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Abstract

We study optimal capital taxation under limited commitment. We prove that the

optimal tax rate on capital income should be positive in steady state and should be

increasing over time provided that full risk-sharing is not feasible.

In a limited commitment environment, a one unit increase of capital investment

by an agent increases all individuals� autarky values in the economy and generates

externality costs in the economy. This externality cost provides a rationale for positive

capital taxation even in the absence of government expenditure. Moreover, we show

that both this externality cost of capital investment and the optimal tax rate are

potentially much bigger than one might expect.

1 Introduction

In the Ramsey literature of capital taxation, Chamley (1986) and Judd (1985) argue for

zero capital taxation in the long run. Chari and Kehoe (1999) show that the capital tax rate

should be high initially and decrease to zero. Moreover, Atkeson, Chari and Kehoe (1999)
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show that the zero capital taxation result is robust to a wide range of the assumptions.

Finally, Lucas (1990) argues that for the U.S. economy there is a signi�cant welfare gain to

be realized in switching to this policy. In sum, the zero capital taxation argument suggests

that the current capital stock in the U.S. economy is too low since the capital tax rate is too

high, and that decreasing the tax rate can lead to large welfare gains.

There is a competing literature that argues that certain frictions can rationalize capital

taxation. Aiyagari (1996) shows that with incomplete markets, agents have a precautionary

savings motive which leads them to overinvest in capital. He proves that the optimal capital

income tax should be positive in the long run so that this over-investment is reduced.

Golosov, Kocherlakota and Tsyvinski (2003) obtain a nonzero optimal capital taxation

result by introducing incentive constraints, which arise from the private information of an

individual�s idiosyncratic shock. To motivate high-skilled agents to reveal their type, they

argue that the tax burden of high-skilled agents should be lighter than that of low-skilled

agents

We study another type of economy that is closely related to the recent literature1 of

endogenous incomplete markets where there is a continuum of households with idiosyncratic

shocks and there exists a complete set of contingent claims, but �nancial contracts are not

perfectly enforceable. As in Kehoe and Levine (1993) and Alvarez and Jermann (2000), we

have endogenous debt limits in the form of enforcement constraints so that households are

not able to accumulate more debt than they are willing to pay back. If a household defaults

on a �nancial contract, he can be excluded from future contingent claims markets trading

and can have his assets seized. The private sector that faces a possibility of being debt-

constrained in the future has a higher discount factor for one unit of future consumption

than does the planner, who does not face this constraint.

Chien and Lee (2005) argue that a positive capital income tax is required to achieve

optimal capital levels as a result of deviations of the market return from the time preference

rate. They set up a model inhabited by a continuum of heterogeneous agents; there is a

complete set of contingent claims, but �nancial contracts are not perfectly enforceable. As

in Aiyagari (1996), they also have a government as an unconstrained investor for physical

capital. A capital income tax is required to equate the pre-tax return on capital with the

1Alvarez and Jermann (2000; 2001), Kehoe and Levine (1993), Kehoe and Perri (2002; 2004), Kocherlakota

(1996), Krueger (1999), Lustig (2005) among others.
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time preference rate. The steady state capital income tax rate is chosen as follows:

�K = 1�
1=q � 1
1=� � 1 ;

where � is the time discount factor and q is the price of risk-free debt.

This paper considers a di¤erent role for the government. We now assume that the govern-

ment plays only a minimal role in the economy: it collects tax revenues and simply transfers

it back to the households in a lump-sum fashion. Otherwise, this paper considers the same

economic environment as Chien and Lee (2005). There is no aggregate shock in the economy;

however agents are exposed to an idiosyncratic labor shock. We assume that once an agent

defaults on a �nancial contract, the punishment is that he is permanently excluded from the

�nancial market and his only source of income is labor income. Both of these assumptions

are common in the literature.

In such an environment, we re-evaluate the zero capital taxation result in the planner�s

problem and �nd that there is in fact a role for capital income taxes. We prove that the

optimal capital tax rate should be strictly positive and should increase over time up to a

certain point. To do this, we �rst solve for the constrained e¢ cient allocations. Then we

introduce capital taxation in order to decentralize the economy: the tax on capital income

is needed to make private agents internalize an additional cost of capital investment.

This additional cost obtaining from the limited commitment environment as follows. A

higher level of capital stock (capital investment) increases labor income (marginal product

of labor in equilibrium), which in turn increases the value of autarky. Higher autarky values

increase costs to the planner: the planner must increase compensation to agents with binding

enforcement constraints since these agents might otherwise to be tempted to leave the risk

sharing pool.

This can be seen by examining the e¤ect of an additional unit of capital at time T :

increasing the capital stock at period T by one unit improves the marginal productivity

of labor, which directly improves autarky values in periods t = 1; : : : ; T ; thus all earlier

enforcement constraints (from t = 1; :::; T ) become tighter.

We call this additional compensation an "externality cost". This positive externality cost

implies non-zero capital taxation in the decentralized economy. Moreover, the externality

costs accumulate over time, and this cumulative externality cost implies that the capital tax

rate should be increasing over time.

We decentralize the constrained e¢ cient allocations with solvency constraints and a cap-

ital tax. Solvency constraints are constructed in the same way as in Alvarez and Jermann
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(2000). Our construction of the capital tax is di¤erent from that of Kehoe and Perri (2004),

since we introduce �nancial intermediaries which enable us to have a linear capital tax,

whereas Kehoe and Perri�s capital tax rate was agent-speci�c2 .

We do not address how to design a labor income tax that supports the constrained

e¢ cient allocation. This is for the following reasons. First, traditional Ramsey literature

argues that the capital tax rate should be zero even in the absence of a labor tax. Second,

introducing a labor tax does not change our result of positive capital taxation as long as

full risk-sharing is not feasible. Labor tax, however, may lower the steady state tax rate on

capital income in the quantitative analysis since a positive labor tax will relax enforcement

constraints3.

This paper is organized as follows. Section 2 describes the model economy and character-

izes the constrained e¢ cient allocations of this economy. Section 3 characterizes the steady

state constrained e¢ cient allocations. Section 4 decentralizes the allocations with capital

taxation and solvency constraints. Section 5 carries out the quantitative analysis for our

calibrated model. Section 6 concludes.

2 Model

2.1 Environment

There is a continuum of agents of measure one. They receive an initial promised utility

(�0) and initial idiosyncratic shock (s0) over an initial joint distribution �0: There is a single,

non-storable, consumption good. The agents rank consumption streams fctg according to
the following preference:

1X
t=0

X
st

�t�
�
st
�� s0� ct (�0; st)1�


1� 


where we assume the power utility with risk-aversion coe¢ cient 
.

There is no aggregate uncertainty. The only event that each household faces is a sto-

chastic idiosyncratic labor supply shocks. Each event si takes on values on a discrete grid

S � fs1; :::; si; :::; sIg. The idiosyncratic shock s follows a Markov process with a transition
probability � (s0js). We assume the law of large numbers holds so that the transition proba-
bilities can be interpreted as the fractions of agents making the transition from one state to

2In theirs, there are two countries (agents) and tax rates are di¤erent for each country (agent).
3See Chien and Lee (2005)
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another. In addition, we assume that there is a unique invariant distribution �� (s) in each

state s. Again, by the law of large numbers �� (s) is the fraction of agents drawing s in every

period. We denote st as the history of shock realizations:

st = (s0; s1; :::; st�1; st)

We assume that an aggregate labor supply is perfectly inelastic for all periods and denote

it as �L: An agent�s labor supply (hours worked) is denoted by

�L � s

We normalize the average idiosyncratic labor supply shock to be one.

1 =

Z
std�t

The output in the economy is produced using a single technology that exhibits constant

returns to scale:

Yt = F (Kt; Lt)

= K�
t L

1��
t

where F (�; �) is a production function, and Kt and Lt denote the aggregate capital input and

the aggregate labor input respectively. We use a Cobb-Douglas production function with

capital income share � 2 [0; 1] .
The feasibility constraint for the economy is that the output can either be consumed or

invested in the capital stock of the next period:X
st

Z
ct
�
W0; s

t
�
�
�
st
�� s0� d�0 +Kt+1= K

�
t
�L1��+(1� �)Kt; for 8t

where � 2 [0; 1] denotes the depreciation rate of capital.

2.2 Enforcement Technology

Following Kehoe and Levine (1993) and Kocherlakota (1996), this literature commonly

assumes that in the decentralized economy, households are excluded from �nancial markets
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forever when they default. We assume a more severe punishment upon default: households

are not only excluded from the contingent claims markets forever but also (1) its current

wealth is seized by the creditor and (2) it cannot receive any lump-sum transfer from the

government. That is, the household loses all of its assets and income �ows but its labor

income cannot be garnished by the creditor. Hence, its only source of income beginning

from the default period will be its labor income. The household who defaults at period t

will have the following simple budget constraints for 8 � � t :

c� = w�s�L

The autarky value Vaut at period t can therefore be written as:

Vaut (st; fw�g1�=t) =
1X
�=t

X
s� jst

���t�
�
s� j st

�
u
�
w� � �Ls�

�
where wt denotes the wage rate.

The households face an enforcement constraint. That is, the allocations are constrained

so that planner makes them better o¤ than autarky in every possible node in history:

1X
�=t

X
s� jst

���t�
�
s� j st

�
u (c� ) �

1X
�=t

X
s� jst

���t�
�
s� j st

�
u
�
FL
�
K� ; �L

�
� �Ls�

�
; 8t � 0; 8st (1)

For the autarky value in the planner�s problem, we substitute the marginal product of labor

FL
�
K� ; �L

�
for the wage rate w� from the equilibrium condition.

2.3 Planner�s problem

As in Kochelakota (1996) and Alvarez and Jermann (2000; 2001) ; we set up the planner�s

problem to discuss the constrained e¢ cient allocations.

Planner is assumed to be benevolent so that he maximizes the social welfare:

max
fct;Kt+1g

Z 1X
t

X
st

�t�
�
st
�� s0� a0 (�0; s0; K0)u

�
ct
�
�0; s

t; Kt

��
d�0
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subject toX
st

Z
ct
�
�0; s

t; Kt

�
�
�
st
�� s0� d�0 � K�

t
�L1�� �Kt+1 +(1� �)Kt ;8t (2a)

1X
�=t

X
s� jst

���t�
�
s� j st

�
u (c� (�0; s

� ; K� )) �
1X
�=t

X
s� jst

���t�
�
s� j st

�
u
�
FL
�
K� ; �L

�
� �Ls�

�
; (2b)

8t;8
�
�0; s

t
�

where a0 is a Pareto weight assigned to the each agent by the planner and �0 is initial

promised utility.

Planner maximizes the social welfare subject to constraints (2a) and (2b). Constraint

(2a) is a feasibility constraint which must hold for all t and constraint (2b) is an enforcement

constraint which must hold for all t and all (�0; st) and implies that each agent�s continuation

value in the risk-sharing pool (i.e. each agent�s continuation value of staying in the economy)

should be at least as large as the value of autarky for all t and nodes. Let the Lagrangian

multipliers on (2a) and (2b) be �t (Kt) and �
t� (stj s0)�t (�0; st; Kt) respectively.

In order to make the problem recursive, we can de�ne cumulative multipliers: �t (�0; �
t; Kt)

4

�t
�
�0; s

t; Kt

�
= a0 (�0; s0; K0) +

X
sr�st

�r (�0; s
r; Kr) ;

where sr is a subsequent history of st. We can rewrite cumulative multiplier recursively

�t
�
�0; s

t; Kt

�
= �t�1

�
�0; s

t�1; Kt�1
�
+ �t

�
�0; s

t; Kt

�
;

�0 (�0; s0; K0) = a0 (�0; s0; K0)

where f�t (�0; st; Kt)g is a non-decreasing stochastic process.
The Lagrangian can now be written as

L =

Z 1X
t=0

X
st

�t�
�
st
� " �t (�0; st; Kt)u (ct (�0; s

t; Kt))

� [�t (�0; st; Kt)� a0 (�0; s0; K0)]u
�
F�L;�

�
K� ; �L

�
� �Ls�

� # d�0
+

1X
t=0

�t (Kt)

"
K�
t
�L1�� + (1� �)Kt �Kt+1 �

X
st

Z
ct
�
�0; s

t; Kt

�
�
�
st
�� s0� d�0#

4Marcet and Marimon (1999)
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The next step is to derive the �rst-order necessary conditions. The �rst-order conditions

are the following:

�t = �
t�tu

0 (ct) (3)

�t = �t+1
�
FKt+1;t+1 + (1� �)

�
�
h P

st+1

R
�t+1� (st+1) �

�
�t+1 � a0

�
�@u(F�L;t+1(Kt+1;�L)��Lst+1)

@Kt+1
d�0

i
| {z }

Externality Cost

(4)

Equation (3) is the �rst-order condition with respect to an individual agent�s consumption.

�t is an aggregate variable since it is the shadow price of the feasibility condition. �t is a

summary statistic of an agent�s history. It measures how severely and how many times the

agent has been constrained in his history. Therefore, equation (3) implies that the agent�s

consumption is history-dependent and that the agent�s consumption should be higher if he

has a higher �t. We will characterize the agent�s consumption allocation in the next section.

Equation (4) is the �rst-order condition with respect to aggregate capital investment

Kt+1. The �rst line of the equation is a standard Euler equation. This Euler equation,

however, contains the second term which we call the externality cost. This is the additional

cost that the planner must pay in order to keep the agent from defaulting. This term contains

(1) all the multipliers on enforcement constraints as summarized by the shadow prices (costs)

of the enforcement constraints �t�a0
�
= �1 + � � �+ �t+1

�
, and (2) an increment in per-period

autarky value when the capital stock is increased by one unit. To see how one unit of capital

a¤ects the externality cost term, consider the e¤ect of such a change on capital stock at

period T . This change will increase marginal product of labor, thereby increasing autarky

values (that are solely dependent upon labor income) and making autarky more tempting.

This change will a¤ect all autarky values �and hence all enforcement constraints �prior to

period T , and as a result increase the cumulative multiplier. We will also characterize the

capital allocation in the next section.

2.4 Characterization of Constrained E¢ cient Allocations

In this section, we characterize the constrained e¢ cient allocations. We will �rst charac-

terize an agent�s consumption allocation and the shadow price of one unit of consumption

next period. Second, we will discuss the capital allocation and externality cost that the

planner encounters when he makes a capital investment decision.
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2.4.1 Consumption Allocations5

Enforcement constraints introduce a stochastic element into the consumption share of

each household. The household�s initial promised utility, v0 determines its initial Pareto

weight a0 and this weight governs the household�s consumption share in all future states of

the world. When there are no enforcement constraints, the household�s consumption share

is constant over time:

ct
�
�0; s

t; Kt

�
=

a
1=

0

E
h
a
1=

0

iC (Kt) ;

where C (Kt) =
X
st

Z
ct
�
�0; s

t; Kt

�
�
�
st
�� s0� d�0;

E
h
a
1=

0

i
=

Z
a
1=

0 d�0

However, when enforcement constraints exist, the Pareto weights become stochastic and

so does the household�s consumption share. The household�s consumption is characterized

by the same linear risk sharing rule:

ct
�
�0; s

t; Kt

�
=

�
1=

t (w0; s

t; Kt)

E
h
�
1=

t (�0; st; Kt)

iC (Kt) ; (5)

where C (Kt) =
X
st

Z
ct
�
�0; s

t; Kt

�
�
�
st
�� s0� d�0

The household�s consumption share is stochastic. Recall that �t (w0; s
t; Kt) is the sum of

all enforcement constraints in history st plus the initial Pareto weight, a0, and that these

cumulative multipliers stay constant until the household switches to a state with a binding

enforcement constraint. When this occurs, the multipliers increase so that the enforcement

constraint is satis�ed with equality.

Let ht (Kt) denote the 1=
th cross sectional moment of the cumulative multiplier:

ht (Kt) = E
h
�
1=

t

�
�0; s

t; Kt

�i
This process ht (Kt) is also a non-decreasing process and measures how many agents become

constrained and how severely they are constrained.

5See Lustig (2005)
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This risk-sharing rule implies that when the household does not switch to a state with

an enforcement constraint, its consumption share drifts downwards at the rate of the growth

rate of ht (Kt). The derivation of the risk sharing rule is found in Lustig (2005):

Next, we discuss the period t shadow price of one unit of consumption at t+ 1.

qt (Kt) =
�t+1 (Kt+1)

�t (Kt)

= �

�
C (Kt+1)

C (Kt)

��
 �
ht+1 (Kt+1)

ht (Kt)

�

(6)

=
1

Rt (Kt)

This shadow price is the same as the one in Lustig (2005) and this contains the multi-

plicative adjustment cost of
h
ht+1(Kt+1)
ht(Kt)

i

. It measures the shadow cost of the enforcement

constraints. As the growth rate of h (Kt) in the economy increases, the cost of the enforce-

ment constraints increases and the more the planner needs to compensate at t + 1. Hence

the price of one unit of consumption increases.

2.4.2 Capital Allocations

In this part, let us characterize the capital allocation. We can rewrite equation (4) together

with equations (3); (5) and (6) as follows:

1 = qt (Kt) [FK;t+1 + (1� �)]� �t+1

where

�t+1 =
1

�tC�
t h
t

X
st+1

Z
�t+1

�
�t+1 � a0

� du �F�L;t+1 �L�t+1�
dKt+1

�
�
st+1

�
d�0

The above Euler equation would be a standard one if it did not contain the positive term

�t+1 on the right hand side. As a result of this extra term, the standard marginal return of

investing one unit of capital exceeds the marginal cost of giving up one unit of consumption

in constrained e¢ cient allocations. Hence, there is an additional cost to the planner such

that in equilibrium, the marginal bene�t is equal to the marginal cost. We call the term �t+1
the "externality cost of capital investment". We argue that this externality cost of capital

investment induces the need for a tax on capital income in order to make private agents

internalize the externality in the decentralized economy.
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Externality Cost of Capital Investment �t+1: we now focus on the externality cost
which is the last term on the right hand side of the Euler equation:

�t+1 � 1

�tC�
t h
t

X
st+1

Z
�t+1

�
�t+1 � a0

� du �F�L;t+1 �L�t+1�
dKt+1

�
�
st+1

�
d�0

=
1

�tC�
t h
t

X
st+1

Z
�t+1

�
�1 + � � �+ �t + �t+1

� du �F�L;t+1 �L�t+1�
dKt+1

�
�
st+1

�
d�0 (7)

This externality cost of capital investment consists of three parts. First, there is the

incremental per-period autarky value
du(F�L;t+1 �L�t+1)

dKt+1
of a one unit increase of the capital

stock. Second, the �rst part is multiplied by the all the earlier multipliers as a shadow price

(cost) of the enforcement constraints
�
�1 + �2 + � � �+ �t + �t+1

�
. Third, this externality cost

of capital investment is normalized by the period t price of consumption �tC�
t h
t . Therefore,

this is the cost at period t that the planner should pay if he wants to increase capital stock

by one unit at period t+1. In order for the planner to keep agents from defaulting, he needs

to compensate the agents more when he increases the capital stock.

Proposition 2.1 Externality cost of capital investment �t+1 is positive unless the full risk-
sharing is feasible from initial period.

Proof. See the Appendix.

Proposition 2.2 Externality cost of capital investment �t+1 is zero if the value of autarky
does not depend on the capital investment.

Proof. See the Appendix.

3 Characterization of Steady State Allocation

We open this section with a de�nition of the steady state. We de�ne the steady state

to be a state where all aggregate variables and the distribution of agents stay constant. We

assume that the economy converges asymptotically to the steady state. It is important to

note that even though the aggregate state will be stationary in steady state, each agent�s

consumption will still �uctuate over time.

In this section, we also explain how we compute the steady state allocations. To sum-

marize, consumption allocations and shadow prices are computed for a given capital level,

K; we then pin down the optimal steady state capital stock, given steady state individual

consumptions, c
�
�0; s

t; K
�
, shadow price R, and the invariant distribution, �.
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3.1 Steady State Consumption Allocation

In this subsection, we discuss the individual household�s steady state consumption allo-

cations. Throughout this subsection, we take the steady state capital stock K as given and

then compute the steady state consumptions, a shadow price and an invariant distribution.

In the next subsection, we will discuss how to decide the steady state capital stock �K�.

For a given capital stock �K, the aggregate steady state consumption C
�
�K
�
is:

C
�
�K
�
= F

�
�K; �L

�
� � �K

and we know this aggregate consumption should be allocated across the agents.

C
�
�K
�
=
X
st

Z
ct
�
�0; s

t; �K
�
�
�
st
�� s0� d�0

We use consumption weights as state variables instead of cumulative multipliers because

we want stationary state variables. The consumption share of a household
�
�0; s

t; �K
�
is

de�ned as:

!t
�
�0; s

t; �K
�
�
�
1=

t

�
�0; s

t; �K
�

ht
�
�K
�

Notice that the individual�s consumption share is history dependent. When the agent (�0; st)

does not switch to a state with a binding constraint, its consumption share next period drifts

downwards to:

!t+1
�
�0; s

t; �K
�
= !t

�
�0; s

t; �K
� ht

�
�K
�

ht+1
�
�K
�

= !t
�
�0; s

t; �K
� 1

gt
�
�K
�

When the agent (�0; �t) does switch to a state with a binding constraint, its consumption

share in next period is

!t+1
�
�0; s

t; �K
�
= !t

�
�0; s

t; �K
� ht

�
�K
�

ht+1
�
�K
� �1=
t+1 ��0; st; �K�
�
1=

t

�
�0; st; �K

�
Proposition 3.1 (Lustig (2004)) When the agent (�0; st) switches to a state with a binding
constraint, its consumption share equals to some cuto¤ level that does not depend on the

history st; if the labor supply shock is �rst-order Markov.

Proof. See the Appendix.
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3.2 Cuto¤ rule

For a given weight growth ĝ
�
�K
�
, a cuto¤ value, !

�
s; �K

�
is determined such that the

enforcement constraint binds exactly. De�ne the continuation value, V
�
!; s; �K

�
:

V
�
!; s; �K

�
=

�
!

ĝ
C
�
�K
��1�
 1

1� 
 + �
X
s0

� (s0j s)V
�
!0; s0; �K

�
and then we can choose the cuto¤s !

�
s; �K

�
such that

V
�
!; s; �K

�
= Vaut

�
s; �K

�
;

where Vaut
�
s; �K

�
=
P1

�=t

P
s� jst �

��t � (s� j st) u
�
Fl
�
�K; �L

�
� �Ls�

�
.

The cuto¤s are the minimum compensation (in terms of consumption share) that the

planner needs to give to the agent who switches to a state with a binding constraint in order

to prevent the agent from defaulting.

For a given weight growth ĝ, the cuto¤ rule for the consumption weight is given by:

!0 =

(
!t�1 if !t�1 > ! (s)

! (�) if !t�1 � ! (s)

and the actual individual consumption is given by:

ct =
!0

ĝ
� �C

Therefore, cuto¤ rule implies the following. As long as an agent�s consumption share is

bigger than the cuto¤ value, then the agent�s actual consumption drifts down at rate ĝ. It

keeps shrinking until the agent has a good enough shock realization, whose corresponding

cuto¤ is greater than the previous period�s consumption share. If this happens, then the

agent�s consumption share equals to the cuto¤ divided by the growth rate of h
�
�K
�
.

Lemma 3.1 (Lustig (2004), Lemma 14) If the transition matrix satis�es monotonicity, then
the cuto¤ rules can be ranked:

!
�
sn; �K

�
� !

�
sn�1; �K

�
� !

�
sn�2; �K

�
� ::: � !

�
s1; �K

�
Proof. See the Appendix.
A wealthy household that starts o¤ with an initial weight above the highest cuto¤ will

end up hitting that bound in �nite time, unless there is perfect risk-sharing. After some �nite

� , all of this household�s consumption shares !
�
�0; s

t; �K
�
�uctuate between the highest and

the lowest cuto¤ weights.
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3.3 Invariant Probability Measure

Given the monotonicity assumptions we must impose on �, we know that the consumption

weight ! stays within a closed domain W because we know that ! 2
�
!
�
s1; �K

�
; !
�
sn; �K

��
since g is bounded. If some agent starts with an initial weight a0 � !

�
sn; �K

�
his consumption

weight drops below !
�
sn; �K

�
after a �nite number of steps unless there is perfect risk sharing.

Let W =
�
!
�
s1; �K

�
; !
�
sn; �K

��
and B (W ), P (S) be the set of Borel sets of W and the

power set of S respectively. The cuto¤ rule together with the transition function � for the

labor shock process jointly de�nes a Markov transition function on shock realizations and

consumption weight: Q: (W � S)� (B (W )� P (S))! [0; 1] where

Q (!; �;W; S) =
X
s02S

�
� (s0) if !0 2 W
0 else

Given this transition function, we de�ne an operator T � on the space of probability measures

� ((W � S) ; (B (W )� P (S))) as

(T ��) (W;S) =

Z
Q (!; s;W; S) d�

=
X
s02S

� (s0)

Z
!2W j!02W

d�

for all (W;S) 2 B (W ) � P (S). Note that T � maps � into itself.6 A �xed point of this

operator is an invariant probability measure. Let �� denote the invariant measure over the

space ((W � S) ; (B (W )� P (S))) that satis�es invariance:

T ��� (W;S) = ��

In this section, we address the question of whether such a probability measure exists and is

unique. Intuitively, this invariant measure describes the long-run cross-sectional distribution

of the agent�s consumption shares implied by the planner�s social welfare maximizing policies.

Proposition 3.2 For a steady state capital stock �K, there exists a unique invariant proba-
bility measure, ��.

Proof. See the Appendix
6See Stockey et. al. (1989), Theorem 8:2
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3.4 Determination of the shadow price

Proposition 3.3 For a given steady state capital stock �K, if there is a unique invariant

distribution �� with no aggregate uncertainty, then there is a stationary equilibrium in which

shadow interest rate �R� is unique and constant.

Proof. See the Appendix.

3.5 Steady State Capital Allocation

The optimal capital �K� is pinned down such that the steady state euler equation (8) is

satis�ed.

1 =
1
�R

�
FK( �K

�) + (1� �)� �R�0( �K�)
�

(8)

where

�0 �
X
s0

Z
�g


h
!0
 � a0

h0


i
�C

du
�
F�L �Ls

0�
dK

� (s0) d�

!0
�
� �01=


h0

�
is an individual agent�s consumption share tomorrow. This records how the

degree to which one agent has been constrained by the enforcement constraints over his

history since it contains all previous multipliers in it including the initial Pareto weight. We

subtract the initial consumption share since we do not have a enforcement constraint at time

0. The initial consumption share part a0
h0
 will approach zero as time approaches in�nity since

h is a non-decreasing sequence. Then the aggregate steady state consumption to the power

of 
 multiplied by an agent�s consumption share tomorrow to the power of 
 is the inverse

of the agent�s marginal utility of consumption at t + 1. Finally, we convert the marginal

utility of labor income with respect to capital investment,
du(F�L �Ls0)

dK
; into time t+ 1 units of

consumption by multiplying by !0
 �C
:

4 Decentralization with Solvency constraints and Cap-

ital Income Taxes

Consider now decentralizing the constrained e¢ cient allocations as a competitive equi-

librium with capital taxes and solvency constraints. With these two instruments, the gov-

ernment can mimic the distorted �rst order conditions that de�ne the constrained e¢ cient
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allocations. The role of solvency constraints is the same here as in Alvarez and Jermann

(2000; 2001). The role of capital taxes is to make the households internalize the externality

cost that capital investment creates.

There are two assets available. We have a complete set of contingent claims bt+1 (st+1;W0; �
t)

at price qt. This is a security that pays one unit of consumption good at t+1 if st+1 is realized

at t+ 1. The other asset is capital asset Kt+1, which yields the return of rt+1.

Instead of using the initial promised utility �0 to label the agents, we will use the initial

wealth W0. So each household will be indexed by a pair of (W0; s0). We will show how to

construct the initial wealth below.

Firms
Firms rent labor from households and physical capital from the intermediaries to maxi-

mize period pro�ts. Firms solve a static pro�t-maximizing problem,

max
Kt;Lt

F (Kt; Lt)� wtLt � rtKt

which implies the following two �rst order conditions.

rt = FK (Kt; Lt)

wt = FL (Kt; Lt) ;

where Kt is market supply of capital and Lt is market supply of labor. rt and wt denote the

wage rate and the rental rate of capital, respectively.

Households
A household of type (W0; s0) chooses a sequence of consumption fct (W0; s

t)g1t=0 and a
sequence of contingent bonds fbt+1 (W0; s

t)g1t=0 to maximize his expected lifetime utility:

V (W0; s0; K0) � max
fctg1t=0;fbt+1g

1
t=0

1X
t=0

X
st>s0

�t�
�
st
�� s0� ct (W0; s

t)
1�


1� 


subject to the usual budget constraint:

ct +
X
st+1

qtbt+1�
�
st+1j st

�
= Wt

Wt+1 = wt+1st+1L+ bt+1 + Tt+1

and a solvency constraint, one for each state:

bt+1
�
st+1;W0; s

t
�
� Bt+1

�
st+1;W0; s

t
�
;

16



given a sequence of prices and policies fwt; rt; qt; � k;t; Ttg1t=0
Financial Intermediaries
We introduce �nancial intermediary sector as in Carceles-Poveda and Abraham (2004).

The �nancial intermediaries rent capitalKt+1 to the �rms, earning an after-tax rental revenue

of (1 + �rt+1)Kt+1 in the following period after paying the tax, where �rt+1 = (rt+1 � �) (1� �K;t+1)
denotes after-tax return on capital investment. To �nance the capital investment, the in-

termediaries sell the future consumption goods in the spot market for one period ahead

contingent claims. Given this, the zero pro�t condition implied by the presence of perfect

competition in the �nancial intermediary sector requires that:

1 = qt [1 + �rt+1]

Further, in order for the state contingent debt issued by the intermediaries to match the

demand from the households, it must be the case that:X
st

Z
bt
�
W0; s

t
�
�
�
st
�� s0� d�0 = [1 + �rt]Kt

Government
The government collects tax revenue from �nancial intermediaries and transfers it to

households in a lump-sum fashion such that her budget constraint is the following:

Tt = �K;t (rt � �)Kt

Notice that we don�t have any government spending in this model.

4.1 Competitive Equilibrium

De�nition 4.1 A competitive equilibrium with capital income tax f�K tg and sol-
vency constraints

�
Bt+1

	
for initial distribution �0 over (W0; s0) and capital stock K0

consists of a set of allocations,fct (W0; s
t)g, fbt (W0; s

t)g, and fKtg, a set of prices, frtg,fwtg
and fqtg and policies f�K;t; Ttg such that (1) Given the set of prices and policies, the allo-
cations solve the household�s problem,(2) Given the set of prices, the allocations solve the

�rm�s problem, (3) the government budget constraint holds, (4) the resource constraints hold

and (5) the markets clear;
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1. X
s0

Z
bt
�
W0; s

t
�
�
�
st
�� s0� d�0 = [1 + �rt]Kt; for 8t

2. X
st

Z
ct
�
W0; s

t
�
�
�
st
�� s0� d�0= K�

t
�L1���Kt+1+(1� �)Kt; for 8t

3.

Lt = L; for 8t

De�nition 4.2 Borrowing constraints are not too tight if they satisfy

V
�
Bt; s

t; Kt

�
= Vaut (st; Kt) 8st

The link between enforcement constraints in the planner�s problem and solvency con-

straints in the household�s problem is the following. When an enforcement constraint in the

planner�s problem binds, the corresponding solvency constraint in that state will bind. This

condition guarantees that the borrowing constraints prevent default by not letting the agent

accumulate more debt than they are willing to pay back.

De�nition 4.3 The price of the contingent claims are not too high if the in�nite sums of
the form are �nite for all equilibrium object xt+j

1X
j=1

qt;t+jxt+j <1

This condition guarantees that in a decentralized equilibrium, the present value of any

allocation is �nite. We use it to show that the value of the constructed assets is �nite and

that the household�s transversality condition holds.

Proposition 4.1 Given allocations fct (W0; s
t)g and fKtg that satis�es

1. the feasibility condition at any period,

2. the enforcement constraints at any period and any state,

3. that the implied price of contingent claims are not too high and
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4. that the marginal utility of consumption stays �nite:

lim
t!1

E0u (ct) <1

then there exist processes fbt (W0; s
t) ; Bt; rt; wt; qt; Ttg such that sequences fct (W0; s

t)g;
fbt+1 (W0; s

t)g and fKtg compose a competitive equilibrium given the prices frt; wt; qtg,
the solvency constraints

�
Bt+1

	
and the taxes on capital income f�K tg : In addition,

the borrowing constraints are not too tight.

Proof. See the Appendix.

4.2 Steady State Capital Tax

This subsection explains how we compute the steady state capital tax rate. Equation (9)

is the planner�s Euler equation, upon which the planner bases his capital investment decision

and Equation (10) is the �nancial intermediaries�no arbitrage condition in the competitive

equilibrium. We choose the steady state tax rate such that these two equations are consistent

with each other.

1 = �q

�
FK( �K

�) + (1� �)� �(
�K�)

�q

�
(9)

� �q [(1� �� �K) (FK � �) + 1] (10)

In order for the second welfare theorem to hold, two Euler equations should be equivalent

and consistent and the capital tax rate can be backed out of the following equation:

�� �K =
�( �K�)

�q (FK � �)
(11)

Proposition 4.2 If �( �K�) = 0, then �� �K = 0:

Proof. See the Appendix.

5 Quantitative Analysis

In order to generate the simulated data, we �rst parameterize the idiosyncratic labor

shock process and preferences. Our calibration for the idiosyncratic shock process is mainly
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based on Krueger (1999). He uses estimation for the idiosyncratic endowment shock process

based on Storesletten, Telmer and Yaron (2004). The latter authors use labor market earn-

ings to calibrate the process for the labor e¢ ciency units from the PSID (1969�1992). Their
idiosyncratic process includes the e¤ect of government programs such as unemployment in-

surance that are devised to share risk. Since we are interested in income risk that must be

insured by private arrangements, net of those risks already insured by the government, their

idiosyncratic process is actually more appropriate for our study than for Krueger (1999).

Let zit be the logarithm of individual income. They assume that idiosyncratic income

has a persistent and transitory component and estimate

zit = �i + uit + "it; �it � Niid
�
0; �2�

�
and "it � Niid

�
0; �2"

�
uit = �uit�1 + �it; �it � Niid

�
0; �2�

�
They �nd estimates of

�
�; �2�; �

2
"; �

2
�

�
= (0:98; 0:326; 0:005; 0:019) : Note that this idiosyn-

cratic process displays a high degree of persistence. Given their estimation, Krueger (1999)

ignores the individual-speci�c �xed e¤ects �i and approximates the continuous AR(1) process

by a 5 state Markov chain, using the procedure described by Tauchen and Hussey (1992).

The individual labor shocks are then normalized so that the aggregate labor shock equals

1. We use the baseline parameterization for the idiosyncratic process that Krueger (1999)

constructs as in the following table. A set of parameters is also summarized in the following

table:

Parameters Value

� Discount Factor 0:75


 Risk Aversion 2:00

� Depreciation Rate 0:10

� Capital Income Share 0:20

L Aggregate Labor Supply 0:3271
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Parameter Value

� Persistence 0:98

�2" Std. Dev. of Transitory Shocks 0:005

�2� Std. Dev of Permanent Shocks 0:019

S Markov Chain States
n
0:63 0:79 0:96 1:17 1:47

o
� Stationary Distribution

h
0:183 0:212 0:210 0:212 0:183

i

� Transition Probability

26666664
0:71 0:26 0:02 0:01 0:00

0:23 0:51 0:24 0:02 0:00

0:02 0:24 0:48 0:24 0:02

0:00 0:02 0:24 0:51 0:23

0:00 0:01 0:02 0:26 0:71

37777775
Our annual discount factor � is set constant at 0:757 and we explores the quantitative

e¤ects of the discount rate � below. The perfectly inelastic aggregate labor supply is set at

0:3271 from Krusell and Smith (1997).

We set the capital income share � at 0:2 which implies we set the labor income share at

0:8. Lustig (2004) argues that the average labor income share (1� �) of national income in
the US between 1946 and 1999 is 70 percent (source, NIPA) and the additional 11 percent

is proprietor�s income derived from farms and partnerships, mainly doctors and lawyers and

it should be treated as labor income for the purpose of this exercise. This brings the total

labor income share to 81 percent.

5.1 Results

This section brie�y describes the numerical results with the parameter values from the

previous section. We compute the steady state constrained e¢ cient allocations, prices and

tax rate:
7Alvarez and Jermann (2001) choose � equal to :65 in their two-agent model with permanent exclusion

from trading.
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Variable Values
�K� 0:020068

KFR 0:12443
�K�

KFR
0:16127

�C� 0:18517

�� �K 0:88098
�R 1:3183

�g 1:0006

The steady state capital stock is only about 16% of the capital stock that would be

obtained if full risk-sharing were feasible and the steady state tax rate on capital income is

approximately 88:1%. In the Appendix, we show that we can also compute the lower bound

of the tax rate for a set of parameters. We obtain a lower bound of approximately 60%

(�K = 0:60) :

Invariant Distribution of Consumption Shares in the Steady State

5.2 Comparative Statics

This section provides an overview of how the constrained e¢ cient allocations, prices and

tax rates depends on the time discount factor � and the capital income share �.
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Figure 1: �-Comparative Statics

5.2.1 �-Comparative Statics

For the results we reported in the prior section, we have kept the annual discount factor

� constant at 0:75. Discount values higher than 0:75 allow for the possibility of full risk

sharing because our assumptions about autarky values are more severe than usual. Figure

2 explores the di¤erent values of the time discount factor. Lowering the discount rate puts

more weight on today�s income realization and makes autarky more tempting so that the

borrowing constraints become more binding as a result. The more agents are constrained

as the discount rate lowers, the more they are compensated. This will increase the cuto¤

values, the externality cost as well as the capital tax rate.

5.2.2 �-Comparative Statics

As the labor income share 1 � � increases, the autarky value becomes more attractive
since the only source of income in autarky is labor income and agents are more constrained

as a result. Therefore cuto¤ values should increase and the tax rate also should increase.
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Figure 2: �-Comparative Statics

6 Concluding Remark

We study optimal capital taxation under limited commitment. We prove that the optimal

tax rate on capital income should be positive in steady state and should be increasing over

time provided that full risk-sharing is not feasible.

A one unit increase of capital investment by an agent increases all individuals�autarky

values in the economy and generates externality costs in the economy. This externality

cost provides a rationale for positive capital taxation even in the absence of government

expenditure. Moreover, we show that both this externality cost of capital investment and

the optimal tax rate are potentially much bigger than one might expect.

To the best of our knowledge, this is the �rst paper to study optimal capital taxation in

a limited commitment environment. Furthermore, this paper relates a model of risk-sharing

to the �scal policy literature and suggests that risk-sharing has important consequences in

designing the optimal �scal policy and should not be overlooked.
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Appendix 1: Proofs

Proof of Proposition 2.1
Proof is straight-foward from equation (7): Full risk-sharing means that no agent is con-

strained and this implies that �t (�0; s
t) = 0; 8t and 8 (�0; st) by Khun-Tucker.

Proof of Proposition 2.2

Proof is straight-foward from equation (7):If
du(F�L;t+1 �L�t+1)

dKt+1
= 0, then � should be zero.

Proof of Proposition 3.1
When the agent is constrained, the participation constraint is satis�ed with equality;

1X
�=t

X
s� jst

���t�
�
s� j st

�
u
�
c�
�
�0; s

� ; �K
��
=

1X
�=t

X
s� jst

���t�
�
s� j st

�
u
�
Fl
�
�K; �L

�
� �Ls�

�
;

Now, if the labor supply shock s is �rst-order Markov, then the value of autarky in the right

hand side of the enforcement constraint does depends on the current realization of the shock

st. This implies that fc�
�
�0; s

� ; �K
�
g1�=t cannot depend on st, but on only st.

Proof of Lemma 3.1
First, we de�ne monotonicity. A transition matrix� is monotone if for any non-decreasing

function f onH, �f is also non-decreasing. If this condition is satis�ed, thenWe can rank the

all of the cuto¤ weights. Assume that the transition matrix � (s0j s) satis�es this condition.
Then our claim is that value of the outside option can be ranked such that:

Vaut
�
sn; �K

�
� Vaut

�
sn�1; �K

�
� ::: � Vaut

�
s1; �K

�
where Vaut

�
s; �K

�
=
P1

�=t

P
s� jst �

��t � (s� j s) u
�
Fl
�
�K; �L

�
� �Ls�

�
. Now we need to show

that this implies a similar ranking for the cuto¤ weights, by de�nition, the following holds:

V
�
!; s; �K

�
=

�
!

ĝ
C
�
�K
��1�
 1

1� 
 + �
X
s0

� (s0j s)V
�
!0; s0; �K

�
Since V

�
!; s; �K

�
is monotonically increasing in !, we can conclude the following ranking of

the cuto¤ weights:

!
�
sn; �K

�
� !

�
sn�1; �K

�
� !

�
sn�2; �K

�
� ::: � !

�
s1; �K

�
Proof of Proposition 3.2
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This proof follows Lustig (2004) 8. We de�ne an operator on the space of probability

measures � ((W � S) ; (B (W )� P (S))) as:

T �� (W;S) =

Z
Q ((!; s) ; (W;S)) d�

A �xed point of this operator is de�ned to be an invariant probability measure. To show

there exists a unique �xed point of this operator, We check condition M in (Stokey,Lucas and

Prescott (1989) p.348). If this condition is satis�ed, we can use Theorem 11:12 in Stokey,

Lucas, and Prescott (1989) p.350. To be perfectly general, let W = [!
�
s1; �K

�
; !max]. There

has to be an � > 0 and an N � 1 such that for all sets W;S

QN ((!; s) ; (W;S)) � � and QN ((!; s) ; (W;S)c) � �

It is su¢ cient to show that there exists an � > 0 and an N � 1 such that for all (!; s) 2
(W;S): QN ((!; s) ; (!max; sn)) � �, but we know that Q ((!; s) ; (!max; sn)) � � (snj s). If
!max � !

�
sn; �K

�
then de�ne

N = minfn � 0 : !max
gn

� !
�
sn; �K

�
g

, where N is �nite unless there is perfect risk sharing. Then we know theQN ((!; �) ; (!max; �n)) �
� where

� = � (snj s) � (� (snj s))N�1 :

If !max � !
�
sn; �K

�
, the proof is immediate by setting � = � (snj s). This establishes the

existence of a unique, cross-sectional distribution.

Proof of Proposition 3.3
Again we follow Lustig (2004)9. If there is a unique ��, then It is clear that there is a

unique growth rate:

g� =

Z X
s0

� (s0j s)!0
�
!; s0; �K

�
d��

Tg (��) =
X
s0

Z
!(s0)

� (s0j s)!d�� +
X
s0

! (s0)

Z !(s0)

� (s0j s)!d��

8See also Atkeson and Lucas (1995).

See also Krueger (1999): Lemma 14, Corollary 14 and Theorem 15.
9See also Atkeson and Lucas (1995).

See also Krueger (1999): Lemma 16; 17; 19 and 21, and Theorem 18 and 21
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and then this implies that there exists a unique constant shadow price R� that clear the

markets.

Proof of Proposition 4.1
By construction, First construct the equilibrium prices and transfer as follows

rt = FK (Kt; Lt)

wt = FL (Kt; Lt)

qt;t+1 = max

�
�
uc;t+1
uc;t

�
= �

�
Ct+1
Ct

��
 �
ht+1
ht

�

Qt;t+j =

t+j�1Y
i=t

qi;i+1

Tt = �K;t (rt � �)Kt

Next, construct the initial wealth and the asset holdings as follows:

W0 = E0

" 1X
t=0

Q0;t (ct � wtstL� Tt)
#

and

bt = Et

" 1X
j=0

Qt;t+j (ct+j � wt+jst+jL� Tt+j)
#

Under condition 4, these sums are well-de�ned. Finally, the construction of the solvency

constraints (borrowing limits) is identical to that in Alvarez and Jermann (2000; 2001). If

qt;t+1 � uc;t > �uc;t+1

then set Bt+1
�
�t+1;W0; �

t
�
= bt+1: otherwise set Bt+1 = �Et [Qt;t+1 (wt�tL+ Tt)]. For

t > 0; the tax on capital income is backed out from the �nancial intermediaries�no arbitrage

condition

1 = qt;t+1 [1 + (1� �K;t+1) (rt+1 � �)]

so that Rt+1 = 1 + (1� �K;t+1) (rt+1 � �) is set equal to 1
qt;t+1

= 1
�

�
Ct
Ct+1

��
 �
ht
ht+1

�

; for

t = 0; we set R0 = 1: To check the constructed assets are budget feasible and that the

transversality conditions for the household are satis�ed. we use the budget constraint to

30



construct asset holdings at each time and state so allocations are budget feasible. budget

constraints together with government budget constraint and market clearing condition guar-

antee that the allocations are also resource feasible. It is easy to show that the transversality

condition for the bond holds,

lim
t!1

E0�
tuc;t [bt �Bt] = 0

is satis�ed assuming that

lim
t!1

E0�
tuc;t = 0

which is satis�ed by condition 4.

Proof of Proposition 4.2
Proof is straight-foward from equation (11):
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7 Appendix 2: Lower bound of capital tax rate

When � = 0, we can get a nice form of �K

�K = (1� �)1�

X
s0

Z
s01�
!0
�(s0j s)d�

Let !i be the cuto¤ level of consumption share when agent receives shock si. And !
0
ij be

the equilibrium consumption share of agent j if shock i realized next period. We know that

!0ij � !i for all i; j

!0
ij � !
i for all i; j (Suppose 
 > 1)

s01�
!0
ij � s01�
!
i for all i; jX
s0

Z
s01�
!0
�(s0j s)d� �

X
s0

Z
s01�
!0
�(s0j s)d�

� Cuto¤ computation. Since right now � = 0; Y = C:

1. Given the Invariant distribution of s0; we can compute the

Vaut(s) = u(MPLLs) +
X
s0

�(s0j s)Vaut(s0)

= u((1� �)sY ) +
X
s0

�(s0j s)Vaut(s0)

Vaut = (I � ��)�1u((1� �)sY )

2. The cuto¤s is solved by the following equation

Vaut(s) = u(!Y ) + �
X
s0

�(s0j s)Vaut(s0) + �
X
s0

�(s0j s)V (!
g
; s0)

u(!Y ) = Vaut(s)� �
X
s0

�(s0j s)Vaut(s0)� �
X
s0

�(s0j s)V (!
g
; s0)

� Vaut(s)� �
X
s0

�(s0j s)Vaut(s0)� �
X
s0

�(s0j s)Vaut(s)

� u(!LY )

3. Then we can compute the !L
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Therefore,

�K = (1� �)1�

X
s0

Z
s01�
!0
�(s0j s)d�

� (1� �)1�

X
s0

Z
s01�
!0
�(s0j s)d�

� (1� �)
X
s0

Z
s01�
!
L�(s

0j s)d�

� In our example (given the set of parameters), �K � 63:37%
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