assume that this model selection is based on the likelihood ratio principle. Let

{zB
t }T

1 denote a finite sequence of economic outcomes generated according to the worst-

case equilibrium, model B, and let LAB and LBB denote the likelihood associated with

models A and B, respectively, then the econometrician chooses model A over model B

if log(Ln
BB/Ln

AB) < 0. Generating M independent sequences {zB
t }T

1 , prob (A|B) can be

calculated according to

prob (A|B) ≈ 1

M

M∑
m=1

I

[
log

(
Lm

BB

Lm
AB

)
< 0

]
, (55)

where I[log (Lm
BB/Lm

AB) < 0] is the indicator function that equals one when its argument

is satisfied and equals zero otherwise; prob(B|A) is calculated analogously using draws

generated from the approximating model. The likelihood function that is generally

used to calculate prob(A|B) and prob(B|A) assumes that the innovations are normally

distributed.

While the theory of detection does not require that the evil agent not distort the

volatility of the innovations, existing methods to calculate detection-error probabilities

do (see Hansen, Sargent, and Wang, 2002, for example). Here we show how to calculate

detection-error probabilities while accounting for the distortions to both the conditional

13



means and the conditional volatilities of the shocks. Let

zt = HAzt−1 + GAεt, (56)

zt = HBzt−1 + GBεt (57)

govern equilibrium outcomes under the approximating equilibrium and the worst-case

equilibrium, respectively. With discretion zt ≡ yt while with commitment zt ≡ [ λ′
t y′

t
]′.

When GA 6= GB, to calculate p (φ) we must first allow for the stochastic singularity that

generally characterizes equilibrium and second account appropriately for the Jacobian

of transformation that enters the likelihood function. Using the QR decomposition we

decompose GA according to GA = QARA and GB according to GB = QBRB. By con-

struction, QA and QB are orthogonal matrices (Q′
AQA = Q′

BQB = Is) and RA and RB

are upper triangular. Let

ε̂
i|j
t = R−1

i Q′
i

(
zj

t −Hiz
j
t−1

)
, {i, j} ∈ {A, B} (58)

represent the inferred innovations in period t when model i is fitted to data {zj
t}T

1 that are

generated according to model j and let Σ̂i|j be the associated estimates of the innovation

variance-covariance matrices. Then

log

(
LAA

LBA

)
= log

∣∣R−1
A

∣∣− log
∣∣R−1

B

∣∣ +
1

2
tr

(
Σ̂B|A − Σ̂A|A

)
, (59)

log

(
LBB

LAB

)
= log

∣∣R−1
B

∣∣− log
∣∣R−1

A

∣∣ +
1

2
tr

(
Σ̂A|B − Σ̂B|B

)
, (60)

where “tr” is the trace operator.

When GA = GB it follows that RA = RB and the Jacobian of transformations

associated with the various likelihoods cancel and play no role in the calculations, in

which case equations (59) and (60) simplify to

log

(
LAA

LBA

)
=

1

2
tr

(
Σ̂B|A − Σ̂A|A

)
, (61)

log

(
LBB

LAB

)
=

1

2
tr

(
Σ̂A|B − Σ̂B|B

)
, (62)

which are equivalent to the expressions Hansen, Sargent, and Wang (2002) and Hansen

and Sargent (2005, chapter 8) employ. Given equations (59) and (60), equation (55) is

used to estimate prob(A|B) and (similarly) prob(B|A), which are needed to construct the

detection-error probability, as per equation (54). The multiplier, φ, is then determined by

selecting a detection-error probability (or at least its lower bound) and inverting equation

(54). Generally this inversion is performed numerically by constructing the mapping
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between φ and the detection-error probability, for a given sample size.

4 Comparing the solution methods

Sections 2 and 3 demonstrate that the solutions obtained for the worst-case equilib-

rium and the approximating equilibrium may depend on whether state-space methods

or structural-form methods are used. Moreover, it should be clear that the differences

between the two solution methods involve worst-case specification errors that are qual-

itatively different in important ways. For the structural-form solution methods, it is

apparent that pessimistic agents are guarding against specification errors both to the

conditional means of the shocks, which is the behavior Hansen and Sargent emphasize,

and to the conditional variances/covariances of the shocks.

In an important sense, it is surprising that the solutions differ, as such differences do

not arise when expectations are rational.3 But since the methods may produce different

equilibrium behavior, two important questions immediately present themselves: why do

the differences arise, and are the differences quantitatively important? We defer the

second question to Section 5, where both sets of tools are applied to a New Keynesian

business cycle model. With regard to the first question, however, we show below that

when the solutions differ they do so because the state-space formulation restricts the

various decisionmakers in ways that the structural-form formulation does not. In effect,

the two methods are solving closely related but not identical problems.

To see this point, consider the following simple example. Let the reference model that

the policymaker and private agents share be

yt = αEtyt+1 + γut + gt, (63)

gt = ρgt−1 + σεεt, (64)

where the parameters satisfy α ∈ (0, 1), γ ∈ (−∞,∞), ρ ∈ (−1, 1), and {σg, σε} ∈ (0,∞),

and where εt is a mean-zero white-noise process with standard deviation equal to σε.

Notice that εt is an exogenous variable, ut is a decision variable, yt, Etyt+1, and gt are

non-predetermined variables, and gt−1 is a predetermined variable.4

To write equations (63) and (64) in state-space form the standard method would be

to advance the timing on equation (64) one period and to make Etyt+1 the subject of

3When expectations are rational, although the solutions obtained by state-space methods and
structural-form methods are often presented in different forms, they are behaviorally equivalent.

4A variable is predetermined if its value next period can be forecasted perfectly using only information
that is available today, i.e., a generic variable yt is predetermined if Etyt+1 = yt+1, see Engle, Hendry,
and Richard (1983) and Blanchard and Kahn (1980).
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equation (63), giving gt+1

Etyt+1

 =

 ρ 0

− 1
α

1
α

 gt

yt

 +

 0

− γ
α

 [ut] +

 σε

0

 [εt+1] . (65)

Adding the specification errors, the distorted model would then be gt+1

Etyt+1

 =

 ρ 0

− 1
α

1
α

 gt

yt

 +

 0

− γ
α

 [ut] +

 σε

0

 [vt+1 + εt+1] . (66)

Notice that in equation (66) the shock gt is a state variable, a variable that all agents take

as given when forming decisions, even though it is not actually a predetermined variable.

In contrast, with the structural-form method once the model misspecifications are

added to equation (64) the distorted model becomes 1 0

−1 1

 gt

yt

 =

 ρ 0

0 0

 gt−1

yt−1

 +

 0 0

0 α

 Etgt+1

Etyt+1


+

 0

γ

 [ut] +

 σε

0

 [vt + εt] . (67)

In equation (67) the state variables that agents take as given when forming decisions are

gt−1 and εt. Thus, the key difference between the two representations is that in the

structural-form representation the state variables are gt−1, which is predetermined, and

εt, which is exogenous, while in the state-space representation the state variable is gt,

which is non-predetermined.5 Because the structural-form representation allows the evil

agent to react separately to gt−1 and εt, if it so desires the evil agent can purposefully alter

the realization of gt, changing both the conditional mean of the shock and the variance

of the innovation.6

Two final points are worth noting. First, although the structural-form representation

does not restrict the state vector, and permits a wider class of specification errors as a

consequence, because all agents in the model—not just the evil agent—have their behavior

5In the rational expectations context, although gt is not actually predetermined, because its evolution
is determined outside the system, unaffected by the actions of the agents in the economy, nothing is lost
by making it a state variable and putting it in the predetermined block of the model.

6In the limit as the time between periods shortens and we approach continuous time, the distinction
between gt−1 and gt becomes inconsequential. It is in discrete-time models, then, that the state-space
methods and the structural-form methods can generate different solutions. Hansen, Sargent, and Tallarini
(1999) comment on a “small variance adjustment” that they associate with risk-sensitive preferences.
They also note that its manifestation turns on the discreteness of time.
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restricted it is not the case that relaxing this restriction necessarily allows the evil agent

to do more damage for a given budget. Second, state-space forms (and structural forms)

are not unique and for any given model a state-space representation that allows the evil

agent to distort both the conditional mean and the conditional volatility of the shocks

may be available.7

5 Robust policy in an empirical business cycle model

To illustrate the two solution approaches, we study the model estimated by Rudebusch

(2002a), which is based on a standard New Keynesian model and contains two equa-

tions that, conditional upon the short-term interest rate, it, summarize the dynamics of

inflation, πt, and the output gap, yt:

πt = µπEtπt+1 + (1− µπ) πt−1 + αyt + επ,t, (68)

yt = µyEtyt+1 +
(
1− µy

)
yt−1 − β [it − Etπt+1] + εy,t. (69)

Equation (68) is a “New Keynesian Phillips curve” derived from the optimal price-

setting behavior of firms acting under monopolistic competition, but facing price rigidities,

typically modeled following Calvo (1983). The presence of lagged inflation and the

“supply shock” επ,t can be motivated by indexing those prices that are not reoptimized

in a given period and by a time-varying elasticity of substitution across goods, leading to

time-varying markups.

Equation (69) can be derived from the household consumption Euler equation, where

habits in consumption imply that current decisions depend to some extent on last period’s

decision. The “demand shock” εy,t can be attributed to government spending shocks or

to movements in the natural level of output.8

An empirical version of this model, suitable for quarterly data and similar to that

7For the simple example used here, such a state-space representation is given by εt+1

gt

Etyt+1

 =

 0 0 0
σε ρ 0
−σε

α − ρ
α

1
α


 εt

gt−1

yt

 +

 0
0
− γ

α

 [ut] +

 1
0
0

 [
ζt+1

]
,

for which the variables in the predetermined block are gt−1 and εt and the variable in the non-
predetermined block is yt.

8See Woodford (2003) for a thorough treatment of the New Keynesian model.
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Table 1: Parameter values

Inflation Output Monetary policy
µπ 0.29 µy 0.20 β 0.99
απ1 0.67 βy1 1.15 λ 0.50
απ2 −0.14 βy2 −0.27 ν 0.10
απ3 0.40 βr 0.09
απ4 0.07 σy 0.833
αy 0.13
σπ 1.012

estimated by Rudebusch (2002a), is given by

πt = µπEt−1π̄t+3 + (1− µπ)
4∑

j=1

απjπt−j + αyyt−1 + επ,t, (70)

yt = µyEt−1yt+1 +
(
1− µy

) 2∑
j=1

βyjyt−j − βr [it−1 − Et−1π̄t+3] + εy,t, (71)

where π̄t = 1/4
∑3

j=0 πt−j is four-quarter inflation and it is the nominal federal funds

rate (the policy instrument). We generalize the model slightly to include forward-looking

behavior in the output gap equation, as in Rudebusch (2002b).9 The model’s parameter

estimates, shown in Table 1, are taken from Rudebusch (2002a) and are obtained using

OLS (and survey expectations) on quarterly U.S. data from 1968:Q3 to 1996:Q4, except

for the parameter µy, which is set to the average estimate in Fuhrer and Rudebusch (2004).

The model’s key features are that inflation and the output gap are highly persistent,

that monetary policy affects the economy only with a lag, and that expectations are

formed using period t− 1 information. Notice, also, that the weights on expected future

inflation and output, while consistent with much of the empirical literature, are small

relative to many theory-based specifications.

The central bank’s objective function is assumed to be

min
{it}

E0

∞∑
t=0

βt
[
π2

t + λy2
t + νi2t

]
, (72)

where we set β = 0.99, λ = 0.5, and ν = 0.1. Thus, the central bank sets monetary policy

9Rudebusch (2002b) also includes forward-looking behavior in the real interest rate, replacing it−1 −
Et−1π̄t+3 in equation (71) with µr [Et ı̄t+3 − Et−1π̄t+4]+(1−µr) [̄ıt−1 − π̄t−1]. We instead choose the real
interest rate specification Rudebusch (2002a) uses, because the model with expected future interest rates
cannot easily be written in state-space form. (It is, however, also straightforward to write that model in
structural form.)
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to avoid volatility in inflation around its target (normalized to zero) and in the output gap

around zero (precluding any discretionary inflation bias). In addition, the central bank

desires to limit volatility in the nominal interest rate around target (normalized to zero).

The concern for misspecification, φ, is chosen so that the detection error probability is

0.1, given a sample of 200 observations.10

We first calculate impulse responses to unit-sized11 innovations to inflation (επ,t) and

output (εy,t) under commitment and discretion using the two solution methods. All

impulse responses are shown in Figures 1–8, but for an intuitive understanding of the dif-

ferences between the two solution methods it is sufficient to consider the model’s responses

to the inflation shock under commitment, shown in Figures 1–2.

Under the nonrobust policy (RE),12 a shock to inflation is followed by a prolonged

period of high inflation, causing the central bank to tighten monetary policy and to raise

the interest rate in order to open up a negative output gap, which will reduce inflation

over time. An initial increase in inflation of around one percentage point leads to an

increase in the interest rate of 122 basis points, which in turn generates a negative output

gap with a maximum effect of minus 0.4 percentage point after four to five quarters.

Inflation returns slowly to its initial value and is below one-tenth of the initial shock after

eleven quarters.

Using the state-space solution method in Figure 1, the misspecification has no effect in

the initial period, as stressed in Section 2. Thus, the central bank does not worry about

the evil agent increasing the conditional volatility of the shocks, and the outcomes for

inflation and the output gap in the worst-case and approximating equilibria coincide in

the initial period. In subsequent periods, however, the evil agent’s actions, which make

inflation more persistent in the worst-case equilibrium, produce a more aggressive policy

response and a larger negative output gap: the interest rate is initially raised 196 basis

points, and the effect on the output gap is considerably larger and more persistent. In

the approximating equilibrium the more aggressive policy implies that the output gap is

larger than under the nonrobust policy, and inflation therefore returns to target faster.

Thus, the robust policy is more aggressive than the nonrobust policy, and the central bank

fears mainly that inflation is more persistent than is reflected in the reference model.13

10This implies that θ = 54.5 and 57.5 for the state-space method with commitment and discretion,
respectively, and φ = 94.5 and 70.0 for the structural-form method.

11Note that this implies that the shocks in the inflation and output equations are equal to the standard
deviations of the innovations, as the innovation vectors are scaled by matrices containing the standard
deviations.

12The responses under the nonrobust policy are the same for the two methods.
13The optimal rules for the central bank and the evil agent are reported in Tables C.1 and C.2 in

Appendix C.
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Table 2: Unconditional variances and value of loss function

Var(πt) Var(yt) Var(it) Loss
(a) State-space method, commitment
RE 2.289 2.598 12.922 4.729
Worst 3.282 5.361 30.453 8.633
Approx 2.022 3.444 21.043 5.687

(b) Structural-form method, commitment
RE 2.289 2.598 12.922 4.729
Worst 3.762 7.057 40.137 10.800
Approx 2.222 4.719 30.137 7.361

(c) State-space method, discretion
RE 2.793 2.282 11.899 4.931
Worst 4.412 4.735 30.347 9.272
Approx 2.340 2.936 19.131 5.549

(d) Structural-form method, discretion
RE 2.793 2.282 11.899 4.931
Worst 4.259 5.326 35.916 10.045
Approx 2.432 3.565 26.560 6.664

Giordani and Söderlind (2004) obtain qualitatively similar results using a slightly different

model.

Using instead the structural-form solution method in Figure 2, the misspecfication

has an effect in the initial period because the evil agent increases the variance of the

inflation shock. This effect is relatively small, however: while the initial shock in the

state-space method is 101 basis points, in the structural-form method it is 106 basis points

instead. By itself this difference between the two methods seems of little importance.

Nevertheless, due to the persistence of inflation (and output),14 this small initial difference

has long-lived effects. As a consequence, the central bank needs to increase the interest

rate substantially more than for the state-space solution method (the initial increase is

now 226 basis points), leading to a larger negative output gap.

Similar differences are obtained when policy is formulated with discretion and in re-

sponse to output shocks (see Figures 3–8). Although the initial period distortion is small,

the total effect is substantially larger and leads to quantitatively important differences

14The weights on forward-looking expectations in the model are small; the model includes multiple
lags of inflation and output, there are one-period control lags from monetary policy to output and from
output to inflation, and expectations are dated at t− 1. As discussed in Dennis and Söderström (2005),
all these features increase the backward-looking nature of the model.
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between the two methods. That the differences are important is also apparent in Table 2,

which shows the unconditional variances of inflation, output, and the interest rate, along

with the value of the loss function, equation (72). Under commitment, inflation, output,

and the interest rate in the worst-case equilibrium are 15–30 percent more volatile when

using the structural-form solution method and loss is 25 percent higher. Similar numbers

apply to the approximating equilibrium. Under discretion the differences are slightly

smaller, but remain important.

6 Final remarks

Previous approaches to solving robust control problems have employed state-space meth-

ods. These methods rely on the reference model being put into a state-space form, which

requires that predetermined variables be explicitly identified and separated from non-

predetermined variables. When the reference model is small or when there are relatively

few state variables, obtaining a state-space form can be reasonably straightforward. How-

ever, as the reference model’s complexity increases, manipulating it into state-space form

can become a torturously difficult, time-consuming, and error-prone task. For nonrobust

control problems, difficulties with obtaining a state-space representation can generally be

overcome by using the structural-form solution methods developed by Dennis (2005a).

In this paper we show how Dennis’s (2005a) structural-form solution methods can be

applied to robust control problems, thereby making it easier to analyze complex models

using robust control methods. As an additional contribution, we show that, upon depart-

ing from rational expectations, the structural-form methods need not generate the same

equilibrium behavior as the state-space methods. In particular, whereas the state-space

methods, as they are typically applied, result in misspecifications that distort the condi-

tional means of the shock processes, for the structural-form methods the misspecifications

distort both the conditional means and the conditional variance/covariances of the shocks.

We show that different misspecifications emerge in equilibrium because the two solution

methods are solving different, but closely related, problems. In particular, differences

arise because the state-space methods, by forcing shocks to serve as states when they

are not predetermined, restrict the state vector in ways that the structural form solution

methods do not. When these restrictions are either relaxed in the state-space representa-

tion or imposed on the structural-form representation, the two approaches return identical

solutions. To accommodate the distortions to the conditional volatility of the shocks, we

generalize the existing method for calculating detection-error probabilities.

We illustrate the structural-form solution methods by applying them to an empirical

New Keynesian business cycle model of the genre widely used to study monetary policy

21



under rational expectations. A key finding from this exercise is that the strategically

designed specification errors will tend to distort the Phillips curve in an effort to make

inflation more persistent, and hence harder and more costly to stabilize. The optimal

response to these distortions is for the central bank to become more activist in its response

to shocks. Finally, with the New Keynesian model serving as a laboratory, we show

that, separate to whether policy is set with commitment or discretion, the distortions to

the conditional volatility of the shocks that the structural-form methods generate have

implications for monetary policy and for economic outcomes that are both qualitatively

and quantitatively important.
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A The discretionary equilibrium using the state-space

method

In the discretionary case the optimization problem remains

min
{ut}

max
{vt+1}

E0

∞∑
t=0

βt
[
z′tWzt + 2z′tŨũt + ũ′

tR̃ũt

]
, (A1)

subject to

z1t+1 = A11z1t + A12z2t + B̃1ũt + C1ε1t+1, (A2)

Etz2t+1 = A21z1t + A22z2t + B̃2ũt, (A3)

but now neither the policymaker nor the evil agent can commit. A convenient way to

solve this dynamic optimization problem is to apply the method presented in Backus and

Driffill (1986). Conjecturing that the solution for the non-predetermined variables in

period t + 1 has the form

z2t+1 = Hz1t+1, (A4)

equations (A2)–(A4) imply that the non-predetermined variables, z2t, depend on the

predetermined variables, z1t, and the control variables, ũt, according to

z2t = Jz1t + Kũt, (A5)

where

J ≡ (HA12 −A22)
−1 (A21 −HA11) , (A6)

K ≡ (HA12 −A22)
−1

(
B̃2 −HB̃1

)
. (A7)

Using (A5) to substitute the non-predetermined variables out of the objective function,

the dynamic program for the optimization problem with discretion is

z′1tPz1t + k ≡ min
ut

max
vt+1

[z′1tWz1t + 2z′1tUũt + ũ′
tRũt + βEt

(
z′1t+1Pz1t+1 + k

)
], (A8)
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where

W ≡ W11 + W12J + J′W21 + J′W22J, (A9)

U ≡ W12K + J′W22K + Ũ1 + J′Ũ′
2, (A10)

R ≡ K′W22K + Ũ′
2K + K′Ũ2 + R̃, (A11)

and its solution is given by ut

vt+1

 = −Fz1t, (A12)

z2t = (J−KF) z1t, (A13)

z1t+1 =
(
A11 + A12H− B̃1F

)
z1t + C1ε1t+1, (A14)

where P and F are obtained by solving for the fix-point of

J ≡ (HA12 −A22)
−1 (A21 −HA11) , (A15)

K ≡ (HA12 −A22)
−1

(
B̃2 −HB̃1

)
, (A16)

Ã11 ≡ A11 + A12J, (A17)

Ã12 ≡ A12K + B̃1, (A18)

P = W − 2UF + F′RF + β
(
Ã11 − Ã12F

)′
P

(
Ã11 − Ã12F

)
, (A19)

F =
(
R + βÃ′

12PÃ12

)−1 (
U

′
+ βÃ′

12PÃ11

)
, (A20)

H = (J−KF) . (A21)

With the worst-case equilibrium given by equations (A12)–(A14), partitioning F into

[ F′
u F′

v
]′ where Fu and Fv are conformable with ut and vt+1, respectively, the ap-

proximating equilibrium is derived from equations (A12)–(A14) by setting Fv = 0. For

further details see Giordani and Söderlind (2004).
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B Setting up the model

To write the Rudebusch (2002a) model in state-space form, first lead (70) and (71) one

period:

πt+1 =
µπ

4
Et [πt+1 + πt+2 + πt+3 + πt+4] (B1)

+ (1− µπ) [απ1πt + απ2πt−1 + απ3πt−2 + απ4πt−3] + αyyt + επ,t+1,

yt+1 = µyEtyt+2 +
(
1− µy

) [
βy1yt + βy2yt−1

]
−βr

[
it −

1

4
Et (πt+1 + πt+2 + πt+3 + πt+4)

]
+ εy,t+1. (B2)

Then solve for the forward-looking variables Etπt+4 and Etyt+2 and take expectations as

of period t:

µπ

4
Etπt+4 =

(
1− µπ

4

)
Etπt+1 −

µπ

4
Etπt+2 −

µπ

4
Etπt+3

− (1− µπ) [απ1πt + απ2πt−1 + απ3πt−2 + απ4πt−3]− αyyt, (B3)

µyEtyt+2 +
βr

4
Etπt+4 = Etyt+1 −

(
1− µy

) [
βy1yt + βy2yt−1

]
+βr

[
it −

1

4
Et (πt+1 + πt+2 + πt+3)

]
, (B4)

and reintroduce the disturbances via

πt+1 = Etπt+1 + επ,t+1, (B5)

yt+1 = Etyt+1 + εy,t+1. (B6)

Define an (n1 × 1) vector (n1 = 6) of predetermined state variables as

z1t = {πt, πt−1, πt−2, πt−3, yt, yt−1}′ , (B7)

an (n2 × 1) vector (n2 = 4) of non-predetermined variables as

z2t = {Etπt+1, Etπt+2, Etπt+3, Etyt+1}′ , (B8)

and an (s× 1) vector (s = 2) of innovations as

ε1t = {επt, εyt}′ . (B9)

Also define the policy instrument as ut = {it}. We can then write the model in compact
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form as

A0

 z1t+1

Etz2t+1

 = A1

 z1t

z2t

 + B1ut + C1ε1t+1. (B10)

Assuming that A0 is nonsingular, the usual state-space form can be obtained by

premultiplying (B10) by A−1
0 to get z1t+1

Etz2t+1

 = A

 z1t

z2t

 + But + C1ε1t+1, (B11)

where A = A−1
0 A1 and B = A−1

0 B1.
15

Writing the model in structural form is more straightforward, as it does not require

any rearrangement of the equations. Define the (n × 1) vector (n = 13) of endogenous

variables as

yt = {Etπt+4, Etπt+3, Etπt+2, Etπt+1, πt, πt−1, πt−2, πt−3, Etyt+2, Etyt+1, yt, yt−1, it}′ , (B12)

an (s× 1) vector (s = 2) of innovations as

εt = {επt, εyt}′ , (B13)

and define the policy instrument as ut = {it}. Then it is straightforward to write the

model on the required form

A0yt = A1yt−1 + A2Etyt+1 + A3ut + A4εt. (B14)

15Note that A−1
0 C1 = C1, since A0 is block diagonal with an identity matrix as its upper left block

and the lower block of C1 is zero.
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C Optimal policy rules and misspecification

Table C.1: Optimal policy rules and misspecification, state-space method

Coefficient on

πt πt−1 πt−2 πt−3 yt yt−1

(a) Policy rules, commitment

RE 1.202 0.470 0.526 0.076 2.000 −0.547

Worst 1.940 0.744 0.847 0.123 2.557 −0.685

(b) Policy rules, discretion

RE 1.330 0.518 0.582 0.084 2.129 −0.582

Worst 2.137 0.817 0.932 0.135 2.745 −0.736

(c) Misspecification, commitment

vπ 0.071 0.023 0.034 0.005 0.045 −0.010

vy 0.033 0.013 0.014 0.002 0.043 −0.012

(d) Misspecification, discretion

vπ 0.071 0.023 0.033 0.005 0.046 −0.010

vy 0.034 0.013 0.015 0.002 0.044 −0.012

Table C.2: Optimal policy rules and misspecification, structural-form method

Coefficient on

Et−1πt...t+3 πt−1 πt−2 πt−3 πt−4 Et−1yt+1 yt−1 yt−2 it−1 επt εyt

(a) Policy rules, commitment

RE 0.132 1.042 0.407 0.417 0.060 0.400 1.449 −0.432 −0.180 1.216 1.666

Worst 0.224 1.906 0.743 0.776 0.111 0.552 2.097 −0.596 −0.248 2.265 2.297

(b) Policy rules, discretion

RE 0.144 1.150 0.449 0.462 0.066 0.426 1.549 −0.460 −0.192 1.346 1.774

Worst 0.264 2.267 0.883 0.926 0.133 0.626 2.403 −0.677 −0.282 2.705 2.609

(c) Misspecification, commitment

vπ 0.004 0.036 0.012 0.017 0.002 0.005 0.024 −0.005 −0.002 0.050 0.021

vy 0.002 0.017 0.007 0.007 0.001 0.005 0.022 −0.006 −0.002 0.021 0.023

(d) Misspecification, discretion

vπ 0.006 0.055 0.019 0.025 0.004 0.008 0.037 −0.009 −0.004 0.075 0.033

vy 0.003 0.027 0.011 0.011 0.002 0.008 0.033 −0.009 −0.004 0.033 0.034
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Leitemo, Kai and Ulf Söderström (2004), “Robust monetary policy in the New-Keynesian
framework,” Discussion Paper No. 4805, Centre for Economic Policy Research.
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Figure 1: Response to inflation shock, State-space method with commitment
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Figure 2: Response to inflation shock, Structural-form method with commitment
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Figure 3: Response to output shock, State-space method with commitment
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Figure 4: Response to output shock, Structural-form method with commitment
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Figure 5: Response to inflation shock, State-space method with discretion
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Figure 6: Response to inflation shock, Structural-form method with discretion
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Figure 7: Response to output shock, State-space method with discretion
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Figure 8: Response to output shock, Structural-form method with discretion
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