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All industrialized countries experienced a transition from high birth rates and stagnant

standards of living to low birth rates and sustained growth in per capita income. What

contributed to this transformation? Were output and population dynamics driven by

common or separate forces? We develop a general equilibrium model with endogenous

fertility in order to quantitatively investigate the English case. We find that mortal-

ity decline significantly influences birth rates. Increased productivity has a negligible

effect on birth rates but accounts for nearly all of the increase in per capita output,

industrialization, urbanization, and the decline of land share in total income.
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I. Introduction

All industrialized countries experienced a transition from stagnant standards of living to sus-

tained growth in per capita income. This transition coincided with the demographic transition from

high birth and mortality rates to low birth and mortality rates. Resources reallocated from rural

production to non-rural production, and the importance of land’s income share in total production

significantly declined over the same period of time. These key observations that represent one of

the major transformations of modern times motivated this paper.

What factors were responsible for these changes and to what extent? Is there a common

explanation for economic and demographic changes, or were output and population dynamics driven

by separate forces? These questions are important, especially for sub-Saharan African countries

that have not yet undergone the transition to low birth rates. These countries’ staggering poverty

necessitates effective policy recommendations.
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Doepke, Oded Galor, Paul Rhode, Michael Salemi, participants of the 2005 Midwest Macro Conference and Stanford
Institute for Theoretical Economics: The Nexus between Household Economics and the Macro Economy.
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In order to answer the questions posed above, we develop a dynamic general equilibrium model

with endogenous fertility. Within the framework of our model, parameterized to match key mo-

ments of 17th century England, we quantitatively assess the importance of two factors in shaping

the demographic and economic transformation in England: changes in young-age mortality and

technological progress. More precisely, we examine the model dynamics that result when changes

in young-age mortality and total factor productivity (TFP) in the rural and non-rural sectors vary

over time in accordance with historical data.

We choose to focus on the effect of changes in young-age mortality and TFP because empirical

evidence as well as related historical, demographic, and economic literature overwhelmingly point

to the existence of an important link between fertility, mortality, and standards of living.

Our model has two important components. First, production is modeled as in Hansen and

Prescott (2003). The final good can be produced using two different technologies, the Malthusian,

which uses capital, labor, and land as inputs, and, the Solow, which employs capital and labor only.

Since land is a fixed factor, it essentially introduces decreasing returns to scale to capital and labor

in the Malthusian sector. We associate the Malthusian technology with rural production and the

Solow technology with urban production. Our two-technology framework allows us to investigate

the implications of changes in young-age mortality and TFP for resource allocation between the

two technologies. In this paper we refer to the fraction of non-rural output in total output as the

level of industrialization and the fraction of labor employed by the non-rural sector in total labor

as the level of urbanization.

The second important component of our mechanism is endogenous fertility. As in Barro and

Becker (1989), we assume that parents place value on both the number of surviving children and

their children’s well-being. Thus, there is a quantity-quality trade-off explicit in our model. Parents

face a trade-off between having many children with small inheritance in the form of capital and

land for each child and having a few children but endowing each with a larger piece of land and

more capital.

How do changes in young-age mortality and TFP propagate in our model? We highlight a few

effects here, in particular, the effect of these changes on birth rates and the level of industrialization.

There are two channels through which changes in young-age mortality influence households’ fertility

choices. On one hand, with a higher number of children surviving to adulthood, fewer births are

needed to achieve the desired number of surviving children. On the other hand, since both surviving

and non-surviving children require parents’ time, as the probability of survival increases, the cost of

raising a surviving child declines, and hence, induces higher birth rates. Both channels have been

emphasized in previous literature. For a useful review, see Wolpin (1997). We find that the fall

in young-age mortality represents an important force behind the demographic change in England,

accounting for over half of the fall in birth rates.

Our model allows for several channels through which a switch to a faster growing TFP and

hence income may alter households’ fertility choices. On one hand, children are normal goods, and

hence, higher income growth induces higher fertility. On the other hand, rearing children takes

time, and with faster growing TFP, the opportunity cost of raising children measured in terms of
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foregone wage earnings also grows faster dampening fertility. Moreover, with faster rising incomes,

parents choose to have higher quality children, which further increases the cost of rearing children.

The view that technological progress governs fertility choices through one or both of the two

latter channels is common among historians, demographers and economists. (See Becker and Lewis

(1973), Willis (1973), Becker (1981), Hotz, Klerman and Willis (1997), Galor and Weil (2000),

Greenwood and Seshadri (2002), and Hansen and Prescott (2003).) In fact, our findings qualita-

tively agree with this view; changing the growth rate of TFP in the two sectors according to our

estimates leads to a decline in birth rates. We, however, find this effect to be quantitatively small.

Interestingly, both acceleration of the non-rural TFP growth and decline in young-age mortality

generate full resource reallocation towards the non-rural sector. As the Solow TFP begins to grow

faster than the Malthusian TFP, the Solow sector attracts a higher proportion of resources. The

result that falling young-age mortality alone, that is, with productivity growth rates held constant,

increases the level of industrialization is less intuitive. As the probability of survival increases, the

time cost of raising a surviving child declines, augmenting the aggregate labor supply. This results

in the relative expansion of output in the Solow sector, which uses labor intensively (Rybczynski-

type logic). Although both changes generate a transition from Malthus to Solow, we find that

only cahnges in the TFP growth rates are quantitatively relevant for the process of the English

industrialization and urbanization, driving the share of the Malthusian output to nearly zero in the

period from 1600 to 2000. Changes in the probability of survival lead to a much slower transition,

predicting that even in 2400, the output produced by the Malthusian technology would comprise

as much as 10 percent of total output.

To summarize the main results, the decline in young-age mortality accounts for 59% of the

fall in the Crude Birth Rate1 that occurred in England between 1650 and 1950. Over the same

period, changes in productivity account for 73% of the increase in GDP per capita and for 92% of

the decline of land share in total income. Although both experiments generate a transition from

Malthus to Solow, changes in TFP do so in a manner consistent with empirical observations. Our

finding that changes in TFP alone can account for long term trends in the observed patterns of

factor income shares is due to resource reallocation between sectors with different but constant

factor elasticities.

Our results suggest that the explanations for economic and demographic changes need not be

entirely common. In fact, we find that changes in productivity are quantitatively insignificant in

accounting for the observed patterns in fertility behavior, while mortality changes are quantitatively

relevant only to population dynamics, and not to the other quantities predicted by the model. This

finding does not rule out the possibility that there are important interactions between the two

changes treated as exogenously given here, or that some third force is responsible for both changes

in technological progress and young-age mortality. Instead, our findings merely suggest that the

quantitatively relevant channels through which the demographic and economic transformations

transpired are different.

1Crude Birth Rate (Crude Death Rate) is the number of births (deaths) in a given year per 1000 people.
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The trend in related literature has been making the necessary assumptions on functional forms

and parameters in order to guarantee the desired behavior of the dynamical system2. The outcome

is that there exists a number of insightful dynamical systems capturing potentially very impor-

tant mechanisms at work; but due to difficulties associated with mapping of these systems to the

data, the relative importance of these mechanisms remains unclear. For example, Greenwood and

Seshadri (2000), Jones (2001), Kalemli-Ozcan (2002) and Soares (2005) each generate a drop in

fertility as well as a take-off to sustained growth regime through the acceleration of technological

progress, institutional change, a decline in young-age mortality, and a decline in adult mortality

respectively.

The most important contribution of our work is thorough quantitative analysis of young-age

mortality and changes in TFP within a dynamic general equilibrium framework with two sectors

of production and explicit reproduction choice. The advantage of our approach is that our the-

ory is guided by the available measures of historical data. We use functional forms that allow for

straightforward mapping of the model to the data consistent with national income and product

accounting3; our choice of parameters is restricted by the available data observations in the begin-

ning of the 17th century, and not by the entire time paths of any of the variables in question. The

time series used in the design of our experiments represent their actual historical estimates. We

work with mortality and fertility data provided by Wrigley, Davies, Oeppen, and Schofield (1997),

Mitchell (1978) and the Human Mortality Database. We estimate TFP in the rural and urban

sectors using the dual-approach, which requires time series data on wages in the two sectors, land

and capital rental rates, and the GDP deflator. These time series were either taken directly or

inferred from Clark (2001a, 2001b, 2002)4. To sum up, our work calls for a closer interaction of

theory and measurement in this branch of literature.

Another important contribution is our analysis of transitional dynamics from one type of bal-

anced growth path towards another, triggered by the observed changes in mortality rates and/or

relative TFP growth rates. In earlier works, the prevalent analysis of the exogenous changes was

performed by comparing steady states due to the difficulties associated with solving for equilibrium

paths in this type of non-stationary environment. We find that a great deal of insight can be lost

by leaving the transition path out of consideration as convergence from one steady state to another

may take thousands of years.

This paper also contributes to the part of the growth literature that attempts to explain eco-

nomic development over long time scales. Lucas (2002) emphasizes the importance of this line of

research: “... I think it is accurate to say that we have not one but two theories of production: one

consistent with the main features of the world economy prior to the industrial revolution [Malthu-

sian theory] and another roughly consistent with the behavior of the advanced economies today

2For example, the utility function and its parameters can be chosen to guarantee that birth rates fall as income
rises.

3For example, it is possible to use the available data to compute productivity changes for the production functions
in our model. In contrast, for the agricultural good production function assumed in Greenwood and Seshadri (2000)
with skilled labor, unskilled labor, and capital as inputs, productivity changes are difficult to measure.

4For a complete list of the data sources used, see the Appendix.
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[Solow growth theory]. What we need is an understanding of the transition.”

The rest of the paper is organized as follows. Section II reviews the English case data and

elucidates the up to date accomplishments in related literature. In Section III we set up the model

and discuss some equilibrium properties. In Section IV we calibrate the model and in Section V

we discuss the solution method. Section VI is a report of main simulation results. In Section VII

we perform some sensitivity analysis and we conclude in Section VIII.

II. Some Motivating Facts about England and Wales

We choose to focus on England and Wales due to data limitations elsewhere. Floud and Johnson

(2004) and Chesnais (1992) describe England during this period. Galor (2005) provides stylized

facts of development.

Figure 1 reports the natural log of an index of real GDP per capita for England and Wales5.

Observe that per capita real GDP is roughly stagnant for centuries, but takes off in the beginning

of the 19th century.

This period is also associated with the trend of people moving out of the rural sector and into

the urban sector. As depicted in Figures 2 and 3, the share of the urban GDP rose from around 30%

in the 1550s to roughly 98% in the 1990s, while the share of employment in non-rural production

increased from around 40% to 98%6. Further, Figure 4 illustrates land’s income share, which

declines from as much as 30% at the onset of the 17th century to nearly 0% today, a remarkable

decline in the importance of land as a factor of production.

This major economic transformation was accompanied by remarkable demographic changes

(Figure 5)7. Before the mid 18th century, both birth and death rates remained high. Average

population growth in the first half of the 18th century was low at around 0.4% per year. In the

second half of the 18th century, CDR started its fall mainly due to declining adult mortality.

Mortality rates in age groups 5-10, 10-15, and 15-25 began their sustained declines in mid 19th

century, while younger age mortality 0-5 followed three decades later. (See Wrigley, Davies, Oeppen,

and Schofield (1997)). Major factors behind the decline in mortality were the sanitary revolution

that reduced fatalities due to water and food borne desease and advances in medical science,

most notably, the discovery of benefits of pasteurization, hospitalization, isolation of tuberculosis

sufferers, and small pox vaccination.

A sustained fall in birth rates, driven by a fall in marital fertility, occurred from 1870 to 1930,

after which both birth and death rates stabilized at their new low levels. Previous changes in birth

rates resulted from changes in the timing and incidence of marriage (See Floud and Johnson (2004),

Wilson and Woods (1991), and Coale and Treadway (1986)). General Fertility Rate8, a measure

5The data sources are Clark (2001b) for the period from 1560 to 1860 and Angus Maddison (1995) from 1850 to
1992.

6The data on the level of industrialization and urbanization up to 1860 are taken from Clark (2001b, 2002); the
time series are continued using Maddison’s data (1995).

7Crude Birth Rates (CBR) and Crude Death Rates (CDR) are taken from Wrigley, Davies, Oeppen, and Schofield
(1997) for the time period up to 1871 and continued using the data in Mitchell (1978).

8General Fertility Rate is the number of births in a given year per 1000 females of ages 15-44.
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less sensitive to the age structure of population than CBR, exhibits similar behavior (Figure 13).

Although the fall in birth rates lagged behind the onset of the fall in death rates, it coincided

with the fall in young-age mortality (Figure 6). The probability of surviving to the age of 25

is calculated from age-specific mortality rates taken from Wrigley, Davies, Oeppen, and Schofield

(1997) and the Human Mortality Database. We use this series to study the effects of changes in

young-age mortality. Notice that the lag between the drop in death rates and the drop in birth

rates resulted in a hump-shaped population growth rate.

Figure 7 reports our estimates of TFP in the rural and urban sectors. We describe our TFP

estimation procedure in Section V. According to our estimates, industrial TFP changed its growth

trend earlier than its rural counterpart and on a much larger scale. We use these constant growth

trends in TFP to investigate the importance of technological progress in driving the economic and

demographic transformations.

III. Related Literature

Several historical and cross-country studies point to young-age mortality as an important de-

terminant of fertility. For a survey of theoretical and empirical work, see Wolpin (1997). Empirical

results pointing to mortality as one of the most important determinants of fertility and/or the onset

and speed of its decline are reported in Bulatao and Elwan (1985), Woods (1987), Bos and Bulatao

(1990) and Karen Mason (1997a) among others9. Wolpin (1997) and Shultz (1997) point out that

the positive correlation between mortality and fertility is a phenomenon common to both historical

transitions of Western Europe and developing countries today.

For theoretical and quantitative studies of the relationship between mortality and fertility, see

Ehrlich and Lui (1991), Sah(1991), Wolpin (1997), Eckstein, Mira, and Wolpin (1999), Kalemli-

Ozcan, Ryder, and Weil (2000), Kalemli-Ozcan(2002), Lagerloff (2003), Doepke (2004b), Tamura

(2005), Soares(2005), Ehrlich and Kim (2005). All of these works embrace a quality-quantity

trade-off: parents derive utility from the number of their surviving children (hence, the target

number of children theory is incorporated in these frameworks) as well as some measure of their

children’s average wellbeing10 that they can alter through resource reallocation11. Ehrlich and Lui,

Ehrlich and Kim, Kalemli-Ozcan, Lagerloff, Tamura, and Soares explicitly model human capital

accumulation and assume increasing returns to scale to parents’ human capital and time spent

with children in production of children’s human capital12. Since production of surviving children’s

9Along with young-age mortality, another significant determinant of fertility found by virtually all empirical
studies of developing countries is female education (See Jejeebhoy (1995), United Nations (1995), Bongaarts and
Watkins (1996)). However, it appears that female education also strongly affects mortality, suggesting that its effect
on fertility may work through its effect on mortality (See Cleland (1990) and Mason (1997b)). Indeed, Schultz (1997),
working with low income countries, reports evidence that over half of the total effect of women’s education on fertility
operates through its indirect effect on child mortality.

10 In Ehrlich and Lui (1991), the quality-quantity tradeoff arises from parents’ desire to ensure old-age support.
For another work in which the direction of altruism is reversed and implications of young-age mortality are examined,
see Boldrin and Jones (2002).

11Doepke also explores a setup in which parents have no control over the average wellbeing of their children.
12Doepke also studies a setup with human capital accumulation; he, however, assumes that children’s human
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human capital requires parents’ time in proportion to their fertility13, a drop in mortality raises

the return to human capital investment14 , 15. The necessary parametric restrictions are then made

to ensure a transition to a sustained growth regime through substitutions of quality for quantity

and human capital accumulation.

Kalemli-Ozcan and Sah explicitly model the uncertainty of newborns’ survival, which gives rise

to precautionary motives for having children; a decline in mortality lowers fertility through reducing

the hoarding effect. Doepke explores different ways of modeling mortality-fertility interaction, such

as discrete fertility choice, stochastic mortality, sequential fertility, and finds that the modeling

choice has little bearing on the quantitative results in his setup. Soares and Kalemli-Ozcan et al.

investigate the effect of increasing adult longevity on adult human capital accumulation.

A few of the abovementioned works, in particular, Ehrlich and Lui, Kalemli-Ozcan, Lagerloff,

Tamura, and Soares, conclude that a decline in child mortality significantly reduces fertility (and

the number of surviving children) through its interaction with the quality-quantity tradeoff and

pulls the economy onto a sustained growth path. We also incorporate the quality-quantity tradeoff,

but quality is measured in units of physical capital and land bequeathed per surviving child. Since

both, surviving and non-surviving children, require parents’ time, the decline in mortality also

relaxes the budget constraint in our model thus allowing parents to optimally respond through

the quality-quantity tradeoff. We leave the precautionary demand for children and adult mortality

out of consideration and refrain from modeling human capital, which reduces the difficulties of

mapping observables into the model. In some sense, our estimates of the effect of mortality decline

on fertility represent a lower bound.

Another trend in the literature relates fertility to the growth in income. Hotz, Klerman, and

Willis (1997) point out two major reasons for why fertility may be inversely related to income.

One is that income elasticity of demand for quality exceeding that of demand for the number of

children is simply an empirically plausible assumption (See Becker and Lewis (1973), Bongaarts

and Bulatao (2000)). Second is that rearing children takes time; hence, with rising wages, the

opportunity cost of time increases (See Wolpin (1998), Becker (1981), Barro and Becker (1988,

1989), Butz and Ward (1979)). Among those who argue that technological progress governed the

process of development are Hansen and Prescott (2003), Jeremy Greenwood and Ananth Seshadri

(2002), Galor and Weil (2000)16, and Fernandez-Villaverde (2001).

In Hansen and Prescott (2003), the transition from rural to non-rural production is an equilib-

rium property of their model brought about by the exogenous technological progress in the Solow

technology. The population growth is postulated to be a function of per capita consumption, which

capital is a decreasing returns to scale function of parents’ time with children only. In this setup, a decline in child
mortality cannot account for a fall in the number of surviving children.

13Tamura adjusts for infant mortality.
14By relaxing the budget constraint, it allows to produce more surviving children of the same quality and/or endow

them with more human capital.

15Tamura, Kalemli-Ozcan, Ehrlich and Kim, and Lagerloff model mortality as a function of endogenous variables.
Ehrlich and Kim additionally assume that households take that function into account when making choices.

16For the quantitative test of the Galor and Weil model, see Lagerlof (2005).
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is estimated to match the demographic transition in Europe. For low levels of per capita income,

income and population growth are positively correlated and for income levels above a certain thresh-

old, this correlation becomes negative. Our model is closely related to Hansen and Prescott’s as

we use the same technologies; however, we explicitly model fertility choice as well as young-age

mortality.

Greenwood and Seshadri (2000) uses a two sector model with exogenous technological progress

and endogenous fertility to study the case of the U.S. The preference parameters are chosen so

that with increasing incomes the demand for the agricultural good relative to manufacturing goods

declines. Parents substitute quality for quantity since unskilled labor is not an input in production

of the manufacturing good. They conclude that changes in TFP alone can account for both, the

decline in fertility rates and the increase in GDP per capita that occurred in the U.S. Similarly,

Galor and Weil present a novel approach to modeling the process of growth and development.

They explicitly model human capital accumulation, endogenous technological change, and fertility.

Children’s human capital is a function of parents’ time with children and the growth rate of TFP,

satisfying several assumptions to guarantee that parents’ time with children increases in the rate of

TFP growth. Hence, parents respond to the acceleration of technological progress by having fewer,

higher quality children. The growing stock of human capital feeds back into higher technological

progress, thus reenforcing this mechanism. Although technological progress is exogenous in our

model, similar channels are present. As TFP accelerates, parents choose to invest a higher fraction

of their growing income in quality of their children. Despite the increasing cost per child, however,

we find that the quantitative effect of changes in TFP growth rate on fertility is small (in contrast

to Lagerloff’s findings), although they can account for the increase in GDP per capita, the level of

industrialization, urbanization, and factor income shares in England.

The mechanisms proposed by Greenwood and Seshadri and by Galor and Weil, although inno-

vative and insightful, are difficult to test against the data. Preferences and technology parameters

as well as TFP growth rates in both models are unidentifiable given the available data measure-

ments17. The advantage of our approach is that we use standard technological assumptions, which

allows for TFP estimation using the available data. Moreover, the disadvantage of models used by

Hansen and Prescott, Greenwood and Seshadri and Galor and Weil is abstraction from mortality.

Surviving kids and fertility are represented by the same time series in their models, although these

time series behave quite differently over the time period studied. Galor and Weil’s model generates

a hump-shaped population growth rate without mortality. The observed hump in the population

growth rate, however, is due to mortality declining prior to the fertility decline; there is no evidence

that fertility exhibited hump-shaped behavior.

Fernandez-Villaverde uses a parameterized framework in which unskilled labor and capital are

substitutes while the skilled labor and capital are complements. He feeds in capital-specific techno-

logical change that matches the fall in the relative capital equipment price during the years of the

17For example, TFP time series estimated by economic historians are usually backed out under the assumption
of standard Cobb-Douglas technology and do not account for human capital and/or measures of unskilled v. skilled
labor.
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falling birth rates: [1875-1920]. This experiment is found important in accounting for the observed

patterns of fertility and per capita income in England. A data fact, difficult to reconcile with this

force, is that after 1920 the relative price of capital and capital equipment (from the same source

used by the author) reverts its downward trend, yet there is no reversion of fertility trend.

Another important quantitative investigation based on a quantity-quality trade-off is Doepke

(2004a). Doepke concludes that government policies that impact the opportunity cost of education,

such as education subsidies and child-labor laws, have a direct effect on the speed of the demographic

transition.

Charles Jones (2001) presents a unique quantitative investigation of the world process of growth

and development through a framework which does not incorporate the quality-quantity tradeoff.

An assumption on preferences guarantees a fall in birth rates with rising incomes for incomes

sufficiently high. Mortality falls as per capita income rises. Since mortality declines before birth

rates, the population growth rate exhibits a hump. Technological progress is endogenous due to the

presence of the knowledge creating sector and no depreciation of the existing stock of knowledge.

The rate of technological progress depends on the size of the population and on the parameter

representing the fraction of population employed in the knowledge creating sector. Jones associates

this parameter with the advent of institutions promoting innovations and concludes that the timing

of the industrial revolution depended crucially on this parameter. He also finds that since 25,000

BC changes in the innovation promoting institutions were more than twice as important as the

growing stock of population in accounting for the world’s technological progress.

IV. Model

This is a one sector overlapping generations model with two technologies, exogenous technolog-

ical progress, and endogenous fertility.

Technology, firms

Following Hansen and Prescott (2003), firms are endowed with one of two possible technologies

that can produce the consumption good. We subscript the Malthusian technology that requires

capital, labor, and land as inputs by 1 and associate it with production taking place in the rural

sector. The Solow technology that employs capital and labor as inputs is subscripted by 2 and

associated with production taking place in the cities. Both technologies exhibit constant returns

to scale, which allows us to assume that there are two aggregate competitive firms, one using the

Malthusian technology, and another using the Solow technology. The outputs of these two firms

are given by

Y1t = A1tK
φ
1tL

µ
1tΛ

1−φ−µ
t ,

Y2t = A2tK
θ
2tL

1−θ
2t ,

where Kj , Lj denote capital and labor employed by technology j ∈ {1, 2}, and Λt denotes land
employed by the Malthusian technology.
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We assume exogenous technological progress in both technologies, that is,

A1t = A10

t−1Y
τ=0

γ1τ and A2t = A20

t−1Y
τ=0

γ2τ ,

where γiτ represents the time τ exogenous growth rate of technology i TFP.

Formally, the profit maximization problems of Firms 1 and 2 are given by

max
K1t,L1t,Λt

A1tK
φ
1tL

µ
1tΛ

1−φ−µ
t − wtL1t − rtK1t − ρtΛt,

max
K2t,L2t

A2tK
θ
2tL

1−θ
2t − wtL2t − rtK2t,

where wt, rt, and ρt denote time t real wage, capital rental rate, and land rental price respectively.

Preferences, households, dynasties

There is measure 1 of identical dynasties, each populated byNt households at time t. Households

live for two periods, childhood and adulthood. An adult household derives utility from its own

consumption ct, the number of its surviving children nt (young households), and its children’s

average utility according to18

Ut = α log ct + (1− α) lognt + βUt+1, α, β ∈ (0, 1) .

An adult household rents its land holdings λt and capital kt, and inelastically devotes the time

not spent raising children to work. It chooses its own consumption ct, the number of surviving

children nt, and the amount of bequests kt+1 to be passed on to each surviving child in the form of

capital, and divides its land holdings equally among its descendants. The time cost of raising each

child is qt. Formally, an adult household’s problem is described by the following Bellman equation,

U (kt, λt) = max
ct,nt,λt+1,kt+1≥0

α log ct + (1− α) lognt + βU (kt+1, λt+1)

subject to ct + kt+1nt = (1− qtnt)wt + (rt + 1− δ) kt + ρtλt,

λt+1 =
λt
nt
.

Each household takes sequences of wages, capital rental rates, land rental rates, and the time cost

of raising children as given and internalizes the effect that his choices today have on the average

utility of his descendants. Parents face the quantity-quality trade-off between having many children

with small inheritance in the form of capital and land for each child and having a few children but

endowing each with a larger piece of land and more capital.

Cost of raising children

A fraction πt of children born ft, survives to adulthood. We denote the number of surviving

18Notice that the parental utility is increasing and concave in the number of children as in Barro and Becker
(1989)’s Ut = cσt + βn1−εt Ut+1. Further, in the Appendix we prove these preferences are equivalent if σ → 0 and
1−ε−σ

σ
= 1−α−β

αβ
. We explore the Barro and Becker utility in the sensitivity section.
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descendants by nt = πtft.

There is a time cost associated with raising children. A household spends fraction a of its

time per each born child and an additional fraction b of its time per each child who survives to

adulthood. We assume that for each newborn child, households pay the expected cost of raising

him with certainty. Thus, the total time cost of raising ft newborn children is given by

(a+ πtb) ft =

µ
a

πt
+ b

¶
nt.

Hence, qt ≡ a
πt
+ b represents the time cost of raising a surviving child. Observe that the time cost

of raising surviving children is a decreasing function of the survival probability. Intuitively, as more

newborn children survive to adulthood it becomes cheaper to raise a surviving child 19.

Population dynamics and Market Clearing

The number of adult households evolves according to Nt+1 = ntNt.

We use the upper case letters to denote aggregate quantities so that Ct = ctNt, Kt = ktNt,

K1t = k1tNt, K2t = k2tNt, L1t = l1tNt, L2t = l2tNt. The market clearing conditions in the final

goods, capital, labor, and land markets are as follows:

Ct +Kt+1 = A1tK
φ
1tL

µ
1tΛ

1−φ−µ
t +A2tK

θ
2tL

1−θ
2t + (1− δ)Kt,

K1t +K2t = Kt,

L1t + L2t = (1− qtnt)Nt,

Λt = Λ.

A. Equilibrium

Definition 1 A competitive equilibrium, for given parameter values and initial conditions (k0, N0),
consists of allocations {ct, nt, λt, kt+1, k1t, k2t, l1t, l2t, Nt+1}∞t=0 and prices {wt, rt, ρt}∞t=0 such that
households and firms solve their maximization problems, and all markets clear.

We next define the Social Planning problem whose solution is the competitive equilibrium

allocation. This Social Planning problem (SP) compactly states the optimization problem at hand

19 If we modeled the cost of raising children to be paid in terms of the final good, the results would not change. In
that case, for the existence of a balanced growth path along which per capita variables grow at a positive rate, we
would need to assume that the goods cost grows in proportion to income.
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and illustrates the sense in which the competitive equilibrium allocation is efficient20.

max
{Ct,Nt+1,Kt+1}t≥0

∞X
t=0

βt(α logCt + (1− α− β) logNt+1)

s.t.

Ct +Kt+1 = F (Kt, Lt; t) + (1− δ)Kt,

Lt = Nt − qtNt+1,

Ct,Kt+1,Nt+1 > 0, K0, N0 given, where

F (Kt, Lt; t) = max
K1t,L1t

h
A1tK

φ
1tL

µ
1tΛ

1−φ−µ +A2t (Kt −K1t)
θ (Lt − L1t)

1−θ
i

(1)

s.t. 0 ≤ K1t ≤ Kt, 0 ≤ L1t ≤ Lt

Proposition 2 The competitive equilibrium in the decentralized economy corresponds to the solu-

tion of the Social Planning problem (SP).

The proof is presented in the Supplemental Notes21.

Notice that continuity of the objective function in (SP) together with compactness and non-

emptiness of the constraint set guarantees existence of a solution. We assume that 1− α − β > 0

to guarantee that the objective function is strictly concave. Since the constraint set is convex, the

solution is unique. In the Supplemental Notes we show that this solution can be characterized using

the first order, feasibility, transversality, and optimal resource allocation conditions.

From the Social Planner’s perspective, both capital and children are investment goods. By

choosing more children today (Nt+1), production can be increased tomorrow although at the expense

of decreasing production today due to the time cost of raising children. Another interesting tradeoff

clear from the setup of the Social Planning problem is the tradeoff between consumption and

children today. Indeed, both Ct and Nt+1 enter the objective function in the Social Planning

problem. Hence, children are both consumption and investment goods.

Given Kt and Lt, the Social planner optimally reallocates these resources across the two tech-

nologies. Due to decreasing returns to scale in capital and labor, the marginal products of inputs

in the Malthusian technology become very large when its capital and labor inputs converge to zero

as long as all land is employed. This guarantees that the Malthusian technology is always used in

production. The formal proof is included in the Supplemental Notes.

It is instructive to review the intuition that can be obtained from the first order conditions

derived from the Social Planning problem:

Ct+1

Ct
= β (rt+1 + 1− δ) ,(2)

(1− α− β)Ct

αNt+1
= qtwt − wt+1

rt+1 + 1− δ
,(3)

Ct +Kt+1 = F (Kt, Nt − qtNt+1; t) + (1− δ)Kt,(4)

20For a detailed discussion of efficiency in models with endogenous fertility, see Golosov, Jones, Tertilt (2004).
21Available through the authors’ websites.
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where wt and rt denote marginal product of labor and capital, wt = F2 (Kt, Nt − qtNt+1; t) and

rt = F1 (Kt, Nt − qtNt+1; t) . Equation (2) is a standard Euler equation that describes the intertem-

poral tradeoff in aggregate consumption. Condition (3) represents the intratemporal tradeoff be-

tween consumption and children (Nt+1). The marginal rate of substitution between children and

consumption is given by their relative price. The price of a child in terms of the final good is

measured by the forgone wages due to the time cost of raising children less the present value of the

child’s earnings in t+ 1. Finally, equation (4) is the feasibility condition.

Limiting Behavior of Equilibrium Time Paths

The behavior of the solution to the model depends on the choice of the parameters and the initial

conditions. We can identify three possible types of limiting behavior of the equilibrium time paths:

(1) The solution exhibits the property that the relative level of output in the two sectors converges

to a constant, (2) The solution exhibits the property that the level of output in the Solow sector

converges to 0, (3) The solution exhibits the property that the level of output in the Malthusian

sector relative to the total output converges to 0. We refer to these types of limiting behavior of

equilibrium time paths as convergence to Malthus-Solow Balanced Growth Path (BGP), Malthus

BGP, and Solow BGP respectively22.

We do not include the discussion of how the choice of parameters and initial conditions affects

the limiting behavior of equilibrium time paths in this paper, but a detailed discussion formulated

in terms of propositions and proofs is available in the Supplemental Notes. It is, however, useful

to point out here that along a Malthus-Solow BGP, both, population growth (n) and per capita

output growth (γ), are determined by the TFP growth rates in the two sectors23:

(5) γ = γ
1

1−θ
2 , n =

µ
γ1γ

−1−φ
1−θ

2

¶ 1
1−φ−µ

.

The growth rate of per capita output increases in the Solow TFP and is independent of the Malthu-

sian TFP. Population growth increases in the Malthusian TFP growth rate and decreases in the

Solow TFP growth rate. Interestingly, the time cost of raising children does not enter these two

equations. This means that increasing the probability of survival while keeping all other parame-

ters fixed would directly result in the proportional reduction of fertility (n = πf). For this class

of simulations, we found that during the transition from the original to a new BGP, population

growth exhibits a hump, and that this transition is lengthy. Therefore, it is misleading to conclude

from these comparative statics exercises that mortality changes do not affect population growth. It

is important to notice that this analysis is only valid as long as the new value of π does not alter the

type of limiting behavior of equilibrium paths, i.e., as long as it does not preclude convergence to

a new Malthus-Solow BGP. In fact, in the simulation results of the benchmark economy presented

22This discussion contrasts the result obtained by Hansen and Prescott (2003). In Hansen and Prescott, as long
as the growth rate of the Solow TFP is positive, all equilibria exhibit convergence to a Solow BGP. In our model,
however, the limiting behavior of equilibrium time paths is determined by the particular parameterization as well as
the initial conditions.

23This result comes from the constancy of the interest rate along a Malthus-Solow BGP and equality of the
marginal products of capital in the two sectors. Hence, it is robust to the choice of the objective function.
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below, each experiment performed converges to a Solow BGP.

The growth rate of per capita output on a Solow BGP is also given by γ = γ
1

1−θ
2 . However, there

is no analytical solution for the growth rate of per capita output on a Malthus BGP. The growth

rate of population along a Malthus BGP and a Solow BGP also lack analytical solutions. The

comparative statics results show that for both of these BGP types, increases in the TFP growth

rate lead to a decline in the population growth rate and an increase in per capita output growth

rate. For a Malthus BGP, increases in the probability of survival lead to exactly the opposite effect.

For a Solow BGP, increases in survival probabilities lead to increases in population growth but do

not affect the growth rate of per capita output, γ = γ
1

1−θ
2 .

V. Calibration

The objective is to calibrate the parameters of the model to match some key data moments at

the beginning of the 17th century England. One important assumption that we make in order to

map the data moments into the model parameters is that in the beginning of the 17th century, the

economy is on a Malthus-Solow BGP24.

The data on population growth and mortality rates are available in Wrigley, Davies, Oeppen,

and Schofield (1997), Mitchell (1978), and Human Mortality Database. Most other data moments

come from Clark’s work (2001a, 2001b, 2002). We also need to estimate the time series of TFP

in the rural and non-rural sectors. Unfortunately, the data on time series of inputs and outputs

of the two sectors, necessary for standard growth accounting, is unavailable. To get around this

problem, we implement the dual-approach of TFP estimation, which uses the assumption of profit-

maximization. This approach requires time series data on wages in the two sectors, land and capital

rental rates, as well as the GDP deflator. These time series we either take directly or infer from

Clark (2001b, 2002).

We choose 25 years to represent the length of each time period. The parameters to be calibrated

are the Malthusian parameters A10, γ1, φ, µ, the Solow parameters A20, γ2, θ, preference parameters

α, β, cost of children parameters a, b, π, and the remaining parameters Λ and δ.

Land in the model is a fixed factor whose value we normalize to one (Λ = 1). Since A10 and Λ

only enter the model as a product, A10Λ1−φ−µ, we are allowed the second degree of normalization,
so we set A10 = 100. We also set A20 = 100 as there is no better way to infer it, and sensitivity

analysis shows that there is a wide range for A20 that will not have any quantitative bearing on

the results. It only has the impact on whether the Solow technology is being used in production

of output. We have 11 parameters left to calibrate. In order to pin them down we use 11 pieces of

information presented in Table 1 below25.

We simply rewrite the balanced growth path equations in terms of moments and parameters

only, then solve for the model parameters using the information about the corresponding moments

24Per capita output growth, birth rates, factor shares in total income, young-age mortality, levels of urbanization
and industrialization appear stationary during [1580-1650].

25Numbers in parenthesis indicate annual rates
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in the data. For the description of calibration as a solution to a system of linear equations see the

Supplemental Notes.

Table 1: England Around 1600: Data Moments Used for Calibration

Moment Value Description

δ 0.723 (0.05) Depreciation
π 0.67 Probability of survival to 25
l1
l 0.6 Fraction of rural labor in total labor
y1
y 0.67 Fraction of rural output in total output
rk
y 0.16 Capital share in total income
wl
y 0.6 Labor share in total income

r + 1− δ 2.666 (1.04) Interest rate
qn 0.42 Fraction of time spent with children (or not working)
a+b
a 4 Average time cost of surviving children

relative to that of non-surviving children
γ1,1600 1.042 (1.0016) Growth of rural TFP around 1600
γ2,1600 1.006 (1.00025) Growth of non-rural TFP around 1600

Notice that we do not aim to match per capita output growth and population growth in our

model because, although stationary, these moments are quite volatile around the beginning of

the 17th century. These moments, however, will be compared with their counterparts predicted

by the calibrated model. Depreciation and nominal interest rate are reported as 25-year rates, the

corresponding annual rates are indicated in parenthesis. Historical estimates of annual depreciation

rates range from 2.5% (Clark 2002) to over 15% (Allen 1982). We set δ = 0.723 to match 5% annual

depreciation. The probability of surviving to the age of 25 around 1600 was roughly constant at the

level of 67%. (See Wrigley, Davies, Oeppen, and Schofield (1997)). Hence, π is also pinned down

directly by the data.

Clark (2001b) provides labor and capital shares in total output produced in England as well as

relative levels of employment and output in the two sectors. The interest rate is taken from Clark

(2001a). The fraction of time spent raising children, qn, is set to 0.42 and will be discussed below.

Recall that a is the fraction of time spent on each newborn child while b represents the additional

time cost incurred when a child lives to become an adult. We set a+b
a to 4 using an assumption of a

linear declining functional form for the instantaneous cost function of raising children in conjunction

with the data on young-age mortality rates. See the Appendix for a more detailed explanation of

how we arrive at this quantity. The discussion of how γ1,1600 and γ2,1600 are obtained follows below.

Calibrating φ, µ, θ

We can determine the labor share µ of the Malthusian technology using y1
y ,

l1
l ,

wl
y and the

equilibrium property that wages equal the marginal product of labor in the Malthusian sector,

w l
y =

³
µy1
l1

´
l
y . This implies µ = 0.537.

Now that we know µ, we can pin down the capital share θ of the Solow technology by using y1
y ,

wl
y ,

and the equilibrium identity that the total labor income is given by the sum of the income paid
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to the labor employed by the Malthusian technology and labor employed by the Solow technology,

µy1
y + (1− θ) y2y =

wl
y . This determines θ = 0.273.

Similarly, we obtain the capital share φ of the Malthusian technology by using y1
y ,

rk
y , and the

equilibrium property that the total income paid to capital is the sum of rental income paid to the

capital employed in the Malthusian sector and capital employed in the Solow sector, φy1
y +θ

y1
y =

rk
y .

This gives φ = 0.104.

Calibrating γ1, γ2 and estimating TFP time series

We next explain how γ1,1600 and γ2,1600 are obtained. We first estimate TFP time series for

each sector for the time period of 1585-1915. Then for each sector we fit a trend consisting of two

parts each characterized by a constant growth rate. The growth rates characterizing the first part

of the TFP trends in the two sectors are denoted by γ1,1600 and γ2,1600. In order to estimate the

TFP time series, we use the inferred factor income shares in the two sectors, φ, µ, θ.

From profit maximization of the firms, using the dual-approach of estimating TFP, we derive

A1t =

µ
rt
φ

¶φµw1t
µ

¶µµ ρt
1− φ− µ

¶1−φ−µ
,(6)

A2t =
³rt
θ

´θ µ w2t
1− θ

¶1−θ
,(7)

where rt (%) is the rental rate on capital, wt is the real wage measured in units of the final good

per unit of labor, and ρt is the land rental price measured in units of the final good per acre
26.

Since the data available from Clark is the time series of rt (%), nominal wages ω1t and ω2t (£), ρ̃t
(% return on land rents), PΛt (price of land in £/acre), and the GDP deflator Pt, we infer the real

wages wit and the real land rental price ρt by using

wit =
ωit
Pt

and ρt =
ρ̃tPΛt
Pt

.

Substituting these into (6) and (7) , we obtain the equations that allow us to estimate the Malthusian

and Solow TFP time series using the available data:

A1t =

µ
rt
φ

¶φµω1t
µ

¶µµ ρ̃tPΛt
1− φ− µ

¶1−φ−µ
Pφ−1
t ,

A2t =
³rt
θ

´θ µ ω2t
1− θ

¶1−θ
P θ−1
t .

Figure 7 is a plot of these time series together with the fitted trends. Both, the rural and

non-rural TFP time series exhibit a regime switch. Next we explain how we find the two trends.

Let xt represent the data and yt its trend, which we restrict to be of the following form:

yt =

(
y0g

t
1

y0g
τ
1g

t−τ
2

0 ≤ t ≤ τ

τ ≤ t ≤ T
,

26See the Appendix for a more detailed report that would allow anyone to reproduce our TFP estimates.
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where g1 and g2 denote the growth rates in the first and second growth regimes, and τ represents

the timing of the regime switch.

To find the trend we solve

min
y0,g1,g2,τ

TX
t=0

(yt − xt)
2 .

Notice that this procedure determines the two growth rates as well as the timing of the regime

switch. Applying this methodology to both of the TFP time series we obtain the trends, pre-

sented in Figure 7. That is, we obtain the TFP growth rates characterizing the first part of the

trends, γ1,1600 = 1.042 (0.16%) and γ2,1600 = 1.006 (0.025%) , as well as the endpoint growth rates

γ1,1900 = 1.126 (0.4%) and γ2,1900 = 1.174 (0.6%) . The annual percentage growth rates are given in

parenthesis. Our estimation results are consistent with Pol Antras and Hans-Joachim Voth (2002)

who estimate TFP growth in Britain for the period 1770-1860 using factor prices from sources

different from ours and conclude that the TFP growth during this period was no more than 0.6%

per year.

Interestingly, γ1,1600 and γ2,1600 give prediction to the growth rate of population and per capita

output around 1600. Recall that the balanced growth path values for n and γ are determined by γ1
and γ2 (See equation (5)). Hence, the obtained values for the growth rates of the Malthusian and

Solow TFP imply that n =
µ
γ1γ

− 1−φ
1−θ

2

¶ 1
1−φ−µ

= 1.097 (or 0.37% in annual terms) and γ = γ
1

1−θ
2 =

1.0085 (or 0.00034% in annual terms). These predictions are consistent with the data. Indeed, the

population in the beginning of the 17th century England grew at the annual rate of 0.4%, while

output per capita remained roughly stagnant27.

Calibrating the remaining parameters

The preference parameter β is given by the Euler equation γ = β
n [r + 1− δ] after we substitute

for γ, n, and the gross interest rate. This yields β = 0.415.

We set the total fraction of time spent raising children qn at 0.42. There is no obvious way to

infer qn from the data, but a simple example may be illustrative. Say a person has 100 hours of

productive time endowment per week. He works 40 hours, rests 30 hours and spends 30 hours with

all of his children. Since there is no leisure in our model, this pattern of time allocation would

imply qn = 30
30+40

∼= .429. The sensitivity of results to the choice of qn is addressed in Section VII.

We also set a+b
a = 4. Recall that a is the fraction of time spent raising each newborn, and b

is the additional cost incurred on surviving children. We pin down fraction a+b
a by assuming the

instantaneous cost function of raising a child to be linear and declining with the child’s age. We

then use data on age-specific mortality rates around 1600 to infer the relative size of b to a. We also

perform sensitivity analysis for this fraction and find that the results are very robust to changes in
a+b
a . Hence, qn = 0.42 and a+b

a = 4 determine a = 0.085 and b = 0.256.

The balanced growth path feasibility equation gives prediction for c
k = r y

rk + 1 − δ − γn.

Using c
k , n, γ, qn,

l1
l along with the data moments, r,

rk
y ,

y1
y , in the remaining balanced growth path

equation, (1−α−β)(1−qn)αµ
y
y1
1
r
rk
y
l1
l ρ = qn− γn

(r+1−δ) , allows us to calibrate α to 0.582.

27We chose not to attempt matching n and γ precisely, because these quantities are highly volatile around 1600.
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The calibrated parameters are summarized in Table 2.

Table 2: Summary of Calibrated Parameters

Value Description

Malthusian Technology Parameters
A10 100 Initial level of TFP
γ1,1600 1.042 TFP growth rate
φ 0.104 Capital share
µ 0.537 Labor share
Solow Technology Parameters
A20 100 Initial level of TFP
γ2,1600 1.006 TFP growth rate
θ 0.273 Capital share
Preference Parameters
α 0.582 Weight on consumption
β 0.415 Discount rate
Cost of Children
a 0.085 Fraction of time spent on each life birth
b 0.256 Additional time spent on each surviving child
Other parameters
δ 0.723 Depreciation
Λ 1 Land

VI. Simulation Results

Three experiments are conducted within the calibrated framework. The first experiment (Exp

1) is changing the growth rates of TFP in the two sectors according to our estimates arrived at in

Section V while keeping young-age mortality at its 1600 level. The second experiment (Exp 2) is

changing the probability of surviving to adulthood according to its historical estimates while keeping

the growth rates of TFP in both sectors at their 1600 values. The third experiment (Exp 3) is the

joint experiment combining the exogenous changes of the first two experiments. The experimental

values of γ1, γ2 and π are reported in Figures 8-10. Since we do not aim at investigating high

frequency behavior, we smooth out28 the experimental time series.

Each period in the model corresponds to a specific year. The exogenous changes are fed into the

model in accordance with their historical estimates; the model is then solved for the equilibrium

dynamics under the assumption of perfect foresight29.

The economy starts off on a Malthus-Solow BGP. Although different types of limiting behavior

28The time series for π corresponding to the time period [1612.5 − 1912.5] is replaced by its 7-period moving
average. The time series for γ1 and γ2 are modified by fitting a logistic function to the endpoint growth rate. The
resulting time series of γ1 and γ2 corresponding to time periods [1737.5− 1837.5] and [1612.5− 1912.5] respectively
are replaced by the 5-period moving average.

29The solution method is described in detail in the Supplemental Notes.
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of equilibrium time paths are possible in our model, all three experiments generate convergence to

a Solow BGP, characterized by the Malthusian share of output converging to zero. Figures 11-19

depict the results of the experiments. The dotted lines represent the time paths of relevant variables

in the data. The rest of the lines represent the time series of the model counterpart, resulting from

each of the experiments. The quantitative results of this experiment for time periods 1600-1950

and 1650-1950 are summarized in Table 3 below.

Table 3: Results

1600-1950 1650-1950
%Accounted by Model %Accounted by Model

%4 in Data Exp. 1 Exp. 2 Exp. 3 %4 in Data Exp. 1 Exp. 2 Exp. 3

y 379.6 68.77 2.23 66.21 348.9 73.24 1.68 70
CBR −48.73 −0.26 44.7 45.84 −39.95 −0.042 59.1 61
GFR −46.28 −0.59 41.35 44.20 −36.45 −0.10 57 61
ρΛ
y −95.31 92.32 −1.97 91.96 −95.7 91.97 −0.89 92
wl
y 16.67 112 −2.39 111.58 20.7 90.22 −0.88 91.13
y2
y 187.88 95.1 −2.03 94.77 177.38 100.72 −1 103.7
l2
l 137.25 98.2 −2.54 97.95 113.26 119.03 −1.46 122.65

In short, we find that the decline in young-age mortality accounts for nearly 60% of the fall in

CBR and GFR that occurred in England between 1650 and 1950. Over the same period, changes

in productivity account for over 70% of the increase in GDP per capita and nearly all of the decline

of land share in total income. Furthermore, we find that changes in productivity are quantitatively

insignificant in accounting for the observed patterns in fertility behavior, while mortality changes

are quantitatively relevant only to population dynamics, not to the other quantities predicted by

the model. The results are described in more detail in what follows.

A. Experiment 1: Changes in the Growth Rates of TFP

Recall that the endpoint TFP growth rates are given by γ1,1600 = 1.042 (0.16% annual growth) ,

γ2,1600 = 1.006 (0.025% annual growth) , γ1,1900 = 1.126 (0.4% annual growth) and γ2,1900 = 1.174

(0.6% annual growth)30. Until the second half of the 18th century, the rural technology enjoyed

a somewhat higher TFP growth relative to that of the non-rural technology. Around 1750, the

growth rate of the Solow TFP overtook the Malthusian TFP growth. Thus, according to our

estimates, the agricultural revolution took place after the industrial revolution and on a smaller

scale. It is important to notice that the level of urbanization and industrialization are imperfect

data counterparts of l2/l and y2/y in our model.

30Recall that the time series of TFP growth rates is estimated based on the data up to 1915. For later years,
TFP in both sectors is assumed to remain on the same constant growth trends. We investigate the consequences of
this assumption in Section VII, where we perform experiments 1 and 3 under the assumption that the Solow TFP
accelerated to the growth rate that would yield the growth rate of per capita output in the 20th century.
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This experiment generates industrialization in a manner consistent with the data. As TFP in the

Solow technology becomes sufficiently large, resources reallocate towards the Solow technology and

the fraction of Solow output in total output converges to 1. Observe that changes in TFP growth

rates first take place in 1750, hence, this experiment fails to generate any resource reallocation

towards the Solow sector prior to 1750.

Labor reallocates from Malthus to Solow in a manner consistent with the data. As the Solow

sector becomes continuously more productive relative to the Malthusian sector, it employs a higher

fraction of the available resources. The equilibrium path converges to the asymptotic balanced

growth path on which the fraction of the Malthusian output relative to total output converges to

zero31.

Acceleration of TFP generates a transition from the Malthusian stagnation to modern growth.

Around 1600, the growth rate of per capita GDP is near zero. It then takes off around 1800 and

exhibits a sustained growth of nearly 1% per year. In the time period from 1650 to 1950, this

experiment accounts for roughly 73% of the increase in per capita GDP in the data.

As resources reallocate towards the Solow sector, the land share in total income declines while

the labor share rises. This happens simply because the Solow sector’s land share is 0. Notice that

factor shares in the two technologies are fixed at the calibrated levels. We conclude that changes

in TFP alone can account for long term trends in the observed factor income shares.

Notice from Figures 12 and 1332 that changes in the TFP growth rates have a very small

quantitative impact on fertility behavior. Interestingly, this experiment generates first a rise and

then a fall in fertility rates. Recall that the acceleration of productivity and hence income affect

birth rates through two different channels in our model. On one hand, children are normal goods,

and hence, higher income growth induces higher fertility. On the other hand, rearing children takes

time, and with faster growing TFP, the opportunity cost of raising children measured in terms of

foregone wage earnings also grows faster dampening fertility. Moreover, with faster rising incomes,

parents choose to have higher quality children, which would further increase the cost of rearing

children. In fact, if we interpret kt+1 as a measure of quality, the ratio kt+1/yt increases from .0675

to .113. Fertility rises slightly and then declines, overall, the quantitative effect of changes in the

TFP growth rates on fertility is very small, which is a very interesting finding.

Comparison of the population growth rate in the data to the one in the model is similar. As

depicted in Figure 19, starting at the calibrated level of 0.37% annual rate, population growth

first increases, but then decreases converging to 0.36% annual rate in the limit. This experiment

generates a small hump in the population growth rate, but it is quantitatively insignificant33.

31 It is important to notice that the level of urbanization and industrialization are imperfect data counterparts of
l2/l and y2/y in our model. The main reason is that we associate the Malthusian sector with rural production and
Solow sector with non-rural production. However, in the data rural output is not a perfect substitute of the non-rural
output while in the model the Malthusian good is a perfect substitute to the Solow good. It is nonetheless instructive
to make these comparisons.

32When comparing the results of the experiments to the data in Figures 12-13 and Tables 3-5, we use 3-period
moving average representation of CBR and GFR.

33As discussed in Section II, the observed hump in the English population growth rate resulted from the fact that
CDR fell before CBR. Since we do not model adult mortality, we do not attempt to generate a hump in population
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This experiment leads us to conclude that changes in the productivity in the two sectors repre-

sent an important force behind the observed patterns in per capita income, the level of industrial-

ization and urbanization, as well as patterns of labor, capital, and land shares in total income. By

contrast, changes in productivity are quantitatively unimportant in driving fertility behavior.

The limiting behavior of the equilibrium time paths can be summarized by yt+1/yt → 1.0088,
Nt+1

Nt
→ 1.0036, rt → 1.045, and ct/kt → 0.398, which are given in annualized rates 34.

B. Experiment 2: Changes in Young-Age Mortality

The probability of surviving to the age of 25 changed from 67% in 1550 to 98% in 2000. After

a slight decline until the onset of the 18th century, the survival probability reversed its trend rising

most rapidly only in the 19th century.

Changes in young-age mortality appear to be a major determinant of fertility behavior. When

the probability of survival increases, it becomes less costly to produce a surviving child (q declines),

which puts upward pressure on fertility. On the other hand, much like in the case of TFP accel-

eration, as the budget constraint is relaxed due to a drop in q, parents respond by increasing the

quality of children: the ratio kt+1/yt increases from .0675 to .1021. Finally, fertility drops since

fewer births are needed to achieve the desired number of surviving children. We find that in the

period from 1650 to 1950, changes in the probability of survival roughly account for nearly 60% of

the drop in the CBR and GFR that occurred in England.

Figure 16 present the time series of the level of industrialization in the model and in the

data using a longer time scale. As the probability of survival declines, the time spent on raising

surviving children declines, which frees up time available for work. Then the intuition is similar

to the statement of the Rybczynski Theorem from trade, which states that as the endowment of

one factor increases, the relative output in the sector that uses that factor intensively also rises.

Similarly, as more time becomes available for work, the output in the sector that uses labor more

intensively (the Solow sector for our calibration) increases relative to the Malthusian output. In

the long run, resources reallocate towards the Solow technology, although it takes a very long time.

Even in 2400, as much as 10% of total output is still produced by the Malthusian technology. The

model versus data patterns of the level of urbanization look very similar to those of industrialization.

Figure 11 illustrates the result that changes in the probability of survival are quantitatively

insignificant in accounting for patterns in GDP per capita. The population growth rate does go up

from the annual rate of 0.37% to the annual rate of 0.8%, but the increase is small quantitatively.

We conclude that changes in young-age mortality were an important driving force behind the

demographic changes in England but had little bearing on the economic changes that took place

in the time period 1650-1950.

growth.
34Only one of the eigen values for this dynamical system is less than 1. Notice that if the Malthusian technology

does not operate, Nt is no longer a state variable for the rest of the system, which means that the only state variable
is kt and exactly one eigen value needs to be less that 1 for local stability. Hence, the Solow balanced growth path
to which the equilibrium time paths converge as a result of changes in TFP growth rates is locally stable.
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The limiting behavior of equilibrium time paths can be summarized by yt+1/yt → 1.00034,
Nt+1

Nt
→ 1.008, rt → 1.04, and ct/kt → 0.357, which are given in annualized rates. Only one of the

eigen values for this dynamical system is less than 1. Hence, the Solow balanced growth path to

which the equilibrium time paths converge as a result of changes in young-age mortality is locally

stable.

C. Experiment 3: Joint Experiment

There appears to be no special interaction between the two exogenous changes studied in this

section in the sense that when a joint experiment is performed with both, TFP growth rates and

young-age mortality, changing according to their historical estimates, the effects presented here for

the two separate experiments essentially add up.

The limiting behavior of equilibrium time paths can be summarized by yt+1/yt → 1.0088,
Nt+1

Nt
→ 1.008, rt → 1.05, and ct/kt → 0.45, which are given in annualized rates.

VII. Sensitivity Analysis

TFP experiment

Recall that the time series of TFP growth rates were estimated based on the data up to 1910.

For later years TFP in both sectors was assumed to remain on the same constant growth trends.

What if the growth rate of TFP increased further since 1910? Would changes in TFP growth rates

be more successful at accounting for the demographic and economic changes in that case? In this

sensitivity exercise, we use a different time series for the Solow TFP, the one that would guarantee

that our model captures the growth rate of per capita income in the 20th century. We know that

in the limit, convergence takes place to the Solow only BGP. Hence, we can back out γ2 that would

give the limiting γ = γ
1

1−θ
2 = 1.014 (the annual growth rate of real GDP per capita). This yields

γ2 = 1.00978, in contrast to 1.0064 used in our experiments. The table below presents the results of

Experiments 1 and 3 modified so that the Solow TFP growth rate beginning with 1912.5 is changed

to 1.00978. The original results are shown for comparison.

Table 4: Sensitivity to the Endpoint Solow TFP Growth
1600-1950 1650-1950

%Accounted by Model %Accounted by Model
γ2,1900 = 1.0064 γ2,1900 = 1.0098 γ2,1900 = 1.0064 γ2,1900 = 1.0098

Exp. 1 Exp. 3 Exp. 1 Exp. 3 Exp. 1 Exp. 3 Exp. 1 Exp. 3

y 68.77 66.21 82.4 79.48 73.24 70 87.84 83.9
CBR −0.26 45.84 −0.28 45.87 −0.042 61 −0.07 60.72
GFR −0.59 44.20 −0.64 44.26 −0.10 61 −0.165 61.10
ρΛ
y 92.32 91.96 95.91 95.62 91.97 92 95.55 95.35
wl
y 112 111.58 116.4 116.02 90.22 91.13 93.73 94.71
y2
y 95.1 94.77 98.8 98.53 100.72 103.7 104.64 107.8
l2
l 98.2 97.95 101.4 101.21 119.03 122.65 122.91 126.65
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The result that changes in the TFP growth rates drive the economic transformation is strength-

ened. The quantitative effect on birth rates is unaffected.

Barro and Becker Preferences

As proved in the Appendix, the parental utility that we assumed, Ut (ct, nt, Ut+1) = α log ct +

(1− α) lognt + βUt+1, is a special case of the Barro and Becker parental utility, Ut (ct, nt, Ut+1) =

cσt + βn1−εt Ut+1, if σ → 0 and 1−ε−σ
σ = 1−α−β

αβ . Notice that this implies that ε → 1. Hence, a

natural question is whether our main results remain if we use the Barro and Becker parental utility

form with σ > 0 and ε < 1.

We follow similar steps to recalibrate the model under the assumption of the Barro and Becker

utility, except that this calibration procedure does not pin down both ε and σ. Instead, it pins down
1−ε−σ

σ = 0.0129, thus allowing us the choice of ε. We performed the experiments with different

values of ε in the admissible range of (0, 1). When ε = .9, which implies that σ = 0.0987, the results

are very close to the results reported for the Lucas utility, that is, they are not very sensitive to

the choice of ε. Here we report the results for a more extreme case, with ε = 0.7 and the implied

σ = 0.2962.

Table 5: Sensitivity to the choice of preferences
1600-1950 1650-1950
%Accounted by Model %Accounted by Model

%4 in Data Exp. 1 Exp. 2 Exp. 3 %4 in Data Exp. 1 Exp. 2 Exp. 3

y 379.6 61.84 1.09 56.17 348.9 66 0.34 59
CBR −48.73 −8.23 41.01 36.65 −39.95 −9.48 54.26 49.53
GFR −46.28 −19.85 32.17 20.46 −36.45 −23.8 44.4 31
ρΛ
y −95.31 97.68 −1.46 97.47 −95.7 97.32 0.22 97.2
wl
y 16.67 118.51 −1.77 118.3 20.7 95.47 0.22 97.3
y2
y 187.88 100.62 −1.51 100.5 177.38 106.58 0.25 111.9
l2
l 137.25 103 −1.93 102.9 113.26 124.83 0.26 131

In short, the main result, that changes in young-age mortality drive mainly the demographic

changes while changes in the growth rates of TFP drive all the other quantities, still remain. The

only difference is that with Barro and Becker utility and ε = .7, the effect of mortality on birth rates

is just slightly weaker overall, the hump in birth and general fertility rates is more pronounced.

Sensitivity to δ, (a+ b) /a, and qn.

All the quantitative results are extremely robust to changes in δ. Since the estimates of δ vary

from 2.5% to 15% in the literature as mentioned above, we investigated δ in this range.

Recall that (a+ b) /a is an estimate of the average time cost of surviving children relative to

that of non-surviving children. In the Appendix we show in detail how we arrive at the estimate

of (a+ b) /a = 4. It is still fair to say that it is unclear what this fraction should be and hence

sensitivity analysis is required here. Notice that this fraction only affects the values of a and b,

it does not affect the time cost of raising surviving children q. In particular, a decreases and b

increases in (a+ b) /a. The results are again very robust to the assumptions on (a+ b) /a. Higher

(a+ b) /a slightly increases the importance of π in driving the birth rates in England while lower
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(a+ b) /a slightly decreases the importance of π. Overall, we examined values for (a+ b) /a ranging

from 1 to 7 and the results were not affected significantly.

Finally, we set the fraction of time spent raising children, qn, to equal .42. Unfortunately, for

qn ≤ .411, we have 1− α− β < 0, or equivalently 1− ε− σ < 0 for the Barro-Becker preferences,

which implies that the Planner’s utility decreases in the size of population. Although this does not

mean that the Planner will set the population size to 0 as households would still be valued as a

factor of production, we would not be able to guarantee strict concavity of the objective function.

Thus, we do not perform any experiments with a value of qn lower than .42. Raising qn to a higher

value does not change the results much. We analyzed the results when qn is as high as .7.

VIII. Conclusion

We develop a general equilibrium model with endogenous fertility in order to quantitatively

assess the impact of changes in young-age mortality and technological progress on the demographic

transition and industrialization in England. We find that the decline in young-age mortality ac-

counts for nearly 60% of the fall in the General Fertility Rate that occurred in England between

1650 and 1950. Over the same period, changes in productivity account for 73% of the increase

in GDP per capita and nearly all of the decline of land share in total income. Interestingly, both

experiments generate a transition from Malthus to Solow. However, changes in TFP do so in a

manner consistent with empirical observations, driving the share of the Malthusian technology to

nearly zero in the period from 1600 to 2000. Changes in the probability of survival generate a

much slower transition, predicting that even in 2400 the output produced in the rural sector would

still comprise 10% of total output. We also find that changes in TFP alone can account for long

term trends in the observed factor income shares. This occurs as a result of resource reallocation

between sectors with different factor intensities that remain constant over time.

One of the questions we raised was whether some common forces induced both changes in output

and population. Our quantitative results suggest that the explanation for changes in output and

population need not be entirely common. In fact, we find that changes in productivity are quanti-

tatively insignificant in accounting for the observed patterns in fertility behavior, while mortality

changes are quantitatively relevant only to population dynamics, and not to the other quantities

predicted by the model.

An important contribution of this work is thorough quantitative analysis of the equilibrium time

paths within the framework that is capable of generating a transition from Malthusian stagnation

to modern growth. We feed the exogenous changes into the calibrated framework according to

historical data. Every period in our model corresponds to a particular time period in the data. We

estimate total factor productivity in the rural and urban sectors using the dual-approach, which

utilizes time series data on wages in the two sectors, land and capital rental rates, as well as the

GDP deflator. The advantage of our approach is that we use functional forms that allow for direct

mapping of observables into the model. Our choice of parameters is restricted by the available data

observations in the beginning of the 17th century, and not by the entire time paths of any of the

variables in question.
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Future work, in our opinion, should be directed at merging this new promising field of unified

growth theory with quantitative analysis. In particular, insightful mechanisms such as those put

forth by Galor and Weil, Greenwood and Seshadri, Soares, or Kalemli-Ozcan (that provide ad-

ditional channels through which mortality and technological progress can influence reproductive

choices as well as economic growth) need to be brought closer to the data through modification of

models as well as innovative approaches to the available data measurements.

Appendix

Data Sources

• Fraction of non-rural labor in total labor, L2/L

[1565-1865] - Clark, 2001b, Table 1, p. 8

[1820 - 1992] - Maddison, 1995, p. 253

• Index of Real GDP per capita, y

[1565-1865] - Clark, 2001b, Table 7, p. 30, rescaled to match 100 in 1565

[1820-1990] - Maddison, 1995, p. 194, rescaled to match Clark’s index in 1850.

• Labor Share in Total Income, wL/Y

[1585 - 1865] - Clark, 2001b, Table 9, p. 46

[1924 - 1973] - Matthews, Feinstein, Odling-Smee, 1982, p. 164

Average for [1973 - 1982] - Maddison, 1987, p. 659

1992 - Gollin, 2002, p. 470, Table 2, Adjustment 3

• Land Share in Total Income, ρΛ/Y

[1585 - 1865] - Clark, 2001b, Table 9, p. 46

[1873 - 1913] - Matthews, Feinstein, Odling-Smee, 1982, p. 643

[1987 - 1998] - UK National Statistics

• Capital Share in Total Income, imputed according to rK/Y = 1− wL/Y − ρΛ/Y.

• Fraction of non-rural output in total output, Y2/Y

[1555-1865] - imputed by dividing Nominal Net Farm Output (alternative labor) obtained from

Clark, 2002 (Table 4, p. 14) by Nominal GDP adjusted for missing capital income obtained from

Clark, 2001b (Table 3, p. 19).

[1788-1991] - Mitchell, 1978

• Crude Birth and Crude Death Rates

[1541 - 1871] - Wrigley, Davies, Oepenn, and Schofield, 1997

[1871 - 1986] - Mitchell, 1978
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• General Fertility Rate

Computed using CBR and fraction of females in total population by

[1541 - 1841] - Wrigley, Davies, Oepenn, and Schofield, 1997

[1841 - 1999] - Human Mortality Database.

• Population Growth Rate

[1541 - 1836] - Wrigley, Davies, Oepenn, and Schofield, 1997

[1841 - 1999] - Human Mortality Database

• Age-specific survival probabilities

[1580-1837] - Wrigley, Davies, Oepenn, and Schofield, 1997

[1841 - 1999] - Human Mortality Database

• Data used for TFP estimation (See the Appendix Section on TFP estimation).

Clark, 2001b

Clark, 2002

Barro and Becker v. Lucas Utility

Proposition 3 Parental utility used in Lucas (2002),

Ut (ct, nt, Ut+1) = α log ct + (1− α) lognt + βUt+1,

represents the same preferences as represented by the Barro and Becker utility

Ut (ct, nt, Ut+1) = cσt + βn1−εt Ut+1

if σ → 0 and 1−ε−σ
σ = 1−α−β

αβ .

Proof. Let 1−ε−σ
σ = 1−α−β

αβ . Consider the following transformation of the Barro and Becker

utility, Wt (ct, nt, Ut+1) = (1− β)Ut (ct, nt, Ut+1) ,

Wt (ct, nt,Wt+1) = (1− β) cσt + βn1−εt Wt+1.

Next consider another transformation, Vt (ct, nt,Wt+1) =Wt (ct, nt,Wt+1)
α

(1−β)σ ,

Vt (ct, nt, Vt+1) =

·
(1− β) cσt + βn1−εt V

(1−β)σ
α

t+1

¸ α
(1−β)σ

=

Ã·
(1− β) cσt + β

µ
n
1−ε
σ

t V
(1−β)
α

t+1

¶σ¸ 1σ! α
(1−β)

.

Now taking limits as σ → 0 while ε changes so that 1−ε−σσ = 1−α−β
αβ we have

lim
σ→0Vt (ct, nt, Vt+1) =

Ã
lim
σ→0

·
(1− β) cσt + β

µ
n
1−ε
σ

t V
(1−β)
α

t+1

¶σ¸ 1σ! α
(1−β)

=

Ã
c1−βt

µ
n
1−ε
σ

t V
(1−β)
α

t+1

¶β
! α

(1−β)
.
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Notice that n
1−ε
σ

t and V
(1−β)
α

t+1 remain fixed as σ → 0. Finally, consider another transformation,

Ut (ct, nt, Vt+1) = logVt (ct, nt, Vt+1) ,

Ut (ct, nt, Ut+1) =
α

(1− β)

·
(1− β) log ct +

1− ε

σ
β lognt +

(1− β)

α
βUt+1

¸
.

Simplifying and using the assumption that 1−ε−σσ = 1−α−β
αβ , i.e., 1−εσ = (1−α)(1−β)

αβ , gives

Ut (ct, nt, Ut+1) = α log ct +
α

(1− β)

(1− α) (1− β)

αβ
β lognt + βUt+1

= α log ct + (1− α) lognt + βUt+1.

Cost of Raising Children, Measuring (a+ b) /a

In this Appendix we explain how we arrived at the average time cost of surviving children

relative to that of non-surviving children,.(a+ b) /a = 4, the moment used in calibration. First we

compute the average cost of a surviving child, a+b. Denoting the momentary cost of raising children

by p (t), the total cost of raising a child to the age of τ , c (τ), is given by c (τ) =
R τ
0 p (t) dt. Under

the assumption that the momentary cost is given by a linear decreasing function p (t) = η − η
25 t,

where η denotes the intercept, we have c (τ) = τη − τ2

50η and the total cost of raising a surviving

child becomes a+ b = c (25) = 25η − 252

50 η = 12.5η.

Next we show how we compute the average cost of raising a non-surviving child, a. Figure 20

illustrates the beginning of the 17th century age specific mortality distribution of those children

who died before reaching the age of 25; the age groups are 0-1, 1-5, 5-10, 10-15, and 15-25. The

first point, for example, illustrates that out of all children who do not survive to the age of 25, 45%

die in the first year of their life. This pattern of age-specific mortality conditional on dying before

the age of 25 is persistent throughout the years and looks similar even today. It is important to

note this here in order to understand that updating a/b as a part of Experiment 2 and 3 in this

paper would not change the results significantly. Assuming the costs are incurred in the middle of

the above age groups gives

a = 0.45c (0.5) + 0.22c (3) + 0.12c (7.5) + 0.05c (12.5) + 0.16c (20) = 4η,

b = 12.5η − 4η = 8.5η.

It follows that b
a = 2.15 and

a+b
a = 3.15.

Assuming the costs are incurred in the beginning of the age groups, gives a higher ratio b
a = 3.45,

and hence we have a+b
a = 4.45. Since most deaths tend to occur early on, we choose a+b

a = 4, which

corresponds to all age-specific deaths occuring at a fraction 1
10 of time period lengths corresponding

to the age groups.

Estimation of TFP Time Series

Given the calibration for φ, µ, θ, we back out time series for A1t and A2t under the assumption
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of profit maximization,

A1t =

µ
rt
φ

¶φµwt

µ

¶µµ ρt
1− φ− µ

¶
,1−φ−µ

A2t =
³rt
θ

´θ µ wt

1− θ

¶1−θ
.

In the expressions above, rt is the rental rate of capital (%/100), wt is the real wage (final goods

per unit of labor), ρt is the rental price of land (final goods per acre).

We further explain that we work with historical data on rt (%/100), ω1t (nominal rural wages,

£), ρ̃t (rental rate of land, %/100), PΛt (price of land, £/acre), and GDP deflator, Pt. These

time series may be used to obtain the real wage and the rental price of land through the following

identities

wit =
ωit
Pt

, ρt =
ρ̃tPΛt
Pt

.

The GDP deflator, Pt, is obtained from Table 9 in Clark (2001b), and for later time period

(1875-1910) it is imputed under the assumption that it grew at the same rate as agricultural prices

provided in Table 1 of Clark (2002).

Table 1 in Clark (2002) contains nominal wages in the rural sector ω1t (d, pences per day).

Dividing these time series by 240 changes the units into pounds, £. Further, multiplying the

resulting time series by 300 gives annual nominal wage ω1t under the assumption that 300 days are

worked per year. We infer ω2t using the time series for the wage bill in the rural sector, ω1L1, the

total wage bill in the economy ω1L1 + ω2L2, the fraction of rural labor in total labor L1
L , and the

following identity:

ω1L1 + ω2L2
ω2L2

=
ω1L1
ω2L2

+ 1,

ω2 =
ω1

ω1L1+ω2L2
ω2L2

− 1
1

1
L1
L

− 1 .

The time series of the wage bill in the rural sector, ω1L1 is given in Table 3 of Clark (2002).

The total wage bill in the economy ω1L1+ω2L2 is taken from Table 3 in Clark (2001b) and for the

later period (1875-1910) it is imputed using the time series of ω1L1 and the assumption that the

ratio ω1L1/(ω1L1 + ω2L2) continued to fall at the same rate as between 1865 and 1875. The

fraction of rural labor in total labor L1
L is obtained from Table 1 of Clark (2001b) and for the later

period (1875-1910) from Maddison (1995) (page 253).

Having obtained ω1t and ω2t, we back out real wages according to wit =
ωit
Pt
.

We obtain ρ̃t (rental rate of land, %/100) from Table 2 in Clark (2002). Following Clark (2002)

(p. 6), we infer rt = ρ̃t + 0.04 allowing 1.5% for risk premium and 2.5% for depreciation.

Table 4 in Clark (2002b) provides us with “Total Land Rents and Local Taxes,” which represents

ρ̃tPΛtΛ, where PΛt is the price of land, £/acre. Dividing this time series by Λ =26.524 M of acres

taken from Clark (2002) (p. 10), and by Pt, we obtain ρt =
ρ̃tPΛt
Pt

.
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Mapping of the Model to the Data: Population Size, CBR, GFR

We need to estimate the average size of population in period t. The number of adults is constant

at 2N over the duration of a period. The number of children changes during each period due to

child mortality. At the beginning of the period, 2fN children are born. Using age-specific child

mortality rates for groups 0-1,1-5,5-10,10-15, and 15-25 and assuming that age-specific deaths occur

at a fraction ν = 1
10 of time period lengths

35 corresponding to the age groups, we compute the

average population size in a particular period according to

P = 2N + [
¡
ν + (1− ν)π10

¢
+ 4

¡
νπ10 + (1− ν)π50

¢
+ 5

¡
νπ50 + (1− ν)π100

¢
+5
¡
νπ50 + (1− ν)π100

¢
+ 10

¡
νπ50 + (1− ν)π250

¢
]
1

25
2fN.

The model counterpart of CBR is then given by CBR = 10002fNP . Further, GFR, the number

of births in a given period per 1000 women of childbearing age is computed according to GFR =

10002fNN = 2000f. Since, the length of a model time period is 25 years, we adjust the time series

of CBR and GFR resulting from the experiments by the factor of 1
25 when making comparison to

the annual CBR and GFR taken from the data.
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Figure 1. England: ln(real GDP/capita index)
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Figure 2. England: Industrialization
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Figure 3. England: Urbanization
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Figure 4. England: Land Share
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Figure 5. England: Demographic Transition
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Figure 6. CBR and Young-Age Mortality
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Figure 8. Experiment 1: Changing TFP
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Figure 9. Experiment 2: Changing π

1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Year

γ1 

γ2 

π 

Figure 10. Experiment 3: Joint Experiment
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Figure 11. Model v. Data: Real GDP/capita
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Figure 12. Model v. Data: CBR
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Figure 13. Model v. Data: GFR
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Figure 14. Model v. Data: Industrialization
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Figure 15. Model v. Data: Urbanization
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Figure 17. Model v. Data: Land Share
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Figure 18. Model v. Data: Labor Share
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Figure 19. Model v. Data: Population Growth
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Figure 20. Child Mortality Distribution


