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1 Introduction

This paper investigates rational multi-agent search for an optimal profile of actions through trial

and error. The focus is on a benchmark case that already poses considerable difficulties: agents

are assumed to have common interest and not to communicate.

The most closely related work in the literature is on repeated coordination games, where

payoffs are known and participants have repeated opportunities to coordinate on an optimal

combination of actions (e.g. an industry standard), and on rendezvous search problems, where

the participants’ goal is to find each other in the shortest time possible on some geographical

domain. The innovation in the present paper is to consider strategic situations in which (1) the

payoffs from each action are not known, but have to be discovered, (2) agents search not for

each other but for an optimal joint choice of actions, and (3) agents have private information

about which of their actions are likely to contribute to a success.

Situations like this abound in practice. Consider for example the coordination problem

between the marketing department and the production department of a firm when there is un-

certainty about how consumers respond to a given mix of product characteristics and marketing

strategy, or the coordination problem between separate government agencies facing a common

issue (poverty, environmental degradation, a terrorist threat) when there is uncertainty about

the optimal policy mix.

Frequently in these settings search strategies will be imperfectly coordinated and information

will be imperfectly shared. A prominent recent example is the lack of information sharing

between law enforcement agencies that has at least partly been blamed for the failure to prevent

the September 11 attacks. While improved communication is often helpful, there may be cost

and institutional reasons that prevent the establishment of the appropriate infrastructure for

large-scale information exchange. One obvious example is that of an auditing firm serving

multiple clients; the auditing firm may need to erect “Chinese walls” to safeguard the proprietary

information of its clients. For these reasons, this paper investigates the benchmark case where

agents can neither share their private information nor explicitly coordinate their joint search.

The broader goal of this research is to better understand such issues as: the simultaneous

search for optimal policies by multiple government agencies; the problem of how to best coun-

teract firms who tacitly search for illegal collusive arrangements in markets; the problem of how

to disrupt simultaneous search efforts by members of clandestine organizations; and, the effect

of barriers to information exchange, so-called “Chinese Walls,” on simultaneous search efforts

by separate departments in an organization (as practiced e.g. in financial, legal and auditing

firms).
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2 Examples and Applications

In this section, we give additional examples and describe a variety of applications that help

illustrate the class of problems we are interested in.

A stylized example of the situations we have in mind is that of a group of individuals wanting

to open a safe, when each has access to a separate dial, there is one unknown combination of

settings of the dials that will open the safe, the individuals are visually separated, and they

have to avoid communication in order not to be discovered. Communication would allow them

to coordinate their search and perhaps to share private information of which settings are more

likely to be the correct combinations. Absent communication, it may be difficult to properly

reflect private information in the search order and to avoid combinations that have been tried

before.

Another example is that of two parties trying to coordinate on a radio frequency. In that

case, since communication is the objective, it cannot help in coordinating the search. We are

concerned with the situation where the parties may have private information about, but do

not know, which frequencies are available (some of the frequencies may be jammed). If the

available frequencies were commonly known, this would be a version of the telephone problem

that was proposed by Steve Alpern (see Alpern [1976]). In the telephone problem, there is an

equal number of telephones in two rooms. They are pairwise connected. In each period a person

in each room picks up the receiver on one of the phones. The goal is to identify a working

connection according to a payoff criterion that favors early discovery, e.g. minimum expected

time or expected present discounted value.

An applied health economics example is that of multiple physicians simultaneously treating

the same patient. Here communication may be prevented by simple lack of time, inadequate

technology for file sharing, or privacy concerns. The physicians may be uncertain about which

treatment combination is likely to be effective. This problem is similar to that of multiple

consultants advising the same company on different dimensions and who may be uncertain of

which (multi-dimensional) course of action is likely to succeed. Despite a common interest in the

success of the company, they may not want to or are unable to share proprietary information.

Similarly, an organization with multiple departments searching for an optimal course of action

may have rules preventing exchange of information between departments (so-called “Chinese

walls”) if such an informational exchange could involve a conflict of interest, e.g. an accounting

firm operating both as an auditor of a firm and as a consultant for that firm, or an accounting

firm working for multiple clients and handling those clients’ proprietary information.

Situations in which searching agents have to be secretive fit naturally into our environment
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without communication. One example would be battlefield coordination in which different units

have to operate under radio silence, another coordination between members of a clandestine

organization. Economic versions of such examples arise naturally in collusion between firms,

where communication is explicitly illegal. Imagine two firms choosing product characteristic

who are afraid that characteristics that are close in the minds of consumers increase price

competition. Firms may have beliefs about, but not know, which characteristics are perceived

as close by consumers.

The common interest assumption is made because we want to understand information ag-

gregation and processing, which turns out to be delicate enough even without confounding it

with payoff differences. This approach is not unusual. A prominent example is provided by

the literature on the Condorcet jury theorem and related issues of information aggregation, e.g.

McLennan [1998]. This approach is also pursued in the literature on rendezvous search where

two or more parties attempt to find each other in the least time in some search space subject

to a constraint on their speed (this literature is surveyed in Alpern [2002] and Alpern and Gal

[2003]).

Broadly, the problem that interests us is related to other models of rational learning of payoffs

in games, e.g. Wiseman’s [2005] work on repeated games with unknown payoff distributions and

Gossner and Vieille’s [2003] work on games in which players learn their payoffs from experience.

Another prominent example is the work on social learning, e.g. Banerjee [1992], Bikchandani,

Hirshleifer and Welch [1992], and the recent book by Chamley [2004]. The problem addressed in

the present paper – joint search for a hidden success with private information about the success

location – is novel. A direct antecedent is Blume and Franco [2005] who study joint search for a

success profile under complete information and with a symmetry constraint on joint strategies,

and Blume, Duffy and Franco [2004] who look at the same problem experimentally.

3 Setup

We consider games in which players have payoff uncertainty and have private information about

the distribution of payoffs. Each player has a finite set of actions Ai with cardinality J(i).

Let A := ×n
i=1Ai denote the set of action profiles. There is a set of payoff functions U with

typical element u ∈ U. Any pair of an action profile a ∈ A and a payoff function u ∈ U

determines a payoff ui(a) for player i. Players face payoff uncertainty. In order to model this

uncertainty, we introduce the set of distributions ∆(U) over the set of possible payoff functions

U. In addition we want to consider players who have private information about the nature of

the payoff uncertainty. For this purpose, we introduce another layer of uncertainty: There is
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a common knowledge distribution F over the set ∆(U) of possible distributions over payoff

functions. Players choose actions in each of T periods, where T may be infinite. At the end of

each period, each player learns only his own payoff for that period. Players evaluate payoffs in

the T -period game according to the expected present discounted value of the sum of stage-game

payoffs, with common discount factor δ ∈ (0, 1). The timing is as follows: (1) Nature draws a

distribution D ∈ ∆(U) from the distribution F. (2) Each player receives a signal si(D) ∈ Si that

is a function of the realized distribution D. (3) A payoff profile u is drawn from the realized

distribution D. (4) The T -period game starts.

Unless otherwise stated, we focus on the subclass of independent search-for-success games

in which (1) U consists of all those payoff functions that give all players a payoff of one for

exactly one action profile, a success, and otherwise a payoff of zero, a failure, (2) for each player

i and all distributions D in ∆(U) player i’s marginal distribution Di is exchangeable, (3) each

player’s signal ωi(D) is the marginal distribution of D over player i’s actions, and (4) each D

is the product of its marginals. Given exchangeability, it is without loss of generality to label

each player i’s actions by the probability rank of these actions according to the signal that he

receives, i.e. given signal ωi, action ai1(ωi) is player i’s action with the highest probability of

being part of a success profile, ai2(ωi) the action with the second-highest probability, and so on.

Then, we can denote by ωi the vector of marginal probabilities observed by individual i where

the individual probabilities have been put in rank order, i.e. ωij is i’s marginal probability that

his action aij(ωi) of jth rank is part of a success profile. Whenever there is no risk of confusion,

we will suppress the dependence of player i’s jth ranked action, and simply write aij for aij(ωi).

4 Example: Two Players, Two Actions, Two Periods and Inde-
pendent Uniform Signal Distributions

This section introduces the class of games of interest by way of a 2×2×2-independent-uniform-

example, i.e. with two players, two actions per player, two choice periods, signals that are

independent across players, and a uniform signal distribution. The example serves to develop

intuition that carries over to more general games with an arbitrary (finite) number of players and

actions per player, and with an infinite time horizon. In the example, one can fully characterize

equilibrium and optimal behavior and illustrate the difficulties arising in joint search more

generally. Specifically, one can show that there are multiple Pareto-ranked equilibria, with the

optimal equilibrium bounded away from ex post efficient search.

Let each of two players repeatedly choose between two actions. It is common knowledge

between them that exactly one of the four action profiles is a “success,” but not which one. The
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other profiles are failures. The common payoff from a success is (normalized to) one and the

common payoff from a failure is zero. The game ends when a success has been found, or the

time horizon has been reached. Players have a common discount factor δ, so that a success in

period t is worth δt. Players do not observe each others’ actions and therefore when making a

choice in any period can condition only on the history of their own actions.

Suppose in addition that before the first period each player privately receives a signal that

informs him of the probability with which each of his actions is part of a success profile. For

simplicity, let signals be independent across players. Then, if player one receives the signal ω1j

that his action a1j is part of a success profile and player two receives the signal ω2k that his

action a2k is part of a success profile, the probability that the profile (a1j , a2k) is a success is

ω1j · ω2k. Simplify further by assuming that player one’s (two’s) signal ω11 (ω21) that his first

action is part of a success is uniformly distributed on the interval [0, 1].

In this section, in order to simplify notation, for player one, denote the higher of his two

signals by α, i.e. α := ω11 Similarly, for player two, define β := ω21. α is the first order

statistic of the uniform distribution on the one-dimensional unit simplex. Note that α and β

are independently and uniformly distributed on the interval [12 , 1]. In the sequel, when talking

about player one’s action, it will be convenient to refer to his α (or high-probability) action and

his 1− α (or low probability) action, and similarly for player two.

Simplifying once again, consider the two-period game. In this game, players only have to

decide which action to choose in the first period and whether or not to switch to a different

action in the second period if the first-period choice fails to deliver a success.

It is immediately clear that the full-information solution (or ex post-efficient search), which

a social planner with access to both players’ private information would implement, is not an

equilibrium in the game with private information. The social planner would prescribe the α-

action to player one and the β-action to player two in the first period, and in the second period

would prescribe the profile (α, (1 − β)) if α(1 − β) > (1 − α)β, and the profile ((1 − α), β)

otherwise. The players themselves, who only have access to their own information, are unable

to carry out these calculations and cannot decide which of the two players should switch actions

and who should stick to his first-period action.

This raises a number of questions: What is the constrained planner’s optimum, i.e. which

strategy profile would a planner prescribe who does not have access to the players’ private

information? What are the Nash equilibria of the game? What is the relationship between the

(constrained) planner’s solution and the Nash equilibria of the game?

Since this is a common interest game, i.e. the payoff functions of the players coincide, there
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is a simple relation between optimality and equilibrium. An optimal strategy profile must be

a Nash equilibrium (see Alpern [2002], Crawford and Haller [1990], and McLennan [1998]). A

useful corollary of this observation is that if we have a Nash equilibrium and there is another

strategy, with higher payoffs for both players, then either the latter strategy is an equilibrium

or there exists an equilibrium with even higher payoffs for both players.

Two strategy profiles are easily seen to be equilibria. In one, player one takes his α action

in both periods and player two takes his β action in the first and his 1− β action in the second

period. In the second equilibrium, player two stays with his β action throughout and player one

switches. In these equilibria only the first-period decision is sensitive to the players’ information;

the switching decision does not depend on the signal. One may wonder whether it would not

be better to tie the switching probability to the signal as well. Intuitively, a player one with a

strong signal, α close to one, should be less inclined to switch than a player with a weak signal,

α close to one half. In order to investigate the possibility of such equilibria, we need to formally

describe players’ strategies.

A strategy for player i has three components: (1) pi(α), the probability of taking the high-

probability action in period 1 as a function of the signal; (2) qi
h(α), the probability of taking the

high-probability action in period 2 after having taken the high-probability action in period 1, as

a function of the signal; and (3), qi
l(α), the probability of taking the high-probability action in

period 2 after having taken the low-probability action in period 1, as a function of the signal.

Fix a strategy for player 2. We are interested in the payoff of player one for anyone of his

types, for any possible action sequence he may adopt, and for any possible strategy of player

two. In writing down payoffs, we will use the fact that in equilibrium player two will never stick

to his low-probability action in the second period after having used his low-probability action

in the first period, i.e. q2
l (β) = 1 for all β ∈ [12 , 1] in every equilibrium. Then type α of player 1

has the following payoff from taking the high-probability action in both periods:

HH(α) =
∫ 1

1
2

[
αβ + α(1− β)δ(1− q2

h(β))
]
p2(β)dβ(1)

+
∫ 1

1
2

[αβδ + α(1− β)] (1− p2(β))dβ

Player 1’s payoff from taking the high-probability action in the first and the low-probability

action in the second period, when his type is α, equals
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HL(α) =
∫ 1

1
2

[
αβ + (1− α)βδq2

h(β) + (1− α)(1− β)δ(1− q2
h(β))

]
p2(β)dβ(2)

+
∫ 1

1
2

[α(1− β) + (1− α)βδ] (1− p2(β))dβ

Player 1’s payoff from taking the low-probability action in the first and the high-probability

action in the second period, when his type is α, equals

LH(α) =
∫ 1

1
2

[
αβδq2

h(β) + α(1− β)δ(1− q2
h(β)) + (1− α)β

]
p2(β)dβ(3)

+
∫ 1

1
2

[αβδ + (1− α)(1− β)] (1− p2(β))dβ

The sequence of actions LL is strictly dominated for all α > 1
2 .

Simple inspection yields the following observations about these three payoffs: All three

payoffs are linear in α; HH(·) is strictly increasing in α; HH(1) ≥ LH(1) (with equality only at

δ = 1); HH(1) ≥ HL(1); HL(1
2) ≥ HH(1

2); and, HL(1
2) = LH(1

2).

This implies that in equilibrium player 1 (similarly for player 2) either plays HH for all α, or

HL for all α, or LH for all α, or there exists a critical value c1 such that he plays HL for α ≤ c1

and HH for α > c1, or there exists a critical value c1 such that he plays LH for α ≤ c1 and HH

for α > c1. In addition, against a player using only the action sequences HH and HL, the action

sequence LH is never optimal, because in that case HL is a better response. This leaves only

two possible types of equilibria:

1. HL-equilibria in which player i has a cutoff ci such that he uses HL for α below this cutoff

(and HH above the cutoff), and

2. LH-equilibria in which player i has a cutoff ci such that he uses LH for α below this cutoff

(and HH above the cutoff).

The cutoffs in any HL-equilibrium must satisfy the system of equations:

∫ 1

c3−i

ciβdβ +
∫ c3−i

1
2

[ciβ + ci(1− β)δ] dβ(4)

=
∫ 1

c3−i

[ciβ + (1− ci)βδ] dβ +
∫ c3−i

1
2

[ciβ + (1− ci)(1− β)δ] dβ i = 1, 2.
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This system has exactly three solutions in the relevant range of ci ∈ [12 , 1] i = 1, 2. These

are, (c1, c2) = (.5, 1), (c1, c2) = (1, .5), and (c1, c2) ≈ (0.760935, 0.760935).

The cutoffs in any LH-equilibrium must satisfy the system of equations:

∫ 1

c3−i

ciβdβ +
∫ c3−i

1
2

[ciβδ + ci(1− β)] dβ(5)

=
∫ 1

c3−i

[ciβδ + (1− ci)β] dβ +
∫ c3−i

1
2

[ciβδ + (1− ci)(1− β)] dβ i = 1, 2.

In this case the solutions of this system of equations in the relevant range of ci ∈ [12 , 1] i = 1, 2,

depend on δ. For δ = 1, there are three solutions: (c1, c2) = (.5, 1), (c1, c2) = (1, .5), and a

symmetric solution. Otherwise, there is a unique solution, which is symmetric, i.e. there is a

common cutoff c(δ), which is a strictly increasing function of δ, with c(0) = .5.

The fact that there is a unique LH-equilibrium for each δ ∈ (0, 1) can be shown as follows:

Substitute one of the equations in (5) into the other in order to eliminate the variable c2. This

leaves, for any δ, a fifth-order polynomial φ(·) in the variable c1, which has at most five real

roots and at most four local extrema. The relevant roots are the ones in the interval [12 , 1]. The

function φ(·) satisfies (1) φ(1
2) < 0 ∀δ ∈ (0, 1) and (2) φ(1) > 0 ∀δ ∈ (0, 1). Differentiating φ(·)

gives a fourth-order polynomial ψ(·) which satisfies for all δ ∈ (0, 1) the following conditions:

(1) ψ(c1) > 0 for sufficiently small c1 (c1 → −∞), (2) ψ(.2) < 0, (3) ψ(.7) > 0, (4) ψ(1) < 0,

and (5) ψ(c1) > 0 for sufficiently large c1 (c1 →∞).

As local extrema of φ correspond to the roots of ψ, one local extremum (a maximum) of

φ must be in the interval (−∞, .2), another (a minimum) in the interval (.2, .7), another (a

maximum) in the interval (.7, 1), and another (a minimum) in the interval (1,∞). Using the fact

that φ(1
2) < 0 and φ(1) > 0, and that φ has only one local minimum in the interval (.2, .7) and

only one local maximum in the interval (.7, 1), the equation φ(c1) = 0 has a unique solution for

c1 ∈ [12 , 1]. Thus there exists only one equilibrium, which must be symmetric as c2 has to satisfy

the same equation. We can summarize our discussion by the following observation:

Proposition 1 For any δ ∈ (0, 1), the two-player two-action two-period game with signals that

are independently and uniformly distributed has exactly four Nash equilibria: One symmetric

HL-equilibrium with common cutoff c ≈ 0.760935, two asymmetric HL-equilibria with cutoffs

(c1, c2) = (.5, 1) and (c1, c2) = (1, .5), respectively, and one symmetric LH-equilibrium with

common cutoff c(δ) that is strictly increasing in δ.

An LH-equilibrium cannot be optimal: To see this, simply change both players’ strategies

to HL-strategies, without changing the cutoff. Under the original strategies, there are three

8



possible events, each arising with strictly positive probability: Both players follow an HH-

sequence; both follow an LH sequence; and, one follows an LH-sequence while the other follows

an HH sequence. Clearly LH is not optimal against HH and therefore in this instance the new

strategy yields a strict improvement. Also, both players following HL rather than LH yields a

strict improvement. Thus in two events there is a strict payoff improvement, in the remaining

event payoffs are unaffected, and all three events have strictly positive probability.

It is not immediately clear whether to prefer the symmetric HL-equilibrium or the asymmetric

HL-equilibria. In either, there is positive probability that profiles are searched in the wrong

order. The symmetric equilibrium makes the second-period switching probability sensitive to

a player’s signal, which seems sensible. At the same time, it introduces an additional possible

source of inefficiency. Players may not succeed in the first round despite having signals so strong

that they do not switch in the second round. In that case, they inefficiently search only one of

the available profiles.

It would be a straightforward matter to calculate and compare payoffs from symmetric and

asymmetric equilibria directly. We will follow a different route in order to introduce some

methodological ideas that may prove useful more generally. Start with the asymmetric HL-

equilibrium in which c1 = 1
2 and c2 = 1. Consider the (informationally constrained) social

planner who raises c1 from 1
2 and lowers c2 from 1 by the same amount γ. His second-period

payoff (note that the first-period payoff is not affected by γ) as a function of γ is proportional

to

π(γ) =
∫ 1−γ

1
2

∫ 1
2
+γ

1
2

(1− α)(1− β)dαdβ +
∫ 1

1−γ

∫ 1
2
+γ

1
2

(1− α)βdαdβ +
∫ 1−γ

1
2

∫ 1

1
2
+γ

α(1− β)dαdβ.

It is straightforward to check that ∂π(γ)
∂γ

∣∣∣
γ=0

= 0 and ∂2π(γ)
∂γ2

∣∣∣
γ=0

> 0. Hence, the social planer

can improve on the two asymmetric equilibria. Recall that for any arbitrary strategy profile σ,

either σ is an equilibrium or there exists an equilibrium σ∗ with ui(σ∗) > ui(σ) for i = 1, 2. Thus

the pair of cutoff strategy profiles with cutoffs c1 = 1/2+γ and c2 = 1−γ with an appropriately

small value of γ either is an equilibrium or there exists an equilibrium that strictly dominates

it. Therefore, we have the following observation:

Proposition 2 For any δ ∈ (0, 1), in the two-player two-action two-period game with signals

that are independently and uniformly distributed, the symmetric HL-equilibrium is the optimal

equilibrium and at the same time the optimal strategy that an informationally constrained social

planner would implement.
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4.1 The 2×2 Uniform Example with an Infinite Horizon

In the infinite-horizon game there are equilibria in which players conduct a joint exhaustive

search without repetition. This search is guaranteed to be successful in no more than four

periods.

We will show for a range of values of the discount factor that (1) these exhaustive-search

equilibria are not optimal for a social planner who has to respect the same informational con-

straints as the players, (2) there exists an equilibrium in the infinite horizon-game with higher

expected payoff than from exhaustive search and (3) that a payoff-maximizing equilibrium will

lead to repetition of action profiles with positive probability.

There are exactly two exhaustive-search equilibria. They simply exchange the roles of the

two player and thus have identical payoffs. For concreteness, we argue with reference to the

exhaustive search equilibrium in which only player switches in period 2, both players switch

in period 3 and only player 2 switches in period 4, i.e. in terms of their signals, players move

through cells in the following order: (α, β), (α, 1 − β), (1 − α, β), (1 − α, 1 − β). We proceed by

showing that the following strategy leads to a higher expected payoff than exhaustive search

for some values of δ: Pick the likelihood-maximizing action in the first period. Use a symmetric

cutoff rule with cutoff value c in the second period.1 Revert to the exhaustive-search equilibrium

from the third period on (i.e. if there is no success before period three, resume exhaustive search

in the cell (α, 1− β)). Refer to this strategy as modified exhaustive search.

The payoff from modified exhaustive search equals:
1An alternative approach would be to adopt the methodology from the previous subsection, i.e. to look at

small departures from exhaustive search equilibria, slightly lowering the switching player’s cutoff value from 1
and slightly raising the other player’s cutoff value from 1/2
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4
∫ c

1
2

∫ c

1
2

[αβ + δ(1− α)(1− β) + δ2α(1− β) + δ3(1− α)β]dαdβ

+ 4
∫ 1

c

∫ c

1
2

[αβ + δ(1− α)β + δ2α(1− β) + δ4(1− α)(1− β)]dαdβ

+ 4
∫ 1

c

∫ 1

c
[αβ + δ2α(1− β) + δ3(1− α)β + δ4(1− α)(1− β)]dαdβ

+ 4
∫ c

1
2

∫ 1

c
[αβ + δα(1− β) + δ3(1− α)β + δ4(1− α)(1− β)]dαdβ

= (c2 − 1
4
)2 + δ((1− c)2 − 1

4
)2 − δ2(c2 − 1

4
)((1− c)2 − 1

4
)− δ3((1− c)2 − 1

4
)(c2 − 1

4
)

= (1− c2)[(c2 − 1
4
)− δ((1− c)2 − 1

4
)] + (1− c)2[δ2(c2 − 1

4
)− δ4((1− c)2 − 1

4
)]

= (1− c2)[(c2 − 1
4
)− δ((1− c)2 − 1

4
)] + (1− c)2[δ3(c2 − 1

4
)− δ4((1− c)2 − 1

4
)]

= (1− c2)2 + δ2(1− c2)(1− c)2 + δ3(1− c)2(1− c2) + δ4(1− c)4

For example, the second line of the above expression is the contribution to expected payoffs

from the event that player 1 receives a signal α < c and player 2 receives a signal β > c. In that

event, a success will be found in the first period with probability αβ; in the second period player

1 switches (because of his relatively low signal) while player 2 stays put leading to a success

probability of (1−α)β; in the third period exhaustive search is resumed in the cell α(1− β); in

the fourth period, the cell (1−α)β that was unsuccessfully visited in period 2 is revisited, with

an expected payoff of zero for that period; and, in the fifth period the remaining (1− α)(1− β)

cell is visited.

In contrast, the payoff from the exhaustive strategy equals

4
∫ 1

1
2

∫ 1

1
2

[αβ + δα(1− β) + δ2(1− α)β + δ3(1− α)(1− β)]dαdβ

=
1
16

[9 + 3δ + 3δ2 + δ3]

We can plot the difference of the two payoffs as a function of c and δ as follows. The plot

reveals that for most combinations of c and δ, the exhaustive search strategy is the one with the

higher payoff.
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As can be seen in the following contour plot, however, there is a region, indicated in white,

in which the payoff from modified exhaustive search exceeds that from exhaustive search. In the

black region, the payoff difference between modified exhaustive search and exhaustive search is

negative.
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5 Results

In this section we generalize the intuition from our 2 × 2 × 2 independent-uniform example to

games with an arbitrary finite number of players, an arbitrary finite (not necessarily identical)

number of actions per player, an infinite time horizon and a rich class of signal distributions,

while maintaining the assumption of signal independence across players.

We begin with the simple observation that players in our game are unable to implement ex

post-optimal search.

Observation The full-information optimal strategy (i.e. ex post-optimal search) is not a Nash

equilibrium strategy.

To see this, observe that for almost all signal vectors of player i there exists a positive

probability set of signal vectors of others players such that the full-information optimal strategy

13



has player i switch in period two. At the same time, there is a positive probability set of signal

vectors for which the full-information optimal strategy prescribes that player i does not switch

in period two. This behavior cannot be achieved in equilibrium since player i’s behavior can

only depend on his own information.

Ex post optimal search cannot be implemented because players do not know the signal

strengths of other players. In contrast, there is a large class of equilibria in strategies that

condition only on the rank order of signals not their value. We refer to such strategies as ordinal

strategies, and to equilibria in ordinal strategies as ordinal equilibria. Some ordinal equilibria

are appealing because they induce a novel action profile as long as such profiles are available,

i.e. they search exhaustively. We will see, however, that not all ordinal equilibria are exhaustive

equilibria and that there is a multitude of Pareto-ranked exhaustive equilibria.

We next formally define ordinal strategies and characterize the set of equilibria in ordinal

strategies. Let ai denote player i’s action in the action profile a. Define r(ai) as the rank of

player i’s action ai in descending order of his observed probabilities, i.e. a higher value of r(ai)

indicating a higher probability of ai being part of a success profile, breaking ties in an arbitrary

manner if necessary. Recall the convention that aij(ωi) is player i’s jth-ranked action given

his signal ωi and let hit(ωi) be player i’s private history of such actions until period t. Then a

strategy fi of player i is ordinal if fi(hit(ωi), ωi) = fi(hit(ωi), ω′i) for all ωi, ω
′
i. Thus, in an ordinal

strategy, the only role of player i’s signal is to determine the labeling of his actions according to

their rank. A profile f is ordinal if it is composed of ordinal strategies; otherwise, it is cardinal.

For any ordinal profile f, let at(f) denote the profile of actions that the strategy f induces in

period t. Similarly, define At(f) := {a ∈ A|aτ (f) = a for some τ ≤ t} as the set of all profiles

that the ordinal strategy f induces before period t + 1.

Notice that if an ordinal strategy profile after some time prescribes an action profile from

which a player can reach an unused profile in which his own action has a higher rank, then this

player can unilaterally deviate and improve the search order. Conversely, in an ordinal strategy

profile in which no player can ever unilaterally reach an unused profile in which his own action

has a higher rank than the one prescribe by the profile, no player can deviate to a strategy that

would improve the search order. Hence, we have the following characterization of equilibria in

ordinal strategies.

Proposition 3 A profile of ordinal strategies f is a Nash equilibrium if and only if for all

players i and all times t there does not exist ai ∈ Ai such that (i) ai 6= at
i(f), (ii) (ai, a

t
−i(f)) ∈

A \At−1(f), and (iii) r(ai) > r(at
i(f)).

14



Proof: We begin by proving that any such profile f is an equilibrium. Suppose not. Then there

exists a player i, a set of signals S that has positive probability, and a pure strategy f ′i such

that πi(f ′i , f−i;ωi) > πi(f ; ωi) for all types ωi ∈ S. Without loss of generality, we may assume

that none of the signals in S require tie breaking in order to determine the probability rank of

player i’s actions. Consider a type ωi in S. Let τ be the first period in which aτ (f ′i , f−i) 6= aτ (f).

There are two possibilities: Either aτ (f ′i , f−i) ∈ At−1(f), or aτ (f ′i , f−i) ∈ A \ At−1(f) and

r(aτ (f ′i , f−i)) < aτ (f).

Let θ > τ be the first period in which aτ
−i(f) = aθ

−i(f) whenever such a θ exists. Consider a

strategy f ′′i with

at
i(f

′′
i ) = at

i(f
′
i) ∀t 6= τ, θ

aτ
i (f

′′
i ) = aτ

i (fi)

aθ
i (f

′′
i ) = aτ

i (f
′
i).

Evidently, this raises the probability of finding a success in period τ by the same amount that

it lowers it in period θ. Because of discounting this raises the payoff of type ωi ∈ S.

If there is no θ with aτ
−i(f) = aθ

−i(f), replace fi with a strategy f ′′i such that

at
i(f

′′
i ) = at

i(f
′
i) ∀t 6= τ

aτ
i (f

′′
i ) = aτ

i (f).

Evidently, also in this case, the payoff of type ωi is increased.

Iterating this procedure generates a sequence of action profiles that converges to at(f). Fur-

thermore the payoff of type ωi ∈ S is non-decreasing at each step of the iteration, contradicting

the assumption that f ′i induces a higher payoff for type ωi than fi against f−i. This shows that

the strategies described in the statement of the proposition indeed form Nash equilibria.

Conversely, suppose the strategy f is an ordinal Nash equilibrium, but there is a player i,

an action ai and a time τ such that conditions (i) – (iii) are satisfied. Let θ > τ be the first

period in which aτ
−i(f) = aθ

−i(f) whenever such a θ exists. Consider a deviation by player i to

the strategy f ′i with

at
i(f

′
i) = at

i(fi) ∀t 6= τ, θ

aτ
i (f

′
i) = ai

aθ
i (f

′
i) = aτ

i (fi)

If there is no period θ > τ with aτ
−i(f) = aθ

−i(f), consider the deviation by player i to the
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strategy f ′i with

at
i(f

′
i) = at

i(fi) ∀t 6= τ

aτ
i (f

′
i) = ai

Evidently, in either case the deviation raises the probability of finding a success in period τ

by the same amount that it lowers it in period θ. Because of discounting this raises the payoff

of player i for a set of types that has positive probability.

¤

a1,1

a1,2

a2,1 a2,2 a2,3

1 2 3

4 5 6

Figure 1

Observe that the equilibria characterized in Proposition 3 include (i) equilibria in which all

profiles are examined without repetition, (ii) equilibria in which search stops before all profiles

have been examined, and (iii) infinitely many Pareto-ranked equilibria in which search is tem-

porarily suspended and then resumed. For example, consider the matrix of action profiles in

the stage game in Figure 1. In the figure ai,j denotes the j-th action of player i, wlog ranked

in the order of the corresponding signals, i.e. if we denote by αi,j the probability that the j-th

action of player of player i is part of a success profile, then αi,j ≥ αi,j+1 for all i and j. For

convenience, the six action profiles have been numbered. Then, (i) there is an equilibrium in

which the profile labelled t is played in period t = 1, . . . , 6, (ii) another equilibrium in which

the profile labelled t is played in period t = 1, . . . , 4 after which profile 1 is played forever, and

(iii), for any k > 0 there is an equilibrium in which the profile labelled t is played in period

t = 1, . . . , 4 after which profile 1 is played for k period followed by play of profiles 5 and 6.

We next show that for some class of distributions one can improve on the best ordinal

equilibrium. Say that a player’s signal distributions has a mass point at certainty if there is

positive probability that he receives a signal that singles out one of his actions as the one that

is part of a success profile. Similarly, say that a player’s signal distributions has a mass point at

indifference if there is positive probability that he receives a signal that assigns equal probability

to each of his actions as being part of a success profile. Denote by EC
i the event that i is certain

and by EI
i the event that he is indifferent.

16



Lemma 1 If all players’ signal distributions have mass points at certainty and at indifference,

the optimal equilibrium is cardinal.

Proof: In any ordinal equilibrium f , there will be one player, i, who switches in period two,

and another player, j, who does not switch in period two. Modify the behavior of these two

players as follows: Let i never switch from his first-period action when he is certain. Have j

switch in period two to his action aj2 (in an ordinal equilibrium, it is without loss of generality

to always have him use the action aj1 in period 1) when he is indifferent. Have j otherwise not

change his behavior, except that in the period τ > 2 with aτ (f) = (aj2, a
2
−j(f)), he takes the

action a2
j1, instead of a2

j2. Formally, define f ′ such that f ′−ij = f−ij , i.e. f coincides with f ′ for

all players other than i and j, and

at
i(f

′
i) = at

i(fi) ∀ωi ∈ Ωi \EC
i , t

at
i(f

′
i) = a1

i (fi) ∀ωi ∈ EC
i , t

at
j(f

′
j) = at

j(fj) ∀ωj ∈ Ωj \ EI
j , t

a2
j (f

′
j) 6= a1

j (fj) ∀ωj ∈ EI
j

aτ
j (f

′
j) = a1

j (fj) ∀ωj ∈ EI
j

at
j(f

′
j) = at

j(fj) ∀ωj ∈ EI
j , t 6= 2, τ

There are four possible cases: (1) If player i is uncertain and player j is not indifferent, then

the sequence in which cells are examined under the modified strategy profile f ′ is the same as in

the original equilibrium f , and therefore payoffs are the same as well. (2) If player i is certain

and player j is not indifferent, then player i is using a dominant action and all other players are

following the same behavior as under f−i. Consequently, the expected payoff cannot be lower

than from all players using strategy f. (3) If player i is uncertain and player j is indifferent, the

only effect of changing from f to f ′ is that the order in which two cells are visited is reversed.

Furthermore, these cells are only distinguished by player j’s action and player j is indifferent.

Hence payoffs are unchanged in this case. (4) If player i is certain and player j is indifferent, the

cell examined in period two has a positive success probability under f ′, whereas that probability

is zero under f. Furthermore, since player i is using a dominant action, and all players other

than players i and j do not change their behavior, the overall effect of switching from f to f ′

is to move the examination of higher probability profiles forward. Therefore, in this case the

expected payoff increases. ¤
Next, we show that the ability to improve on the best ordinal equilibrium does not critically

depend on the distribution of signals having mass points.
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Proposition 4 Let F be any distribution of signals that satisfies independence across players

and that has a positive density f. Then there exists a sequence of distributions Fn with positive

densities fn and an N > 0 such that Fn converges weakly to F and for all n > N the optimal

Nash equilibrium is cardinal.

Proof: Let eij ∈ Ωi be the signal for player i that assigns probability one to the jth action of

player i being part of a success profile, and let zi ∈ Ω be the signal that assigns probability one

to the signal that all of player i’s actions are equally likely to be part of a success profile. Define

Ei to be the distribution of player i’s signals that assigns probability one to the set of signals

{ei1, . . . , eiJ(i), zi} and equal probability to all signals in that set.

Let λn ∈ (0, 1) and λn → 0. Define Gn,i = λnEi + (1 − λn)Fi, and Gn =
∏I

i=1 Gn,i Then

{Gn}∞n=1 is a sequence of distributions converging weakly to F, denoted Gn
w−→ F, where each

Gn has mass points at indifference and at certainty. Let Ei,k be the distribution of player i’s

signals that assigns probability one to the set of signals Ω̃i ⊂ Ωi that are within distance 1
k from

the set {ei1, . . . , eiJ(i), zi} and that is uniform on Ω̃i. Define Hn,i,k = λnEi,k + (1 − λn)Fi, and

let Hn,k =
∏I

i=1 Hn,i,k. Then {Hn,k}∞k=1 is a sequence of distribution functions with Hn,k
w−→ Gn,

where each Hn,k has an everywhere positive density.

Clearly, candidates for an optimal ordinal strategy for Hn,k have to be exhaustive. Since

there are only finitely many paths of play for exhaustive strategies, an optimal ordinal strategy

σk
n for Hn,k exists. Finiteness of the set of play paths of exhaustive strategies also implies that

there is a subsequence of {Hn,k}∞k=1 for which (after reindexing) the path of play induced by

{σk
n}∞k=1 is constant. From now on consider this subsequence, and pick a strategy σn that induces

this path of play.

Given a signal realization ω, denote player i’s expected payoff from the strategy profile σ by

vi(σ, ω). Then, for any strategy profile σ and signal distribution Φ, player i’s expected payoff

Ui(σ,Φ) is

Ui(σ,Φ) =
∫

vi(σ, ω)dΦ(ω).

Let 1{σ,a,t} be the indicator of the event that profile a is visited for the first time in period t

under strategy σ and P (a|ω) the probability that the profile a is a success given the signal vector

ω. Then, for an ordinal strategy σ̃, player i’s payoff for a fixed ω has the form

vi(σ̃, ω) =
∞∑

t=1

δt−11{σ̃,a,t}P (a|ω).

Here P (a|ω) is a polynomial in ω and therefore varies continuously with ω. Since σ̃ is ordinal, the

indicator function does not vary with ω (recall that is ωi passes through a point of indifference
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between two action, they simply become relabeled). Taken together, these observations imply

that vi(σ̃, ω) is continuous in ω. Hence, by weak convergence of Hn,k to Gn, we have

Ui(σ̃, Hn,k) → Ui(σ̃, Gn),

for any ordinal strategy σ̃. Therefore, σn must be an optimal ordinal strategy for Gn.

Denote by σ′n the improvement strategy for σn, given Gn as constructed in the proof of

Lemma (1). For any given σ′n, σn and ε > 0, we can define the strategy σε
n as follows:

σε
i,n(ωi) =





σi,n(ωi) if |ωi − eij | > ε and |ωi − zi| > ε
ε−x

ε σ′i,n(zi) + x
ε σi,n(ωi) if |ωi − zi| = x ≤ ε

ε−x
ε σ′i,n(eij) + x

ε σi,n(ωi) if |ωi − eij | = x ≤ ε

Note that the payoff vi(σε
n, ω) is a continuous function of the signal vector ω. Hence, weak

convergence implies that

Ui(σε
n,Hn,k) → Ui(σε

n, Gn) as k →∞.

By construction, we have

Ui(σ′n, Gn) > Ui(σn, Gn),

and

Ui(σε
n, Gn) → Ui(σ′n, Gn) as ε → 0.

Note that the payoff vi(σn, ω) is a continuous function of the signal vector ω. Hence, weak

convergence implies that

Ui(σn,Hn,k) → Ui(σn, Gn) as k →∞.

Combining these observations, we conclude that for any n, we can find k(n) and ε̃ such that

Ui(σε̃
n,Hn,k(n)) > Ui(σn,Hn,k(n)).

To conclude, simply let Fn = Hn,k(n). ¤

19



References

Alpern, S. [1976], “Hide and Seek Games,” Seminar, Institut für höhere Studien, Wien, 26
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