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Abstract

In the canonical learning model, the multi-armed bandit with independent arms, a decision

maker learns about the different alternatives by his experience only. It is well known that an

optimal experimentation strategy for this problem sometimes leads the best alternative to be

dropped altogether, the so-called Rothschild effect. Many situations of interest, however, involve

learning from individual experience and the experience of others. This paper shows that learn-

ing in society can overcome the Rothschild effect. We consider an economy with a continuum

of infinitely lived agents where each one of them faces a two-armed bandit and the unknown

stochastic payoffs of each arm are the same for all agents. In each period, agents are randomly

and anonymously matched in pairs, where they observe their partners’ current action choice.

We establish that if initial beliefs are sufficiently heterogeneous, then the fraction of agents who

choose the superior arm converges to one in any perfect bayesian equilibrium of this game.
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1 Introduction

The defining characteristic of an experimentation problem is the tradeoff between learning about

the different available alternatives, which provides valuable information for future decisions, and

maximizing immediate rewards. In the canonical learning model, the multi-armed bandit with

independent arms, this tradeoff implies that an optimal experimentation strategy can lead the

superior alternative to be dropped altogether, see Banks and Sundaram (1992). This is sometimes

referred to as the Rothschild effect. However, in many situations of interest an agent can learn

from the experience of other agents that face the same problem. Examples include consumers

learning about product quality and doctors learning about the efficacy of different treatments for

the same disease. In this paper we show how the presence of information flows across individuals

can overturn the Rothschild effect.

We consider a discrete time economy populated with a continuum of infinitely lived agents where

each one of them faces a two-armed bandit with independent arms. The unknown stochastic payoffs

to each of the available action choices are the same for all agents, i.e., agents are homogeneous.

Information is transmitted across agents in the following way. In every period, agents are randomly

and anonymously matched in pairs, where they observe their partner’s current action choice. We

refer to these matches as meetings in society.

In this environment, an agent’s flow payoff depends only on his action choice. Differently from

the standard bandit problem though, the action choices of the other individuals in the population

reveal information about the available alternatives. At any point in time, the likelihood an agent

has of being matched to someone else that chooses a specific action is determined by the behavior

of the other agents. If these matching probabilities depend on the true payoffs of the action choices,

the meetings in society reveal payoff relevant information even if outcomes are not observable within

a match. Consequently, when choosing an action, an agent has to take into consideration: (i) the

tradeoff between the flow payoffs from the different alternatives and the information they provide;

(ii) the fact that, independently of what he chooses, his meetings in society provide information

about the available alternatives. The hypothesis of random and anonymous matchings implies that

each agent only cares about the aggregate behavior of the other agents in the population.
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It turns out that the individual learning problem, i.e., the experimentation problem each agent

has to solve when he takes the behavior of all the other agents as given, is formally equivalent

to a multi-armed bandit with correlated arms. Easley and Kiefer (1988) study limiting behavior

in a large class of infinite horizon individual experimentation problems, including multi-armed

bandits with correlated arms. They only consider stationary problems, however, while here we

must consider non-stationary ones. Indeed, aggregate behavior changes over time if learning takes

place. Hence, matching probabilities also change over time, and with them the informational

content of the meetings in society.

Most of the literature on social learning only considers purely informational interaction among

individuals. For example, Smallwood and Conlisk (1979), Ellison and Fudenberg (1993, 1995),

and Bala and Goyal (1999) consider models of social learning with boundedly rational agents.

Banarjee (1992), Bikhchandani et. al. (1992), and Smith and Sorensen (2000) consider sequential

decision models with rational agents. Of the few papers that deal with strategic and informational

interaction among individuals, Aoyagi (1998) and Bolton and Harris (1999) are the closest in spirit

to this paper.1 Both of them consider games of strategic experimentation with a finite number

of players. In Bolton and Harris there is no asymmetric information, since the outcome of each

player’s action choice is public. In Aoyagi, an individual’s action choice is public, but not its

outcome. He shows, under certain restrictions, that in any Nash equilibrium of the corresponding

game all players eventually settle on the same action choice, not necessarily the superior one.

This article is structured as follows. The model is introduced in the next section. Section 3

contains some preliminary discussion. Section 4 considers the individual learning problem. There

we establish a characterization result that plays an important role in the analysis of long-run

aggregate behavior. The main result of the paper, that the fraction of the population choosing

the superior action converges to one in any perfect bayesian equilibrium of this game when initial

beliefs are sufficiently heterogenous, is established in Section 5. Section 6 concludes and several

appendices contain omitted proofs.

Some conventions, definitions, and facts. Unless otherwise stated, measurability is always

understood to be Borel measurability. Finite sets are endowed with the discrete topology and

products of topological spaces are endowed with the product topology. For any set B, IB denotes

its indicator function and B−t denotes the set ×∞k=t+1B.
1See also Keller et. al. (2005).
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If S is a metric space, B(S) denotes its Borel σ-algebra and P(S) denotes the set of all Borel

probability measures on S. Let (Ω,F) be a measure space, S be a complete separable metric space

(a Polish space), and endow P(S) with the topology of weak convergence of probability measures.

A F-measurable map λ : Ω → P(S) is transition probability from (Ω,F) into (S,B(S)).2 In what

follows, we always omit B(S) and say λ is a transition probability from (Ω,F) into S. Moreover,

if Ω is a metric space and λ : Ω → P(S) is measurable, we also omit F(= B(Ω)). In particular, if

λ : Ω → P(S) is continuous, then λ is a (continuous) transition probability from Ω into S.

2 The Model

Time is discrete and indexed by t ∈ Z+. The economy is populated with a continuum of

mass one of infinitely lived agents that we identify with ([0, 1],Σ, µ), where Σ is the σ-algebra of

Lebesgue measurable subsets of [0, 1] and µ is the Lebesgue measure on [0, 1]. All agents have the

same discount factor β ∈ [0, 1). We denote a typical element of [0, 1] by i.

Every period has two parts. First, each agent privately chooses one of N actions, labelled 1 to

N , observes a stochastic outcome y ∈ Y , and collects a reward r(j, y), where j ∈ A = {1, . . . , N}
denotes his action choice. We also use k to denote an action choice. The outcome space Y is a

Polish space and the value of y is determined independently for each agent in the population. Then,

all agents are randomly and anonymously matched in pairs, where they observe the current action

choice of their partners. We assume that each agent randomly chooses an action in period zero.3

The outcome of each action j depends on a parameter θj that is the same for all agents. The

set Θj of possible values of θj is finite. We refer to the value of θj as the true type of j and to the

set Θ = Θ1×· · ·×ΘN , with typical element θ = (θj), as the set of states of the world. The value of

θ is initially unknown to the agents. To each pair (j, θj) is associated a Borel probability measure

µj(θj) on Y that governs the realization of outcomes when j is chosen and its true type is θj . The

maps θj 7→ µj(θj) are assumed to be one-to-one.

2This definition coincides with the usual one; i.e., λ : Ω → P(S) is F-measurable if, and only if, for each D ∈ B(S),

the map ω 7→ λ(ω)(D) is F-measurable.
3This assumption is irrelevant for our results. With it, the individual learning problem fits the description of

a dynamic programming problem with unknown transition probabilities, see Rieder (1975). It also allows us to

introduce the requirement of sequential rationality in the agents’ behavior in a compact way.
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Let Π = P(Θ) denote the set of beliefs about the state of the world, beliefs for short. Then,

Π = ∆S , where S+1 = ΠN
j=1|Θj |. The case of interest is when

∑N
j=1 |Θj | ≥ N +1. Denote a typical

element of Π by π and the probability that π assigns to θ, the belief that the state of the world

is θ, by π(θ). Now let Πd = {π ∈ Π : π = π1 × · · · × πN , with πj ∈ P(Θj)}. Each agent begins

period zero with a non-dogmatic prior in Πd. Hence, in the absence of the meetings in society, the

problem of the agents is a multi-armed bandit with independent arms.

Prior beliefs may be heterogeneous. There is a measurable function Φ : I → Π such that Φ(i)

is the prior belief of the agent i. Notice that the range of Φ must be in the (relative) interior of Πd.

We also assume that the range of Φ is countable.

Let ω be the element of P(Y ) given by
∑N

j=1

∑
θj∈Θj

µj(θj). By definition, the measures µj(θj)

are absolutely continuous with respect to ω. Denote the density of µj(θj) with respect to ω by

gj(·, θj). Now let rj(θj) =
∫

r(j, y)gj(y, θj)ω(dy) be the expected flow payoff from j when its true

type is θj . We make the following assumptions. The first three are regularity assumptions. The

fourth rules out the case where there is at least one state of the world where the expected rewards

from two or more of the available action choices are the same. The fifth implies that the maps

θj 7→ rj(θj) are one-to-one. The last assumption implies that for each j there is at least one state

of the world where this action is the best alternative.

ASSUMPTION 1. The reward function r : A× Y → R is bounded.

ASSUMPTION 2. For each j and y ∈ Y there exists θ such that gj(y, θj) > 0.

ASSUMPTION 3.
∫

ymgj(y, θj)ω(dy) < ∞ when m = 1, 2 for all j and θ.

ASSUMPTION 4. rj(θj) 6= rk(θk) for all θ and j 6= k.

ASSUMPTION 5. θj 6= θ′j implies that rj(θj) 6= rj(θ′j).

ASSUMPTION 6. For each j there exists θ such that rj(θj) > rk(θk) for all k 6= j.

By Assumption 4, there exists J ⊂ A with N − 1 elements such that if j ∈ J , then there is

θj with the property that rj(θj) < minθk
rk(θk) for k ∈ A \ J . Let Θj be the set of all such θj ’s.

Assumption 6 implies that Θj is a proper subset of Θj for all j ∈ J . In what follows, we assume

that J = {1, . . . , N − 1}.
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3 Preliminaries

An agent’s experience in a given period is a triple (j, y, k), where j is his action choice, y is the

outcome of j, and k is the (current) action choice of his partner. Let X = Y ×A be the observation

space, i.e., the set of possible one-period observations an agent can make, and let Z = A ×X be

the set of possible action-observation pairs. Then, Ht = Zt is the set of period t histories and

H∞ = Z∞ is the set of infinite histories. Denote a typical element of X by x = (x1, x2), a typical

element of Zt by zt, and a typical element of Ht by ht = (j0, x0, . . . , jt−1, xt−1). A behavior strategy

is a sequence f = {ft}t∈N, where ft : Ht → ∆N−1 is the measurable function describing how period

t ≥ 1 histories are mapped into probability measures over A. By convention, the jth coordinate of

an element of ∆N−1 denotes the probability that j is chosen.

We now define what a strategy profile is in this environment. For this, some terminology is

needed. Let S be a metric space and X be a Banach space with norm || · ||. The set of all bounded

and measurable functions from S into X is denoted by Bb(S, X) (or Bb(S) when X = R1). We

always take this set to be endowed with the sup-norm, in which case it is a Banach space. A

function f : [0, 1] → X is simple if there exist x1, . . . , xm ∈ X and E1, . . . , Em ∈ Σ such that

f =
∑m

k=1 xkIEk
. A function f : [0, 1] → X is strongly Lebesgue measurable if there exists a

sequence {fn} of simple functions such that limn ||fn(i) − f(i)|| = 0 for almost all i ∈ [0, 1]. If

f is simple and E ∈ Σ, the integral
∫
E fµ is defined as

∑
k xkµ(Ek ∩ E). A strongly Lebesgue

measurable function f : [0, 1] → X is Bochner integrable if there is a sequence {fn} of simple

functions such that
∫ ||fn(i)− f(i)||µ(di) = 0, in which case

∫
E fµ is defined as the limit of

∫
E fnµ.

The set of all equivalence classes of Bochner integrable functions is denoted by L1(µ,X) (or L1(µ),

in case X = R).

Let Γt = Bb(Ht,RN ) and Ωt = {f ∈ Γt : f(ht) ∈ ∆N−1 for all ht ∈ Ht}. Then, Ω = ×t∈NΩt is

the set of all possible behavior strategies. Now let Ψt = Bb(Π, Ωt) and Ψ = ×t∈NΩt. An element of Ψ

is what we call a prior-contingent behavior strategy. Denote an arbitrary element of L1(µ,Bb(Π, Γt))

by Ft and define, in an abuse of notation, L1(µ,Ψt) to be set of Ft in L1(µ,Bb(Π, Γt)) such that

µ({i : Ft(i) ∈ Ψt}) = 1. We take Λ = ×t∈NL1(µ,Ψt) as the set of possible strategy profiles. This

definition captures the notion that each agent in the population is non-atomic, and so his particular

choice of prior-contingent behavior strategy has no aggregate effect.
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Suppose F = {Ft} ∈ Λ is the strategy profile under play and denote the canonical basis of RN

by {e1, . . . , eN}. Given h1 ∈ H1, the probability that agent i chooses j ∈ A is 〈F1(i)(Φ(i))(h1), ej〉.
By assumption, all agents randomize in period zero. Since there is no aggregate uncertainty, this

implies that the fraction of the population that chooses a given action in period zero is the same in

every state of the world, 1
N . Hence, when the state of the world is θ, the probability that i chooses

j in period one is

p1(i, j, θ, F ) =
N∑

j,k=1

1
N2

∫
〈G1(i)(j, y, k), ej〉µj(dy|θj),

where G1(i) = F1(i)(Φ(i)). The above integral is well-defined by Corollary 2 in Appendix A

together with Theorem 13.4 in Aliprantis and Border (1999). By Lemma 9 in Appendix A, the

function p1 : [0, 1] × A × Θ × Λ → [0, 1] just defined is Lebesgue measurable in i. Consequently,

once more because there is no aggregate uncertainty, the measure of agents who choose j in period

one when the state of the world is θ is

m1(j, θ, F ) =
∫

p1(i, j, θ, F )µ(di).

This number is also the probability, when the state of the world is θ and F is under play, that in

period one an agent is matched to a partner whose current action is j.

From the matching probabilities m1(j, θ, F ) we can construct the map τ2 : [0, 1]×Θ×Λ → P(H2)

such that if D ∈ B(H2), then τ2(i, θ, F )(D) is the probability that agent i experiences h2 ∈ D when

the state of the world is θ and F is under play. It is possible to show (see Appendix B) that for each

θ and F , the map τ2(·, θ, F ) is a transition probability from ([0, 1], Σ) into H2. The probability, as

a function of θ and F , that i chooses j in period two is then

p2(i, j, θ, F ) =
∫
〈G2(i)(h2), ej〉τ2(dh2|i, θ),

where G2(i) = F2(i)(Φ(i)). Given the functions p2 : [0, 1]×A×Θ×Λ → [0, 1] we can then construct,

in the same way as in the previous paragraph, the period two matching probabilities m2(j, θ, F ).

Continuing with this process, we obtain a sequence m = {mt}, where mt = {mt(j, θ, F )}j∈A,θ∈Θ

is the vector of period t matching probabilities; i.e., mt(j, θ, F ) is the fraction of agents who choose

j in period t when the state of the world is θ and the strategy profile is F . The details can be

found in Appendix B. Let Ξ = ×t∈Z+∆S+1
N−1 and denote by M the map that takes an element F of

Λ into its corresponding sequence m(F ) ∈ Ξ of matching vectors.

7



Because the matching process is random and anonymous, the infinite sequence m of matching

vectors subsumes all the informational content of the meetings in society. In other words, besides

outcomes and rewards, the individual learning problem is characterized by the sequence m of

matching vectors.

Denote by σθ(h1, f, m) the Borel probability measure on Z∞ induced by the period zero action-

observation pair h1, the behavior strategy f , and the infinite sequence of matching vectors m when

the state of the world is θ.4 Now let zt = (jt, xt) be the period t action-observation pair and define

R : Z∞ → R to be such that if z∞ = {zt}, then R(z∞) =
∑∞

t=1 βt−1r(jt, x1t), where x1t is the first

coordinate of xt.5 The objective of an agent with prior π0 is to choose f∗ ∈ Ω such that

∑

θ∈Θ

∫
R(z∞)σθ(dz∞|h1, f

∗,m)π0(θ) = sup
f∈Ω

∑

θ∈Θ

∫
R(z∞)σθ(dz∞|h1, f, m)π0(θ) ∀h1 ∈ H1. (1)

Observe that if r̃ : A×X → R is such that r̃(at, xt) = r(at, x1t), then R(z∞) =
∑∞

t=1 βt−1r̃(at, xt).

Hence, the individual learning problem is equivalent to a non-stationary multi-armed bandit with

correlated arms where the reward function is r̃ and the outcome space is X.

Definition: A perfect bayesian equilibrium is a profile F ∗ ∈ Λ such that if m = M(F ∗), then, for

almost all i ∈ [0, 1], F ∗(i)(π0) satisfies (1) for all π0 ∈ Πd.

4 The Individual Learning Problem

We first describe the individual learning problem and establish a few basic results. We then

discuss a result concerning belief updating in the presence of meetings in society. We finish with a

characterization result, Theorem 1, that plays a central role in the next section.

4.1 Description and Basic Results

Define ηθ
t : Ξ → P(A) to be such that if m = {mt} ∈ Ξ, then ηθ

t (m) =
∑N

j=1 mt(j, θ)δj , where

δj is the Dirac measure on A with mass on j. By construction, ηθ
t (m) is the probability measure

describing the outcome of the matching process in period t when the state of the world is θ and

the sequence of matching vectors is m. Now let νθ
t : A × Ξ → P(X) be such that νθ

t (j,m) =
4Notice that σθ(h1, f, m) also depends on the measures µj(θj).
5We ignore the period zero payoffs.
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µj(θj) × ηθ
t (m). By definition, νθ

t (j, m) is the probability measure describing the distribution of

possible period t observations as a function of θ, j, and m.

For each prior π0 and sequence of matching vectors m, the individual learning problem is

a non-stationary markovian decision problem (DP) with state space X and unknown transition

probabilities {νθ
t }t∈Z+,θ∈Θ, see Rieder (1975).6 In this section we make use of the fact that this

problem is equivalent to a certain non-stationary non-markovian DP with state space X and known

transition probabilities. From now on we use ILP to refer to the individual learning problem and

ILP to refer to the equivalent DP with known transitions.

We first derive the transition probabilities for ILP. For this, let Bt : Π × A ×X × Ξ → Π be

such that if x = (x1, x2) and m = {mt(j, θ)}, then

Bt(π, j, x, m)(θ) =
gj(x1, θj)mt(x2, θ)π(θ)∑

θ′∈Θ gj(x1, θ′j)mt(x2, θ′)π(θ′)

if the denominator is not zero. Otherwise,

Bt(π, j, x, m)(θ) =
gj(x1, θj)π(θ)∑

θ′∈Θ gj(x1, θ′j)π(θ′)
.

The term on the right-hand side of the last equation is well-defined by Assumption 2. By definition,

if the sequence of matching vectors is m, an agent who in t has belief π, chooses j, and observes

x revises his belief to Bt(π, j, x,m). Now let {πt}t∈N, with πt : Ht × Π × Ξ → Π, be such that

π1(j0, x0, π0,m) = B1(π0, j0, x0, m) and πt+1(ht, jt, xt, π0,m) = Bt(πt(ht, π0,m), jt, xt,m) for t ≥ 1.

By construction, πt(ht, π0,m) is the period t belief of an agent with history ht when his prior is π0

and the sequence of matching vectors is m. Notice that π1 is independent of m as the meetings in

society when t = 0 are uninformative. By Lemma 10 in Appendix C, for each π0 ∈ Π and m ∈ Ξ,

the maps πt(·, π0,m) are measurable. To finish, let qt : Ht ×A×Π× Ξ → P(X) be given by

qt(ht, j, π0,m) =
∑

θ∈Θ

πt(ht, π0, m)(θ)νθ
t (j, m).

From above, for each π0 ∈ Π and m ∈ Ξ, qt(·, π0,m) is a transition probability from Ht × A into

X. The maps {qt(·, π0, m)} are the transitions probabilities for ILP as a function of the prior belief

and the sequence of matching vectors.
6In Rieder’s terminology, the initial distributions for the individual learning problem are the measures {τ1(θ)}θ∈Θ,

where τ1 : Θ → P(H1) is the transition probability defined in Appendix B.

9



The set Ht of period t histories for ILP is the same as the set of period t histories for ILP, and so

both problems have the same set of behavior strategies. For consistency in notation, denote the set

of behavior strategies for ILP by Ω. Fix π0 ∈ Π, m ∈ Ξ, and let rj(ht) =
∑

θ∈Θ rj(θj)πt(ht, π0,m)(θ)

be the expected flow payoff from choosing j in period t as a function of ht. Now let R : H∞ → R

be such that R(h∞) =
∑∞

t=1 βt−1rjt(ht∞), where ht∞ is the restriction of h∞ to Ht and jt is the

period t action choice. Moreover, let σ(π0, h1, f, m) =
∑

θ π0(θ)σθ(h1, f, m). The objective in ILP

for an agent with prior π0 is to choose f∗ ∈ Ω such that
∫

R(h1z∞)σ(dz∞|π0, h1, f
∗,m) = sup

f∈Ω

∫
R(h1z∞)σ(dz∞|π0, h1, f, m) ∀h1 ∈ H1,

where if hk ∈ Hk and zt ∈ Zt, then hkzt is the concatenation of hk and zt. It is straightforward to

show that f∗ is an optimal strategy for ILP if, and only if, it is an optimal strategy for ILP.

As mentioned above, ILP is a non-markovian decision problem. Nevertheless, we can analyze

it using dynamic programming techniques. The Bellman equations for ILP are

V t(ht) = max
j∈A

{
rj(ht) + β

∫
V t+1(ht, j, x)qt(dx|ht, j, π0,m)

}
= T tV t+1(ht), t ∈ N. (2)

We start with a basic result. For each f ∈ Ω, let f |hk
= {gt}t∈Z+ , where gt : Zt → ∆N−1 is such

that gt(zt) = fk+t(hkzt). Now let σt(π0, ht, f, m) =
∑

θ π0(θ)σθ(f |ht ,m
t), where σθ(f |ht ,m

t) is the

Borel probability measure on Z∞ induced by f |ht and the sequence mt = {mk}∞k=t of matching

vectors when the state of the world is θ.7 Finally, let V
∗
t : Ht → R be given by

V
∗
t (ht) = sup

f∈Ω

∫
R(htz∞)σt(dz∞|π0, ht, f,m). (3)

The proof of the following result is in Appendix C.

Lemma 1. For each π0 ∈ Π and m ∈ Ξ, the sequence {V ∗
t } defined by (3) is the unique sequence

of bounded and measurable functions that solves the Bellman equations (2).

The second result we prove is central for the characterization result established at the end of

this section. It shows that the sequence of maps {πt} constitutes a sufficient statistic for ILP. Let

νt : Π×A×Ξ → P(X) be given by νt(π, j, m) =
∑

θ∈Θ π(θ)νθ
t (j,m) and define ρt : Π×A×Ξ → P(Π)

to be such that if D ∈ B(Π), then

ρt(π, j,m)(D) =
∫

ID(Bt(π, j, x,m))νt(dx|π, j, m). (4)

7Notice that σθ(f |h1 , m) = σθ(h1, f, m).
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By Lemma 11 in Appendix C, for each m ∈ Ξ, ρt(·,m) is a continuous transition probability from

Π × A into Π. Now let sj : Π → R be such that sj(π) =
∑

θ∈Θ rj(θj)π(θ) and, for each m ∈ Ξ,

consider the sequence of functional equations given by

Vt(π) = max
j∈A

{
sj(π) + β

∫
Vt+1(π′)ρt(dπ′|π, j,m)

}
= TtVt+1, t ∈ N. (5)

It is convenient to introduce the operators Tt,j such that if v : Π → R is measurable, then

Tt,jv(π) = sj(π) + β

∫
v(π′)ρt(dπ′|π, j, m).

Lemma 2. For each m ∈ Ξ, there exists a unique sequence {V ∗
t } of bounded and measurable

functions that satisfies (5). Moreover, for each π0 ∈ Π, V
∗
t (ht) = V ∗

t (πt(ht, π0,m)).

Proof: The first part follows from Lemma 7 in Appendix A. For the second part, let wt : Ht → R

be such that wt(ht) = V ∗
t (πt(ht)), where the dependence of πt on π0 and m is omitted. By Lemma

10 in Appendix C, wt is bounded and continuous. Moreover,

rj(ht) + β

∫
wt+1(ht, j, x)qt(dx|ht, j, m)

= sj(πt(ht)) + β

∫
V ∗

t+1(πt+1(ht, j, x))νt(dx|πt(ht), j, m)

= sj(πt(ht)) + β

∫
V ∗

t+1(Bt(πt(ht), j, x,m)νt(dx|πt(ht), j,m)

= sj(πt(ht)) + β

∫
V ∗

t+1(π
′)ρt(dπ′|πt(ht), j,m),

where the first equality follows from the definitions of sj and νt, the second follows from the

definition of πt, and the third follows from the definition of ρt. Hence, {wt} satisfies the Bellman

equations (2) for ILP, from which we can conclude that wt(ht) = V
∗
t (ht).

4.2 Learning

What happens when an agent with a prior that assigns positive probability to the true type of a

particular action j chooses this action an infinite number of times? If it were the case that he only

observed the outcomes of his action choices, he would learn the true type of j with probability one.

This result on the consistency of Bayes estimates follows from the fact that each of the available

actions has a finite number of possible types, the densities gj(y, θj) have finite first and second

moments, and the maps θj 7→ µj(θj) are one-to-one, see Section 10.5 in DeGroot (1970). It turns
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out that this is also true in the presence of the meetings in society. This is the content of Lemma

1 in Aoyagi (1998), that we state below adapted to our framework.

Fix the prior belief π0, the sequence of matching vectors m, and the behavior strategy f . Let

πj
θ,t : H∞ → [0, 1] be given by πj

θ,t(h∞) = πt(ht∞, π0,m))({θj}×Θ−j), where Θ−j = ×k 6=jΘk. Define

σθ(f, m) ∈ P(H∞) to be such that if D1 ∈ B(Y ) and D2 ∈ B(Z∞), then

σθ(f,m)(D1 ×D2) =
∫

D1

σθ(h1, f, m)(D2)τ1(dh1|θ),

where τ1(θ)(D) is the probability an agent has of experiencing a period one history in D ∈ B(H1).

See Appendix B for the construction of τ1. Now let λ(π0, f, m) be the Borel probability measure on

Θ×H∞ such that if Θ′ ⊆ Θ and G ∈ B(H∞), then λ(π0, f, m)(Θ′×G) =
∑

θ∈Θ′ π0(θ)σθ(f,m)(G).

Finally, let Ej ∈ B(H∞) be the event where j is chosen infinitely many times.

Lemma 3. For each π0 ∈ Π, m ∈ Ξ, and f ∈ Ω, λ(π0, f, m)(({θj} ×Θ−j)× Ej) > 0 implies that

πj
θ,t converges to one on ({θj} ×Θ−j)×Ej almost surely with respect to λ(π0, f,m).

4.3 Characterization

We now prove the main result of this section. For this, let r(θ) = maxj rj(θj) and define

lj : Π → R to be such that

lj(π) =
sj(π)
1− β

−
{

max
k 6=j

sk(π) +
β

1− β

∑

θ∈Θ

r(θ)π(θ)

}
.

Notice that if π is such that lj(π) > 0, then sj(π) > sk(π) for all k 6= j. This, in turn, implies that

lk(π) < 0 for all k 6= j. In other words, if Πj = {π ∈ Π : lj(π) > 0}, then
⋂

j∈A Πj = ∅. Also notice

that if Θ(j) = {θ ∈ Θ : rj(θj) > rk(θk) for k 6= j} is the set of states of the world where j is the

best alternative, then θ ∈ Θ(j) implies that lj(π) > 0 for all π that put sufficiently high probability

on the event {θj} ×Θ−j .

Theorem 1. Fix π0 ∈ Π and m ∈ Ξ, and suppose f∗ = {f∗t } is an optimal strategy for ILP. If

πt(ht, π0,m) ∈ Πj, then f∗t (ht) puts probability one on j.

The following result follows immediately from Theorem 1 together with Lemma 3.

Corollary 1. No optimal strategy for ILP has an agent choosing all actions infinitely many times.

12



What makes Theorem 1 useful is that the functions lj , and so the sets Πj , are independent of

matching probabilities. Hence, this theorem provides “bounds” on behavior that hold regardless of

the informational content of the meetings in society, i.e., they hold no matter the sequence m of

matching vectors.

To understand the meaning of the condition lj(π) > 0, consider the hypothetical situation where

an agent learns the true value of θ if he chooses any action other than j. In this case, if his belief is

π, his expected lifetime payoff from choosing k 6= j is sk(π)+β(1−β)−1
∑

θ∈Θ r(θ). Since, in truth,

learning about θ does not happen immediately (if it happens at all), the above payoff is an upper

bound for this agent’s lifetime expected payoff when he chooses k. The condition lj(π) > 0 then

says that even if an agent settles on j, which is not necessarily optimal, he is still better off then

if he chooses any other action and behaves optimally in the periods that follow. In other words,

lj(π) > 0 means that the agent is so pessimistic about the other actions that even if he could learn

θ by choosing one of them, he would still prefer to settle on j.

Motivated by the last paragraph, consider the functional equation

Wj(π) = max
k 6=j

{SjkWj(π), SjjWj(π)}, (6)

where Sjk and Sjj , with k 6= j, are the operators such that if v : Π → R, then

Sjkv(π) = sk(π) + β
∑

θ∈Θ

v(δθ)π(θ) and Sjjv(π) = sj(π) + βv(π).

For each j, equation (6) has a unique continuous solution, that we denote by W ∗
j . This function

is, moreover, convex and such that W ∗
j (δθ) = (1 − β)−1r(θ). Since W ∗

j (π) ≥ (1 − β)−1sj(π) for

all π ∈ Π, SjjW
∗
j (π) > SjkW

∗
j (π) for all k 6= j when π ∈ Πj . The proof of the next lemma is in

appendix C.

Lemma 4. Fix j ∈ A and m ∈ Ξ. Then, for all k 6= j, t ∈ N, and π ∈ Π,

Tt,kV
∗
t+1(π)− Tt,jV

∗
t+1(π) ≤ SjkW

∗
j (π)− SjjW

∗
j (π).

Proof of Theorem 1: By Lemma 2, if πt(ht, π0,m) = π, then
∫

V
∗
t+1(ht, j, x)qt(dx|ht, j, m) =

∫
V ∗

t+1(π
′)ρt(dπ′|πt(ht, π0,m), j, m)

for all actions j. Hence, the desired result follows from Lemma 4 and the principle of optimality

for dynamic programming.
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5 Long Run Behavior

We now establish the main result of this article. We say the full support assumption is satisfied

if µ{i : Φ(i) ∈ A} > 0 for every open subset A of Πd.8

Theorem 2. Suppose N = 2 and the full support assumption holds. Then, in all perfect bayesian

equilibria of this game the fraction of agents who choose the best alternative converges to one

regardless of the state of the world.

The conclusion of Theorem 2 is not necessarily true when the full support assumption is not

satisfied. As an example, suppose that Θ1 = {θ1}, Θ2 = {θ21, θ22}, and r2(θ21) < r1(θ1) < r2(θ22).

This corresponds to the case of an one-armed bandit where the unknown arm can be of two types.

Moreover, suppose that a measure one of the agents has the same prior belief π0, where π0 has the

property that l1(π1(π0, a0, x0)) > 0 for all (a0, x0) ∈ H1.9 In this particular case, the game has

an unique perfect bayesian equilibrium where almost all agents always choose a1 regardless of the

value of θ. This follows immediately from Theorem 1 together with the fact that the meetings in

society are uninformative when a measure one of agents choose the same action no matter the state

of the world.

The following two lemmas are needed for Theorem 2. Their proofs are in appendix D. Recall

that if θj ∈ Θj , then rj(θj) < rN (θN ) for all θN , and that Θ(j) denotes the set of states of the

world where j is the best alternative.

Lemma 5. Let F ∗ be a perfect bayesian equilibrium and suppose θ is such that θj ∈ Θj. Then,

mt(j, θ, F ∗) converges to zero.

By Lemma 3, an agent who chooses a particular action j infinitely often learns its true type

as long as his prior belief assigns positive probability to this type. Therefore, when θ is such that

θj ∈ Θj , Theorem 1 and the assumption that all agents have non-dogmatic priors imply that an

agent following an optimal strategy plays j only a finite number of times. Hence, in any equilibrium,

the measure of agents who choose j converges to zero in the long-run for all θ such that θj ∈ Θj .

8Suppose {πn}n∈Z+ is countable dense subset of the interior of Πd and let {In}n∈N be such that In = ( 1
n+1

, 1
n
].

Now define Φ′ : I → Π to be such that Φ′(i) = π0 if i = 0 and Φ′(i) = πn if i ∈ In. Notice that Φ′ is measurable. If

Φ = Φ′, the full support assumption is satisfied.
9This requires the likelihood ratios g1(·, θ1)/g2(·, θ2) to be bounded away from both zero and infinity.
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Lemma 6. Let F ∗ be a perfect bayesian equilibrium and suppose θ ∈ Θ(j). Then, under the full

support assumption, there exists m = m(F ∗) > 0 such that mt(j, θ, F ∗) ≥ m for all t ∈ N.

Lemma 6 states that if the full support assumption holds, then whenever a particular action j

is the best alternative, the measure of agents who choose this action is bounded away from zero in

any perfect bayesian equilibrium of this game. The proof of this result is done in two parts. We

first establish that if in period zero an agent knows the true type of all action choices but j and

assigns high enough probability to j’s true type, then there is a positive probability that he always

chooses j. This part of the argument borrows from the techniques used in the proof of Theorem

5.1 in Banks and Sundaram (1992). In the second part, we use a continuity argument to show that

the same result holds for any agent with a prior that attaches sufficiently high probability to the

true state of the world. The desired result then follows from the full support assumption.

To illustrate the idea behind the proof of Theorem 2, consider the case where Θ1 = {θ11, θ12},
Θ2 = {θ21, θ22}, and r1(θ11) < r2(θ21) < r1(θ12) < r2(θ22). By Lemma 5, if θ is such that θ1 = θ11,

then the measure of agents who choose a1 converges to zero in any equilibrium. Suppose now that

θ2 = θ21 and θ1 = θ12. By Lemma 6, the measures of agents who choose a1 are bounded away from

zero in all equilibria. Suppose then, by contradiction, that the measures of agents who choose a2

are also bounded away from zero. Any agent who chooses a2 infinitely many times, and there is a

positive measure of them who do so, learns that θ2 = θ12 by Lemma 3. At the same time, this agent

also observes that the measure of agents who choose a1 does not converge to zero in the long-run.

Since he knows that this measure converges to zero if θ1 = θ11, this agent learns that θ1 > θ2.

This, however, is a contradiction by Theorem 1. To finish, consider the case where θ1 = θ12 and

θ2 = θ22. By Lemma 6, the measures of agents who choose a2 are bounded away from zero in any

equilibrium. Suppose, once more by contradiction, that the measures of agents who choose a1 are

also bounded away from zero. Any agent who chooses a1 infinitely often learns that θ1 = θ12. At

the same time, this agent observes that the fraction of agents who choose a2 does not converge to

zero. Since he knows that this fraction converges to zero when θ1 = θ12 and θ2 = θ21, he then

learns that θ2 > θ1, a contradiction.

Proof of Theorem 2: Order the elements of Θ1 and Θ2, from lowest to highest, in terms of

their expected rewards. This is possible since the maps θj 7→ rj(θj) are one-to-one. Then, Θ1 =
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{θ1
1, . . . , θ

L
1 } and Θ2 = {θ1

2, . . . , θ
K
2 }, where L+K ≥ 3. If G is a subset of Θj and H is a subset of Θk,

with j, k ∈ {1, 2}, write G < H when, rj(θj) < rk(θk) for all θj ∈ A and θk ∈ B. By assumption,

r1(θ1
1) < r2(θ1

2). There are two cases to consider, then. Either r1(θL
1 ) > r2(θK

2 ) or r1(θL
1 ) < r2(θK

2 ).

We consider the second case only. The modifications required to adapt the argument that follows

to the first case are transparent.

Since r2(θK
2 ) > r1(θL

1 ), there exist m ∈ N and sets Θn
j , with j ∈ {1, 2} and n ∈ {1, . . . ,m},

such that Θ1 =
⋃m

n=1 Θn
1 , Θ2 =

⋃m
n=1 Θn

2 , Θ1
j < · · · < Θm

j for all j ∈ {1, 2}, and Θn
1 < Θn

2 for all

n ∈ {1, . . . , m}. Let zj : Θj → {1, . . . , m} be such that zj(θj) = n if θj ∈ Θn
j . Then, by construction,

z1(θ1) ≤ z2(θ2) implies that r1(θ1) < r2(θ2) and z1(θ1) > z2(θ2) implies that r1(θ1) > r2(θ2). Now

let Υ : Θ → {1, . . . , 2m} be such that

Γ(θ) =





2z1(θ1)− 1 if z1(θ1) ≤ z2(θ2)

2z2(θ2) if z2(θ2) < z1(θ1)
.

The proof is by induction in the range of Υ.

Suppose first that Υ = 1. Then, θ ∈ Θ is such that θ1 ∈ Θ1 and we know, from Lemma 5,

that mt(1, θ, F ∗) converges to zero if F ∗ is a perfect bayesian equilibrium (PBE). Suppose now, by

induction, that there exists Υ ∈ N such that: (i) if Υ(θ) ≤ Υ is even, then mt(2, θ, F ∗) converges to

zero if F ∗ is a PBE; (ii) if Υ(θ) ≤ Υ is odd, then mt(1, θ, F ∗) converges to zero if F ∗ is a PBE. We

only consider the case where Υ is odd, as the argument when Υ is even is identical. By assumption,

if Υ(θ) = Υ+1, then r1(θ1) > r2(θ2) and z2 = (Γ+1)/2. By Lemma 6, if F ∗ is a PBE, there exists

m > 0 such that mt(1, θ, F ∗) ≥ m for all t ∈ N. Hence, there is a subsequence of {mt(1, θ, F ∗)}
that converges to some α > 0. Assume, without loss, that mt(1, θ, F ∗) itself converges to α.

Suppose then, by contradiction, that mt(2, θ, F ∗) does not converge to zero (so that α < 1).

The same argument used in the proof of Lemma 5 shows that a positive measure of agents chooses

2 infinitely many times. Now observe, by the induction hypothesis, that mt(1, θ, F ∗) converges to

zero when z2(θ2) = (Υ+1)/2 and z1(θ1) ≤ z2(θ2), as this corresponds to the case where Υ(θ) ≤ Υ.

Hence, by Lemma 13 in Appendix D, an agent who chooses 2 infinitely often learns that z1 > z2

with probability one. This, however, implies that almost all of the agents who choose 2 infinitely

many times eventually have a belief π with l1(π) > 0, a contradiction by Theorem 1. Therefore,

mt(2, θ, F ∗) must converge to zero, and so the induction hypothesis is true for Υ+1. This concludes

the argument.
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6 Conclusion

This paper shows how learning in society can overcome the incomplete learning results typical

of multi-armed bandits. We consider an environment with a continuum of agents where each one

of them faces a two-armed bandit and the unknown stochastic payoffs of each arm are the same

for all agents. Information flows in a decentralized way: in every period all agents are randomly

and anonymously matched in pairs and they observe the current action choice of their partner.

We show that if initial beliefs are sufficiently heterogenous, then all perfect bayesian equilibria of

this game are ex-post efficient; i.e., the fraction of the population choosing the best alternative

converges to one in these equilibria.
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Appendix A

In this appendix we establish some auxiliary results. We begin with a generalization of the

contraction mapping theorem used in dynamic programming. For this, let {St} be a sequence

of Polish spaces, Ξ be a Polish space, and A be a finite set. Denote a typical element of St by

st, a typical element of Ξ by ξ, and a typical element of A by a. Moreover, for each t ∈ N, let

qt : St × A × Ξ → P(St+1) be such that qt( · , ξ) is a transition probability from St × A into St+1

for all ξ ∈ Ξ. Finally, for each t ∈ N, let rt : St ×A → R be bounded.

Fix ξ ∈ Ξ, let β ∈ (0, 1), and consider the sequence of functional equations given by

Vt(st) = max
a∈A

{
rt(st, a) + β

∫
Vt+1(st+1)qt(dst+1|st, a, ξ)

}
= TtVt+1(st), t ∈ N. (A.1)

Lemma 7. For each ξ ∈ Ξ, there is a unique sequence {V ∗
t } of bounded and measurable functions

that satisfies (A.1).

Proof: Fix ξ ∈ Ξ and let B∞ = ×t∈NBb(St). The space B∞ is complete and metrizable when

endowed with the product topology. A metric d on B∞ that is compatible with the product topology

is the following: if g = {gt}, h = {ht} ∈ B∞, then

d(g, h) = max
t∈N

ct||gt − ft||sup

1 + ||ft − gt||sup
(A.2)

where {ct} is any sequence of strictly positive numbers that converges to zero.

Consider now the map T such that if v = {vt} ∈ B∞, then Tv = {Ttvt+1}. By assumption,

if v ∈ Bb(St+1), the function
∫

v(st+1)qt(dst+1|st, a, ξ) is jointly measurable in st and a and is

bounded in st. Hence, since A is finite, Ttv is a bounded and measurable function of st when

v ∈ Bb(St+1). Consequently, T maps B∞ into itself. If we show that T is a contraction, the desired

result is a consequence of the Banach fixed point theorem.

Suppose, by contradiction, that there exist g, h ∈ B∞ such that d(Tg, Th) ≥ d(g, h). This

implies that for all n ∈ N there exists t(n) ∈ N such that

ct(n)||Tt(n)gt(n) − Tt(n)ht(n)||sup

1 + ||Tt(n)gt(n) − Tt(n)ht(n)||sup
>

(
1− 1

n

)
max

t

ct||gt − ht||sup

1 + ||gt − ht||sup

≥
(

1− 1
n

)
ct(n)||gt(n) − ht(n)||sup

1 + ||gt(n) − ht(n)||sup
.
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Rearranging terms, we have that

||Tt(n)gt(n) − Tt(n)ht(n)||sup − β||gt(n) − ht(n)||sup

dt(n)
>

(
1− 1

n
− β

) ||gt(n) − ht(n)||sup

dt(n)
− 1

n

||Tt(n)gt(n) − Tt(n)ht(n)||sup||gt(n) − ht(n)||sup

dt(n)︸ ︷︷ ︸
et(n)

,

where dt = (1+ ||Ttgt−Ttht||sup)(1+ ||gt−ht||sup). The sequence {et(n)} is, however, bounded, and

so 1
net(n) converges to zero. Since 1− 1

n − β converges to 1− β, we then have that the right-hand

side of the above inequality is positive if n is sufficiently large. Therefore,

||Tt(n)gt(n) − Tt(n)ht(n)||sup > β||gt(n) − ht(n)||sup

for n large enough, contradicting the fact that the maps Tt are contractions of modulus β. We can

then conclude that T contraction.

Lemma 8. Let S be a metric space X be a Banach space. Suppose F : [0, 1] → Bb(S, X) is strongly

Lebesgue measurable and let Gs : [0, 1] → X be such that Gs(i) = F (i)(s), where s is a fixed element

of S. Then, Gs is strongly Lebesgue measurable for all s ∈ S.

Proof: Let || · ||X denote the norm in X and || · || denote the norm in Bb(S, X). By assumption,

there is a sequence {Fn}, with Fn : [0, 1] → Bb(S, X) simple, such that ||Fn(i) − F (i)|| → 0 for

almost all i ∈ [0, 1]. Fix s ∈ S and define Gn,s : [0, 1] → X to be such that Gn,s(i) = Fn(i)(s).

Then, {Gn,s} is a sequence of simple functions. Moreover,

||Gn,s(i)−Gs(i)||X = ||Fn(i)(s)− F (i)(s)||X ≤ ||Fn(i)− F (i)||,

and so ||Gn,s(i)−Gs(i)|| → 0 for almost all i ∈ [0, 1]. Hence, Gs is strongly Lebesgue measurable.

Corollary 2. Let S, X, and F be as in Lemma 8. Suppose Φ : [0, 1] → S is measurable and has a

countable range. Then, G : [0, 1] → X given by G(i) = F (i)(Φ(i)) is strongly Lebesgue measurable.

Proof: Let {sn} ⊂ S be the range of Φ and notice that G(i) =
∑∞

n=1 Gsn(i)I{sn}(Φ(i)), where Gs

is defined as above. The desired result now follows from Lemma 8 and the fact that the pointwise

limit of a sequence of strongly Lebesgue measurable functions is strongly Lebesgue measurable, see

Lemma 11.37 in Aliprantis and Border (1999).
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For the next two results, recall that Σ denotes the σ-algebra of the Lebesgue measurable subsets

of the unit interval [0, 1].

Lemma 9. Let S be a separable metric space, λ : [0, 1] → P(S) be a transition probability from

([0, 1], Σ) into S, and suppose F : [0, 1] → Bb(S) is strongly Lebesgue measurable. The function

h : [0, 1] → R such that h(i) =
∫

F (i)(s)λ(ds|i) is Lebesgue measurable.10

Proof: By Lemma 11.36 in Aliprantis and Border (1999), F is Lebesgue measurable and there exist

a separable subset X of Bb(S) and a Lebesgue measurable subset I0 of [0, 1] such that µ(I0) = 0

and F (i) ∈ X for all i /∈ I0. Define T : [0, 1] × X → R to be such that T (i, f) =
∫

f(s)λ(ds|i).
Notice that T is a Carathéodory function; i.e., T (i, · ) : X → R is continuous for each i ∈ [0, 1], and

T ( · , f) : [0, 1] → R is Lebesgue measurable for each f ∈ X. Hence, by Lemma 4.50 in the same

book, T is Σ⊗ B(X) measurable. Now let f̂ be an element of X and define F ′ : [0, 1] → Bb(S) to

be such that F ′(i) = F (i) if i ∈ (I0)c and F ′(i) = f̂ if i ∈ I0. Since Ψ : [0, 1] → X × I given by

Ψ(i) = (F ′(i), i) is Lebesgue measurable, so is T ◦Ψ : [0, 1] → R. Because T ◦Ψ differs from h on

a set of Lebesgue measure zero, we have the desired result.

Corollary 3. Let S be a metric space, and S1, S2 be separable metric spaces. Suppose ν ∈ P(S2),

λ1 : [0, 1] → P(S1) is a transition probability from ([0, 1], Σ) into S1, F : [0, 1] → Bb(S,Bb(S1))

is strongly Lebesgue measurable, and Φ : I → S is measurable and has a countable range. Define

λ2 : [0, 1] → P(S1 × S2) to be such that if D1 ∈ B(S1) and D2 ∈ B(S2), then

λ2(i)(D1 ×D2) =
(∫

D1

F (i)(Φ(i))(s1)λ1(ds1|i)
)

ν(D2).

The map λ2 is a transition probability from ([0, 1], Σ) into S1 × S2.

Proof: Let D be the subset of B(S1 × S2) such that if D ∈ D, then the map i 7→ λ2(i)(D) is

Lebesgue measurable. By Lemmas 8 and 9, D contains the algebra generated by the rectangles of

S1 × S2. Moreover, a straightforward argument shows that D is a monotone class. Hence, by the

monotone class lemma, see Lemma 4.12 in Aliprantis and Border (1999), D = B(S1 × S2), and the

desired result holds.
10Notice that if g : [0, 1]×S → R is such that g(i, s) = F (i)(s), then it is not necessary that g is jointly measurable.

Hence, this result is not immediate.
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Appendix B

Here we construct the map M that takes strategy profiles into (infinite) sequences of matching

vectors. The starting point is the map τ2 : [0, 1] × Θ × Λ → P(H2). For this, let τ1 : Θ → P(H1)

be the transition probability such that if D ∈ B(Y ), then τ1(θ)({j} × D × {k}) = 1
N2 µj(D|θj).

By definition, τ1(θ)(D) is the probability that any agent in the economy experiences a period zero

action-observation pair that lies in D ∈ B(H1). Fix θ ∈ Θ and F ∈ Λ, and suppose D1 ∈ B(Z) and

D2 ∈ B(Y ). Now define the set function τ̂2(i) to be such that

τ̂2(i)(D1 × {j} ×D2 × {k}) =
(∫

D1

〈F1(i)(Φ(i))(h1), ej〉τ1(dh1|θ)
)

µj(D2|θj)m1(k, θ, F ).

The unique extension of τ̂2(i) to B(H2) is τ2(i, θ, F ). By Corollary 3 in Appendix A, for each θ ∈ Θ

and F ∈ Λ, the map τ2( · , θ, F ) is a transition probability from ([0, 1], Σ) into H2. From τ2 we

can construct, by the process described in Section 3, the map m2 : A × Θ × Λ → [0, 1] such that

m2(j, θ, F ) is the fraction of agents who choose j in period two when the state of the world is θ

and the strategy profile under play is F .

Suppose then, by induction, that for some t ≥ 2 there exist:

(1) A map τt : [0, 1]×Θ× Λ → P(Ht) such for each θ ∈ Θ and F ∈ Λ, τt( · , θ, F ) is the transition

probability from ([0, 1], Σ) into Ht with the property that if D ∈ B(Ht), then τt(i, θ, F )(D) is the

probability that agent i experiences a period t history in D when the state of the world is θ and

the strategy profile under play is F .

(2) A map mt : A×Θ×Λ : [0, 1] → [0, 1] such that mt(j, θ, F ) is the fraction of agents who choose

j in period t when the state of the world is θ and the strategy profile under play is F .

Fix θ ∈ Θ and F ∈ Λ, and define τ̂t+1(i) to be the set function such that

τ̂t+1(i)(D1 × {j} ×D2 × {k}) =
(∫

D1

〈Ft(i)(Φ(i))(ht), ej〉τt(dht|θ)
)

µj(D2|θj)mt(k, θ, F )

for all D1 ∈ B(Ht) and D2 ∈ B(Y ). This set function admits an unique extension to B(Ht+1) that

we denote by τt+1(i, θ, F ). By definition, τt+1(i, θ, F )(D) is the probability that agent i experiences

a period t + 1 history in D ∈ B(Ht+1) as a function of the state of the world θ and the strategy

profile F . Corollary 3 in Appendix A implies that the map τt+1( · , θ, F ) is a transition probability

from ([0, 1], Σ) in Ht+1.
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Now define pt+1 : [0, 1]×A×Θ× Λ → [0, 1] to be such that

pt+1(i, j, θ, F ) =
∫
〈Ft+1(i)(Φ(i))(ht+1), ej〉τt+1(dht+1|i, θ, F ).

This map is well-defined by Theorem 13.4 in Aliprantis and Border (1999) together with Corollary

2 in Appendix A. By Lemma 9 in Appendix A, pt+1( · , j, θ, F ) is Lebesgue measurable for all j ∈ A,

θ ∈ Θ, and F ∈ Λ, and so the map mt+1 : A×Θ× Λ → [0, 1] given by

mt+1(j, θ, F ) =
∫

pt+1(i, j, θ, F )µ(di)

is also well-defined. By construction, mt+1(j, θ, F ) is the fraction of agents who choose j in period

t + 1 when the state of the world is θ and the strategy profile under play is F .

We can then conclude, by induction, that there exists a map M = {Mt} : Λ → Ξ such that

Mt(F ) = {mt(j, θ, F )}j∈A,θ∈Θ is the vector of period t matching probabilities if F is the strategy

profile being played.

Appendix C

Lemma 10. For each π0 ∈ Π and m ∈ Ξ, the maps πt(·, π0,m) : Ht → Π are measurable.

Proof: Fix π0 and m = {mt}. First notice that Assumption 2 implies that Bt is continuous in

x1, and so is jointly continuous in (j, x), for all t ∈ N. In particular, π1( · , π0,m) = B1(π0, · ,m)

is measurable. Suppose then, by induction, that there exists k ∈ N such that πk( · , π0,m) is

measurable. If we show that the maps Bt are jointly measurable in (π, j, x), we are done, since this

implies that πk+1( · , π0, m) = Bk(πk( · , π0, m), · ,m) is measurable. For this, fix j and x, and let

{mn} be given by mt,n = 1
nm̂t + n−1

n mt, where m̂ = {m̂t} is such that m̂t(j, θ) ≡ 1
S+1 . Moreover,

let Bt,n : Π → Π be such that Bt,n(π) = Bt(π, j, x, mn). By construction, Bt,n is continuous for all

t, n ∈ N, as its denominator is always positive. It is straightforward to show that for each π ∈ Π,

Bt,n(π) converges to Bt(π, j, x, m). Therefore, Bt( · , j, x, m) is measurable. By Lemma 4.50 in

Aliprantis and Border (1999), we can then conclude that Bt is jointly measurable in (π, j, x), the

desired result.
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Lemma 11. For each m ∈ Ξ, the map ρt( · ,m) given by (4) is a continuous transition probability

from Π×A in Π.

Proof: Fix m ∈ Ξ. Let h : Π → R be a continuous function and suppose {πn} is a sequence in Π

that converges to some π ∈ Π. Then, by the definition of ρt,
∣∣∣∣
∫

h(π′)ρt(dπ′|πn, j,m)−
∫

h(π′)ρt(dπ′|π, j, m)
∣∣∣∣

≤
∣∣∣∣
∫

h(Bt(πn, j, x,m))ν(dx|πn, j,m)−
∫

h(Bt(πn, j, x, m))ν(dx|π, j,m)
∣∣∣∣

+
∣∣∣∣
∫

h(Bt(πn, j, x, m))ν(dx|π, j, m)−
∫

h(Bt(π, j, x, m))ν(dx|π, j, m)
∣∣∣∣ . (C.3)

It is straightforward to show ν(πn, j, m) converges to ν(π, j, m) in norm.11 Since h◦Bt is a bounded

function, the first term on the right-hand side of (C.3) converges to zero. Now observe that

Bt(πn, j, x, m) converges to Bt(π, j, x, m) for ν(π, j,m)-almost all x ∈ X. Hence, by the dominated

convergence theorem, the second term on the right-hand side of (C.3) also converges to zero.

Proof of Lemma 1: First notice that V
∗
t is bounded. Now define V t,n : Ht → R, with t ∈ N

and n ∈ Z+, to be such that V t,0 ≡ 0 and V t,n = T tV t+1,n−1. Because the maps qt(·, π0,m) are

transition probabilities from Ht × A into Ht+1, the operator T t maps measurable functions into

measurable functions. Hence, for each t ∈ N, the elements of {V t,n}n∈Z+ are measurable. Since

{V t,n} converges pointwise to V
∗
t for all t ∈ N, see Theorem 14.5 in Hinderer (1970), V

∗
t is also

measurable. To finish, observe, by Theorem 14.4 in the same book, that {V ∗
t } solves (2). The

desired result is then a consequence of Lemma 7 in Appendix A.

Proof of Lemma 4: Consider the map T = {Tt} : Bb(Π)∞ → Bb(Π)∞ such that if v = {vt} ∈
Bb(Π)∞, then Tv = {Ttvt+1} = {maxj∈A Tt,jvt+1}. We know, from the proof of Lemma 7, that T

is a contraction in Bb(Π)∞. Now let Bj be the subset of Bb(Π)∞ such that if v = {vt} ∈ Aj , then

Tt,kvt+1(π)− Tt,jvt+1(π) ≤ SjkW
∗
j (π)− SjjW

∗
j (π)

for all k 6= j, π ∈ Π, and t ∈ N. This set is a closed subset of Bb(Π)∞. If we show that T maps Bj

into itself, then {V ∗
t } ∈ Bj by a standard argument. In what follows we omit π when convenient.

It is also convenient to introduce the operators Qt,j such that Tt,jv = sj + βQt,jv.
11Recall that if S is a metric space and ν ∈ P(S), then the norm of ν is the supremum of

∫
f(s)ν(ds) over all

f ∈ Bb(S) such that ||f ||sup ≤ 1.
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Let v = {vt} ∈ Bj . First notice that

Tt+1vt+2 = Tt+1,jvt+2 + max
k 6=j

{ 0 , Tt+1,kvt+2 − Tt+1,jvt+2}

≤ Tt+1,jvt+2 + max
k 6=j

{ 0 , SjkW
∗
j − SjjW

∗
j }

= Tt+1,jvt+2 − SjjW
∗
j + W ∗

j .

A similar argument shows that Tt+1vt+2 ≥ Tt+1,kvt+2−SjkW
∗
j +W ∗

j if k 6= j. Since Qt,kQt+1,jvt+2 =

Qt,jQt+1,kvt+2 for all k, j ∈ A, we then have that k 6= j implies that

Tt,kTt+1vt+2 − Tt,jTt+1vt+2

≤ Tt,kTt+1,jvt+2 − Tt,kSjjW
∗
j + Tt,kW

∗
j − Tt,jTt+1,kvt+2 + Tt,jSjkW

∗
j − Tt,jW

∗
j

= (1− β)(rk − rj) + βTt,k(W ∗
j − SjjW

∗
j ) + Tt,jSjkW

∗
j − Tt,jW

∗
j . (C.4)

Now observe that W ∗
j − SjjW

∗
j = −rj + (1 − β)W ∗

j is convex. By Lemma 3.1 in Banks and

Sundaram (1992), for each j ∈ A and t ∈ N, the operator Qt,j maps convex functions into convex

functions. Hence, by repeated application of Jensen’s inequality,

Qt,k(W ∗
j − SjjW

∗
j ) ≤ Qt,1 · · ·Qt,N︸ ︷︷ ︸

Qt

(W ∗
j − SjjW

∗
j ) ≤ lim

n→∞(Qt)n(W ∗
j − SjjW

∗
j ),

where (Qt)n is the nth iterate of Qt. By Lemma 12 below, if v : Π → R is continuous, then (Qt)nv

converges pointwise to
∑

θ∈Θ v(δθ)π(θ) for all t ∈ N. Therefore,

βQt,k(W ∗
j − SjjW

∗
j ) ≤ −βrj + β(1− β)

∑

θ∈Θ

W ∗
j (δθ)π(θ)

= (1− β)SjkW
∗
j − (1− β)(rk − rj)− rj . (C.5)

To finish, notice that: (A) SjkW
∗
j is linear, and so Tt,jSjkW

∗
j = rj + βSjkW

∗
j ; and (B) W ∗

j is

convex, and so Tt,jW
∗
j ≥ SjjW

∗
j by Jensen’s inequality. From (A), (B), (C.4), and (C.5), we can

then conclude that if {wt} = {Ttvt+1}, then

Tt,kwt+1(π)− Tt,jwt+1(π) ≤ SjkW
∗
j (π)− SjjW

∗
j (π)

for all k 6= j, π ∈ Π, and t ∈ N, the desired result.
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Lemma 12. Suppose v : Π → R is continuous. Then, for all t ∈ N and π ∈ Π, (Qt)nv(π) converges

to
∑

θ∈Θ v(δθ)π(θ) as t →∞.

Proof: We omit the dependence of νθ
t (j, m), ρt(π, j,m), and Bt(π, j, x, m) on both m and t, as

these parameters play no role in the argument. Accordingly, we drop the dependence of Qt on t.

Let W = XN and denote a typical element of this set by w. Then, W is the set of all

possible observations after N action choices and meetings in society. Now let B(π, w) ∈ Π be

the updated belief when π is the prior, actions 1 to N are consecutively chosen, and w ∈ W is

observed. Moreover, let Ψθ∞ be the Borel measure on W∞ that extends the measures Ψθ
n = ×n

t=1Ψ
θ,

where Ψθ = ×N
j=1ν

θ(j). To finish, define {Bn}n∈N, with Bn : Π × W∞ → Π, to be such that if

w∞ = {wn} ∈ W∞, then: (i) B1(π, w∞) = B(π,w1); (ii) Bn(π,w∞) = B(Bn−1(π, w∞), wn) for

n > 1.12 Then, if v : Π → R is measurable,

Qnv(π) =
∑

θ∈Θ

π(θ)
∫

v(Bn(π, w∞))Ψθ
∞(dw∞).

Fix θ. Lemma 3 implies that if π ∈ int Π, the interior of Π, then {Bn(π, · )}n∈N converges

Ψθ∞-almost surely to δθ. Fix π ∈ int Π, let ε > 0, and suppose v : Π → R is continuous. For any

κ > 0, let Nθ
n,κ = {||Bn(π, · )− δθ|| > κ}. Because almost sure convergence implies convergence in

measure, Ψθ∞(Nθ
n,κ) → 0 as n → ∞. Therefore, there exists k0(κ, θ) ∈ N such that if n ≥ k0(κ, θ),

then Ψθ∞(Nθ
n,κ) ≤ εM/4, where M = ||v||sup. Now let δ > 0 be such that if ||x − x′|| < δ, then

||v(x)− v(x′)|| < ε
2 . Since Ψθ∞((Nθ

n,δ
)c) ≤ 1,

∣∣∣∣
∫

v(Bn(π, w∞))Ψθ
∞(dw∞)− v(δθ)

∣∣∣∣ ≤
∫
|v(Bn(π, w∞))− v(δθ)|Ψθ

∞(dw∞)

=
∫

Nθ
n,δ

|v(Bn(π,w∞))− v(δθ)|Ψθ
∞(dw∞) +

∫

(Nθ
n,δ

)c

|v(Bn(π, w∞))− v(δθ)|Ψθ
∞(dw∞)

≤
∫

Nθ
n,δ

|v(Bn(π,w∞))− v(δθ)|Ψθ
∞(dw∞) +

ε

2
.

We can then conclude that if n ≥ k0(δ, θ), then
∣∣∣∣
∫

v(Bn(π, w∞))Ψθ
∞(dw∞)− v(δθ)

∣∣∣∣ ≤ 2MΨθ
∞(Nθ

n,δ
) +

ε

2
= ε.

Since Θ is finite, Qnv(π) → ∑
θ∈Θ π(θ)v(δθ). To finish, notice that Qnv(π) =

∑
θ∈Θ π(θ)v(δθ) for

all n ∈ N when π belongs to the boundary of Π.
12The functions Bn are measurable by Lemma 10.
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Appendix D

Proof of Lemma 5: Let F ∗ be a perfect bayesian equilibrium. By Appendix B, there exists

a sequence of maps τt : [0, 1] × Θ → P(Ht) such that: (i) if D ∈ B(Ht), then τt(i, θ)(D) is the

probability that agent i experiences a period t history in D when the state of the world is θ

and the strategy profile is F ∗; (ii) τt( · , θ) is a transition probability from ([0, 1], Σ) into Ht. By

Kolmogorov’s extension theorem, for each i ∈ [0, 1] and θ ∈ Θ, the probability measures τt(i, θ)

admit an unique extension to P(H∞) that we denote by τ(i, θ). By definition, τ(i, θ)(D) is the

probability that i experiences an infinite history in D ∈ B(H∞) when the state of the world is

θ and the strategy profile is F ∗. Let Ht = {G ⊂ H∞ : G = D × Z−t, where D ∈ B(Ht)} and

D be the subset of B(H∞) such that if D ∈ D, then i 7→ τ(i, θ)(D) is Lebesgue measurable. By

construction, D contains
⋃∞

t=1Ht. Since D is also a monotone class, the monotone class lemma

implies that D = B(H∞). Hence, for each θ ∈ Θ, the map τ( · , θ) is a transition probability from

([0, 1], Σ) into H∞.

Let Et,j ⊂ H∞ be the event where j is chosen in period t. By construction,

mt(j, θ, F ∗) =
∫

τ(i, θ)(Et,j)µ(di).

Now let Ej =
⋂∞

t=1 Et
j , where Et

j =
⋃∞

m=t Em,j ⊃ Et,j ; i.e., Ej denotes the event where j is chosen

infinitely many times. Since Et
j ↓ Ej , τ(i, θ)(Ej) = limt τ(i, θ)(Et

j) for all i ∈ [0, 1]. Therefore,

mt(j, θ, F ∗) converges to zero if τ(i, θ)(Ej) = 0 almost surely. Suppose then, by contradiction, that

mt(j, θ, F ∗) does not converge to zero. This implies that there is I ′ ⊆ [0, 1] with µ(I ′) > 0 such

that τ(i, θ)(Ej) > 0 for all i ∈ I ′. Consequently, a positive measure of agents chooses j an infinite

number of times. Since all agents have non-dogmatic priors, Lemma 3 implies that any agent who

chooses j infinitely often learns its true type with probability one. In particular, if πt denotes the

period t belief of such an agent, there is t0 ∈ N such that if t ≥ t0, then lN (πt) > 0 with probability

one, a contradiction by Theorem 1.

Proof of Lemma 6: Let F ∗ be a perfect bayesian equilibrium and suppose the state of the world

is θ̂ ∈ Θ(j). We divide the argument in several small steps.

(A) For each t ∈ N, let Xt = {G ⊆ X∞ |G = H ×X−t, where H ∈ B(Xt)}. Recall that X is the

observation space. Consider an agent who chooses j in all periods, including zero. For each θ ∈ Θ,
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the probability that he observes an infinite history of one-period observations in G ∈ ⋃∞
t=1Xt can

be computed from the transition probabilities {νθ
t }t∈Z+ . Denote the set function obtained in this

way by ηj(θ). By Kolmogorov’s extension theorem, ηj(θ) admits an unique extension to P(X∞)

that we also denote by ηj(θ). To finish this step, let ηj(π) be the unique probability measure on

B(θ×X∞) such that ηj(π)(Θ′×G) =
∑

θ∈Θ′ π(θ)ηj(G|θ) for all Θ′ ⊆ Θ and G ∈ B(X∞), where π

is some given prior belief.

(B) For each θ ∈ Θ and t ∈ Z+, let πθ,t(π) = Eηj(π)[I{θ}×X∞ |Gt], where G0 = {∅, Θ × X∞} and

Gt = {∅, Θ}×Xt for t ≥ 1. Then, πθ,0(π) ≡ π(θ) and πθ,t, with t ≥ 1, is the period t (unconditional)

posterior belief that the state of the world is θ for any agent with prior π who chooses j in every

period. By Levy’s theorem, see Theorem 3, p. 510, in Shiryaev (1996), πθ,t(π) converges ηj(π)-

almost surely to πθ,∞(π) = Eηj(π)[I{θ}×X∞ |G∞], where G∞ = σ(
⋃∞

t=0 Gt).

(C) We know that if π ∈ Π puts probability one on θ̂, then lj(π) = rj(θ̂j) −maxk 6=j rk(θ̂k), which

is greater than zero by assumption. Consequently, there exists α ∈ (0, 1) such that lj(π) > 0 if

π(θ̂) ≥ 1 − 2α. Consider then the sequence {Lt(π)}t∈Z+ with Lt(π) = π
θ̂,t

(π) − (1 − α), and let

L∞(π) = π
θ̂,∞(π)− (1− α). Define τ(π) to be such that τ(π) = inf{t ∈ Z+ : Lt(π) < 0}, with the

convention that the infimum of an empty set is∞. Notice that {τ(π) = t} ∈ Gt for all t ∈ Z+∪{∞}.
In particular, τ(π) is a stopping time with respect to the filtration {Gt}t∈Z+ . Now let Lτ (π) be the

stopped random variable given by

Lτ (π) =





Lt(π) if τ = t

L∞(π) if τ = ∞
.

By Proposition A.1 in Banks and Sundaram (1992), Eηj(π)[Lτ (π)] = Eηj(π)[L0(π)], from which we

can conclude that Eηj(π)[Lτ (π)] = π(θ̂)− (1− α).

(D) Let Π′j(θ̂) = {π ∈ Π : π(θ̂) ≥ 1− α and π(θ) = 0 if θk 6= θ̂k for k 6= j}. By definition, an agent

with prior belief in Π′j(θ̂) knows the true type of k 6= j and assigns high enough probability to the

event that θ = θ̂. Notice that Π′j(θ̂) ⊂ Πd. By item C and the definition of Π′j(θ̂), Eηj(π)[Lτ (π)] ≥ 0

if π ∈ Π′j(θ̂). Hence, π ∈ Π′j(θ̂) implies that ηj(π)({τ(π) = ∞}) > 0. In particular, there exists

G ∈ B(X∞) and θ̃ ∈ Θ such that π(θ̃) > 0, ηj(G|θ̃) > 0, and τ(π) = ∞ in {θ̃} × G. This last

result follows from the definition of ηj(π). Theorem 1 then implies that the following is true for a

measure one of agents: if they have a prior belief in Π′j(θ̂) and choose j in period zero, then they
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choose j in every t ≥ 1 when the state of the world is θ̃. Suppose, by contradiction, that θ̃ 6= θ̂. By

Lemma 3, an agent who chooses j infinitely many times learns its true type with probability one,

regardless of the meetings in society. Since an agent with prior π in Π′j(θ̂) already knows the true

type of k 6= j, π
θ̂,t

(π) converges to zero ηj(π)-almost surely in {θ̃} ×G. This, however, contradicts

the fact that π
θ̂,t

(π) ≥ 1− α in this set.

(E) This completes the first part of the proof. Let Mt = π
θ̂,t
− (1 − 2α) and define τ+(π) to be

such that τ+(π) = inf{t ∈ Z+ : Mt < 0}. Notice that τ+(π) = ∞ if τ(π) = ∞. Now let Πj(θ̂) be

the subset of {π ∈ Πd : π(θ̂) > 0} with the property that if an agent has a prior π in Πj(θ̂), then

there is G ∈ B(X∞) with ηj(G|θ̂) > 0 such that τ+(π) = ∞ in {θ̂} ×G. This set is non-empty by

the above reasoning. In what follows we use a continuity argument to show that Πj(θ̂) is an open

subset of Πd. The full support assumption together with Theorem 1 and the assumption that all

agents randomize in period zero then imply that there is a positive measure of agents who choose

j in every t ≥ 1.

(F) Fix π ∈ Πj(θ̂) and let {πn} ∈ Πd be such that limπn = π. Assume, without loss, that πn(θ̂) > 0

for all n ∈ N. Moreover, let G ∈ B(X∞) be such that ηj(G|θ̂) > 0 and τ(π) = ∞ in {θ̂}×G. Since

π
θ̂,t

(π) ≥ 1−α in {θ̂}×G for all t ∈ N, π
θ̂,∞(π) ≥ 1−α ηj(π)-almost surely in {θ̂}×G. Now observe

that ηj(πn) converges to ηj(π) in (variation) norm. Corollary 3.2 in Crimaldi and Pratelli (2005)

then implies that π
θ̂,t

(πn) converges to π
θ̂,∞(π) in ηj(π)-measure as t, n →∞. Hence, there exists

G′ ⊆ G with ηj(G′|θ̂) > 0 and t0, n0 ∈ N such that π
θ̂,t

(πn) > 1−2α on {θ̂}×G′ if t ≥ t0 and n ≥ n0.

Also notice that for each t ∈ N, π
θ̂,t

(πn) converges pointwise to π
θ̂,t

(π). Therefore, by Egoroff’s

theorem, there exist n1 ∈ N and G′′ ⊆ G′ with ηj(G′′|θ̂) > 0 such that π
θ̂,t

(πn) > 1−2α in {θ̂}×G′′

for all t ∈ {1, . . . , t0 − 1} if n ≥ n1. We can then conclude that for all t ∈ N, π
θ̂,t

(πn) > 1− 2α in

{θ̂} ×G′′ if n ≥ max{n0, n1}, the desired result.

Lemma 13. Suppose that if θ ∈ Θ is such that z1(θ1) ≤ z2(θ2) = z, then mt(1, θ, F ∗) converges

to zero in any perfect bayesian equilibrium F ∗. Let the state of the world be θ with z2(θ2) = z and

suppose that F ∗ is a perfect bayesian equilibrium where mt(1, θ, F ∗) converges to some α ∈ (0, 1).

Then, with probability one, an agent with a non-dogmatic prior who chooses 2 infinitely many times

learns that z1 is greater than z.
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Proof: Consider an agent who chooses 2 infinitely many times. We can restrict attention to an

agent who follows an optimal strategy.13 By Corollary 1, he can only choose 1 a finite number

of times. Hence, without loss, we can assume that he chooses 2 in all periods. Let χθ ∈ P(X∞)

be such that if D ∈ B(X∞), then χθ(D) is the probability that this agent experiences an infinite

history of one-period observations that belongs to D. Denote a typical element of X∞ by x = {xt},
where xt = (x1t, x2t) ∈ Y × A is the period t observation. Now let bt : X∞ → {0, 1} be such that

bt(x) = 1 if x2t = 2 and bt(x) = 0 otherwise. By construction, Eχθ
[bt] = mt(2, θ, F ∗). Moreover, let

yt : X∞ → R be such that yt(x) = x1t. Notice that the random variables {bt}t∈Z+ and {yt}t∈Z+

are independent. In what follows we omit the dependence of the matching probabilities on F ∗

Suppose the agent under consideration has a non-dogmatic prior π0 and assume, without loss,

that mt(j, θ) > 0 for all j and t. Let ft(bt, θ) = mt(2, θ)btmt(1, θ)1−bt . If π( · |π0, y0, b0, . . . , yt, bt) is

his updated belief after he observes (y0, b0, . . . , yt, bt) in the first t + 1 periods, then

π(θ|π0, y0, b0, . . . , yt, bt) =
Πt

n=0g2(yn, θ2)fn(bn, θ)π0(θ)∑
θ′∈Θ Πt

n=0g2(yn, θ2)fn(bn, θ′)π0(θ′)
.

Observe that π(θ|π0, y0, b0, . . . , yt, bt) ≤ {1 + Lt(θ|π0, y0, b0, . . . , yt, bt)}−1, where

Lt(θ|π0, b0, y0, · · · , yt, bt) =
Πt

n=0g2(yn, θ2)fn(bn, θ)π0(θ)
Πt

n=0g2(yn, θ2)fn(bn, θ)π0(θ)
.

Simple algebra shows that lnLt =
∑t

n=0 bnγn(2) +
∑t

n=0(1− bn)γn(1) +
∑t

n=0 ξn + δ, where

γn(j) = ln
{

mn(j, θ)
mn(j, θ)

}
, ξn = ln

{
g2(yn, θ2)
g2(yn, θ2)

}
, and δ = ln

{
π0(θ)
π0(θ)

}
.

Let Θ′ = {θ ∈ Θ : z2(θ2) = z and z1(θ1) > z}, Θ′′ = {θ ∈ Θ : z2(θ) = z and z1(θ1) ≤ z}, and

Θ̂ = Θ′ ∪ Θ′′. Notice that θ ∈ Θ′. From now on, all almost sure statements are with respect to

χθ. There are two cases to consider. If θ2 6= θ2, Lemma 3 implies that π(θ|y0, b0, . . .) converges to

zero almost surely. Suppose then that θ2 = θ2 and θ ∈ Θ′′. Notice that ξn ≡ 0 in this case. Since

Varχθ
(bt) ≤ 1/4 and

∑t
n=0(1 + t)−1mn(2, θ) → 1− α > 0, Kolmogorov’s SLLN implies that

1
t + 1

t∑

n=0

bn =
1

t + 1

t∑

n=0

(bn −mn(2, θ)) +
1

t + 1

t∑

n=0

mn(2, θ) → 1− α > 0

almost surely. Now observe that mt(1, θ) → α > 0 and mt(1, θ) → 0 by assumption. Hence, {γt(2)}
is bounded while γt(1) →∞. This implies that (1 + t)−1 ln Lt →∞ almost surely, and so Lt →∞
almost surely as well. Therefore, π(θ|π0, y0, b0, . . .) → 0 almost surely, the desired result.

13This lemma is true without this restriction, but the proof is longer.
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