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Abstract

We consider an efficiency-wage model with the Calvo-type sticky prices and analyze op-

timal monetary policy when unemployment insurance is not perfect. With imperfect risk

sharing, strict zero-inflation policy is no longer optimal even if the zero-inflation steady-state

equilibrium is assumed to be (conditionally) efficient. Quantitative result depends on how id-

iosyncratic earning losses, measured by the (inverse of the) relative income of the unemployed

to the employed, vary over business cycles. If idiosyncratic income losses are acyclical, optimal

policy differs very little from the zero-inflation policy. However, if they vary countercyclically,

as evidence suggests, the deviation of optimal policy from complete price stabilization becomes

quantitatively significant. Furthermore, optimal policy in such a case involves stabilization of

output to a much larger extent.
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1 Introduction

There is a growing literature on optimal monetary policy based on stochastic dynamic general

equilibrium framework with imperfect competition and staggered price-setting. Its simplest version

has two types of distortions: relative-price distortions due to staggered price-setting and distortions

associated with imperfect competition (market power). As discussed by Goodfriend and King

(1997), Rotemberg and Woodford (1997) and Woodford (2003), if fiscal policy is used to offset the

distortions caused by market power, then optimal monetary policy is characterized as complete

stabilization of the price level. Intuition is very simple: without distortions due to market power,

the flexible-price equilibrium becomes efficient, which, in turn, can be attained by zero-inflation

policy.1 It is the price level that has to be stabilized, but not the level of output.2 As long as the

inflation rate is kept at zero, any fluctuations in output would be efficient.

The basic model has been extended in several directions. For instance, Benigno and Woodford

(2003, 2005) and Khan, King and Wolman (2003) consider the case where distortions due to market

power are present, and illustrate that the complete price stabilization is not optimal in general.

Schmitt-Grohé and Uribe (2005) extend the analysis further, by studying a even richer model, based

on Christiano, Eichenbaum and Evans (2005). The existing research on this literature, however,

has restricted attention to complete-markets (representative-agent) models. In this paper we are

interested to see the extent to which the nature of optimal monetary policy is affected by the

presence of unemployment when unemployment insurance is not perfect. In particular, we’d like

to examine whether or not the existence of the imperfectly insured unemployed calls for more

output stabilization.

For this purpose, we bring unemployment into the basic sticky-price model, building on the

efficiency-wage model of Alexopoulos (2004). The model has a representative household with a

continuum of individual members. In each period, each member is either employed or unemployed.

An employed worker may or may not shirk. A detected shirker will be punished by an exogenous

reduction in the wage payment.3 Firms determine the wage rate so that no workers would shirk in

equilibrium. It is assumed that all the savings-related decisions are made by the household rather

than by individual members, so that, even though the level of consumption differs between the

employed and the unemployed, we can still use the representative household framework. The rest

of the model is similar to the basic sticky-price model of Woodford (2003).

1Note that this argument assumes that initial price dispersion is nil (or “small” if we are interested in a first-order

approximation of optimal monetary policy). See Yun (2005) on this point.
2What is stabilized is the “output gap,” which is defined as the difference between the actual level of output and

the efficient level of output.
3A relation with the model of Shapiro and Stiglitz (1984) is discussed in Appendix.
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We analyze optimal monetary policy using the linear-quadratic approach developed by Rotem-

berg and Woodford (1997), Woodford (2003), and Benigno and Woodford (2003, 2005). To focus

on the effect of imperfect unemployment insurance on stabilization policy, we assume that fiscal

policy is used to make the zero-inflation steady-state conditionally efficient. It follows that with

perfect insurance the flexible-price equilibrium would be efficient so that complete price-level sta-

bilization would be the optimal policy. This is not true with imperfect insurance, so that optimal

policy would involve some fluctuations in the inflation rate. Our qualitative analysis shows that a

government-purchase shock is a negative cost-push shock, while a productivity shock is a positive

one. That is, optimal policy should generate some deflation (inflation) when there is an exogenous

increase in government purchases (productivity).

But, quantitatively, how large is the deviation of optimal policy from the complete price sta-

bilization? The answer crucially depends on how idiosyncratic income shocks vary over business

cycles. Specifically, what matters is how the relative income of the unemployed to that of the

employed varies over business cycle. We say that idiosyncratic income losses are acyclical if the

relative income of the unemployed is constant over business cycles and countercyclical if it varies

procyclically. We begin with the case where the relative income of the unemployed is constant

over business cycles. In this case, although complete price stabilization is not exactly optimal with

imperfect insurance, optimal policy differs very little from it. Thus, as long as idiosyncratic income

losses are acyclical, optimal policy essentially takes the form of complete price stabilization. This

is so even though the unemployment rate goes up in a recession.

Evidence seems to suggest, however, that idiosyncratic shocks are countercycal. In particular,

earning losses of unemployed or displaced workers are found to be countercyclical (e.g., Jacobson,

LaLonde and Sullivan, 1993). To take it into account, our second numerical exercise assumes that

the relative income of the unemployed varies procyclically over business cycles. In this case, the

deviation of optimal policy from zero-inflation policy becomes much larger. Furthermore, optimal

policy under countercyclical idiosyncratic income losses involves stabilization of the level of output,

much more so compared to the case where idiosyncratic income losses are acyclical. Intuition is

simple: if a bad shock to the economy worsens uninsured idiosyncratic shocks and makes the

unemployed more miserable, policy should respond to reduce the number of unemployment, which

is to increase the level of output.

Our numerical exercise suggests that the mere existence of the imperfectly insured unemployed

may not justify output stabilization, for which there need to be systematic variation of idiosyncratic

risk over business cycles. An important limitation of our model is that idiosyncratic shocks are

purely transitory. Evidence such as Storesletten, Telmer and Yaron (2004) suggests, however, that

idiosyncratic shocks are highly persistent as well as countercyclical. Based on a non-monetary
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growth model, Krebs (2005) demonstrates that the welfare cost of business cycles can be sizable

with such idiosyncratic shocks. Analyzing optimal policy with persistent idiosyncratic shocks is

left for future research.

This paper is organized as follows. In Section 2 the model economy is described. In Section 3 the

efficient allocation and the flexible-price equilibrium are discussed. In Section 4 a linear-quadratic

approximation of the model is derived. In Section 5 optimal monetary policy is examined in the

case where the degree of risk sharing is constant over business cycles. Section 6 considers the case

where the degree of risk sharing is procyclical. Concluding remarks are in Section 7.

2 The model economy

In this section we describe our model economy. Its key features are staggered price setting and

unemployment. Our model builds on Woodford (2003) for the former and the efficiency-wage

model of Alexopoulos (2004) for the latter. Alexopoulos’s model differs from the well known

model of Shapiro and Stiglitz (1984) in that a detected shirker is punished by a reduction in

the wage rate, rather than by getting fired. Nevertheless, as discussed in Appendix, it becomes

observationally equivalent to the Shapiro-Stiglitz model with a particular unemployment insurance

program. Indeed, we find it very convenient that Alexopoulos’s model can be made observationally

equivalent to the standard indivisible-labor model of Hansen (1985) and Rogerson (1988), or to

the Shapiro-Stiglitz model, depending on the assumed unemployment insurance program.

2.1 Households

There is a representative household which has a continuum of individual members of unit measure.

In each period, randomly selected Nt individuals receive job offers. The rest, 1 − Nt, are unem-

ployed.4 All employed workers work for a fixed length of hours, h. An employed worker, however,

may or may not shirk. A shirker is a worker whose effort level is different from that required by

her employer, et.5

The utility flow of an employed individual who consumes C and exerts an effort level e is given

by

U(C, e) = lnC + ω ln(H− he), (1)

4We assume that whether or not each individual receives a job offer is observable and that a person who turns

down the job offer loses the eligibility for unemployment benefits. Then as long as the unemployment-insurance fee

is not too large, no one would turn down a job offer.
5As we shall see, the required level of effort will be the same for all firms.
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where ω,H > 0 are constant parameters, and C is the Dixit-Stiglitz aggregate of differentiated

consumption goods, c(i), i ∈ [0, 1]:

C =
[∫ 1

0

c(i)
θ−1

θ di

] θ
θ−1

.

Given the prices of differentiated products, p(i), i ∈ [0, 1], the standard cost-minimization argument

yields the price index, P :

P =
[∫ 1

0

p(i)1−θ di

] 1
1−θ

,

and derived demand:

c(i) = C

[
p(i)
P

]−θ

, i ∈ [0, 1].

The utility flow of an unemployed individual is given by U(C, 0).

Individual members of a household do not participate in the asset market. Instead, it is the

household that trades state-contingent claims, At+1; receives (nominal) dividends from the firms,

Πt(i), i ∈ [0, 1]; and pays (nominal) lump sum taxes to the government, Tt. The flow budget

constraint of the household is then given by

It + Et[Qt,t+1At+1] = At +
∫ 1

0

Πt(i) di − Tt, (2)

where It is the “income” distributed equally across the household members, and Qt,t+1 is the

stochastic discount factor used to evaluate state-contingent claims, At+1. We assume the natural

debt limit to prevent from the Ponzi scheme:

At+1 ≥ −Et+1

∞∑
j=0

Qt+1,t+1+j

{∫ 1

0

Πt+1+j(i) di − Tt+1+j

}
. (3)

Here, Qt,t+j is the stochastic discount factor used to evaluate date-t + j nominal income at date t,

which is defined recursively as

Qt,t+j = Qt,t+j−1Qt+j−1,t+j , j ≥ 1,

with Qt,t ≡ 1.

With lump-sum transfer It from the household, the date-t consumption of an employed indi-

vidual who is not detected shirking, Ce,t, is given by

PtCe,t = It + hWt − UIft , (4)

where Wt is the nominal wage rate, and UIft is the unemployment-insurance fee. A shirker is

caught with probability d ∈ (0, 1). A detected shirker receives only a fraction s ∈ [0, 1) of the
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wage. Both s and d are constant, exogenous parameters. The date-t consumption of a detected

shirker, Cs,t, becomes

PtCs,t = It + shWt − UIft . (5)

Given this, a shirker would always choose e = 0. Finally, the level of consumption of an unemployed

is given as

PtCu,t = It + UIbt , (6)

where UIbt denotes unemployment benefits.

The objective of the household is to maximize the average utility of its members. As we shall

see, firms set the wage rate, Wt, and the required level of effort, et, so that employed workers never

shirk. Hence, the objective function of the household is given by

E0

∞∑
t=0

βt
[
NtU(Ce,t, et) + (1 − Nt)U(Cu,t, 0)

]
(7)

Taking as given A0 and {Nt, et, Pt, Qt,t+1, Tt,UIft ,UIbt ,Wt,Πt(i); i ∈ [0, 1], t ≥ 0}, the household

chooses {It,At+1; t ≥ 0} so as to maximize the average utility (7) subject to (2), (3), (4), (6).

The first-order conditions imply that

Qt,t+1
Pt+1

Pt
= β

Nt+1UC(Ce,t+1, et+1) + (1 − Nt+1)UC(Cu,t+1, 0)
NtUC(Ce,t, et) + (1 − Nt)UC(Cu,t, 0)

Notice that the marginal rate of substitution involves the average marginal utilities. The transver-

sality condition takes the standard form:

lim
j→∞

EtQt,t+jAt+j = 0.

2.2 Firms

2.2.1 No shirking condition

Each differentiated product is produced by a single supplier. Each producer has the same produc-

tion technology:

yt = Atf
[
eth(nt − ns

t )
]
,

≡ At

[
eth(nt − ns

t )
] 1

φ ,

where φ ≥ 1, At is the economy-wide productivity shock, et is the level of effort required by the

firm, nt and ns
t are the numbers of employed and of shirkers, respectively. Given this production

technology, having shirkers would never be profitable for firms. Each firm offers an employment
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contract, {et,Wt}, to its employed. As the following argument shows, all firms offer the same

contract, so that the index of firms, i, is omitted here.

Because a shirker is detected with probability d, no workers in a given firm would shirk if

U(Ce,t, et) ≥ (1 − d)U(Ce,t, 0) + dU(Cs,t, 0).

Given that Ce,t and Cs,t are determined as in (4) and (5), the incentive-compatible level of effort

must satisfy

et ≤ e(Wt) ≡ H
h

− H
h

(
shWt + It − UIft
hWt + It − UIft

) d
ω

,

where the firm take It, UIft as given.

The cost minimization problem of the firm is then given by

min
Wt,nt

Wtnt s.t. Atf(ethnt) ≥ yt, and et ≤ e(Wt). (8)

The solution to this problem is given by

et = e,

Wt

Pt
=

χw

h

1
U(Ce,t, e)

(9)

where e and 0 < χw < 1 are constants defined in Appendix. As we shall discuss below, the

equilibrium wage rate in (9) is inefficient unless unemployment insurance is perfect.

2.2.2 Calvo pricing

The producer of product i faces the demand function:

yt(i) = Yt

[
pt(i)
Pt

]−θ

, (10)

where

Yt =
[∫ 1

0

yt(i)
θ−1

θ di

] θ
θ−1

. (11)

Let τ be the tax rate on firms’ revenue. The profit flow of firm i is then given by

Πt

[
pt(i)

]
= (1 − τ)pt(i)yt(i) − hnt(i)Wt

= (1 − τ)YtP
θ
t pt(i)1−θ − Wt

e
f−1

(
YtP

θ
t pt(i)−θ

At

)

The real marginal cost, st(i), is defined by

st(i) =
Wt

eAtPt

1
f ′(f−1

[
yt(i)/At

]) (12)
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Following Calvo (1983), we assume that only a fraction (1− α) of randomly selected firms can

reset their prices in each period. The rest of firms simply charge the same prices as in the previous

period. Thus, if firm i receives the opportunity of resetting its product price in period t, it chooses

pt(i) so as to maximize

max Et

∞∑
T=t

αT−tQt,T ΠT

[
pt(i)

]

In this model, all firms which reset prices in the same period choose the same price.6 Let p∗t denote

the price chosen by all firms resetting their prices in period t. It satisfies the first-order condition:

Et

∞∑
T=t

αT−tQt,T YT P θ
T

{
p∗t −

1
1 − Φ

PT st,T

}
= 0, (13)

where st,T is the real marginal cost in period T of those firms that reset their prices in period t,

and

Φ ≡ 1 − (1 − τ)
θ − 1

θ
.

2.3 Government

The government conducts monetary and fiscal policy. The flow budget constraint for the govern-

ment is

Tt + τPtYt + NtUIft + Et[Qt,t+1At+1] = At + PtGt + (1 − Nt)UIbt ,

where At+1 denotes the state-contingent debt issued by the government and A0 is given.

We assume a very simple form of fiscal policy. The government takes as given τ , UIft , UIbt , Gt,

as well as Pt, Nt, and Yt. Fiscal policy sets Tt in the “Ricardian” way (Woodford, 1995) so that

we do not need specify the details of the conduct of fiscal policy. Monetary policy is formulated

as in Woodford (2003, Chapter 7), Benigno and Woodford (2003, 2005), among others. Thus,

optimal monetary policy is implicitly defined as the solution to the (adequately modified version

of) Ramsey problem. With a linear-quadratic approximation, in particular, monetary policy is to

set a state-contingent path of inflation rates.

2.4 Exogenous variables

The unemployment-insurance fee, UIft , is assumed to remain small enough that no worker with a

job offer would turn it down. Specifically, given that U(Ce, e) = U(Cs, 0) in equilibrium and that
6An implicit assumption here is that each firm possesses the same, constant amount of firm-specific capital. If we

allow for accumulation of such capital, the price chosen by a firm would depend on the amount of capital it holds.

See Woodford (2005) for such a model.
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a worker who turns down a job offer is not eligible for unemployment benefits, a job offer would

never be rejected if PtCs,t ≥ It, that is, if

UIft ≤ shWt,

which is assumed to hold throughout this paper.

Let Bt denote the ratio of the level of consumption of the unemployed to that of the employed:

Bt ≡ Cu,t

Ce,t
=

It + UIbt
hWt + It − UIft

.

If unemployment insurance is perfect, Bt = 1; otherwise, Bt < 1. Let Ct be the aggregate level of

consumption:

Ct ≡ NtCe,t + (1 − Nt)Cu,t.

The goods-market equilibrium condition is given by

Yt = Ct + Gt, (14)

where Gt is government purchases. The levels of consumption of the employed and the unemployed

are expressed respectively as

Ce,t =
1

Nt + (1 − Nt)Bt
Ct, (15)

Cu,t =
Bt

Nt + (1 − Nt)Bt
Ct. (16)

The unemployment insurance program is run with balanced budget: NtUIft = (1 − Nt)UIbt .

Note that here unemployment insurance affects equilibrium only through its effect on Bt. In our

benchmark analysis, we assume for simplicity that the unemployment benefits (and fees) in each

period are determined so that this ratio remains constant:

Bt = B̄ ∈ (0, 1], for all t.

We later relax this assumption in Section 6 and let this ratio, Bt, fluctuate procyclically over time.

In the benchmark case, there are two stochastic shocks: the government-purchase shock, Gt,

and the productivity shock, At. Assume that they take the form:

Gt = sGȲ eξG,t , and At = ĀeξA,t ,

where sG ∈ (0, 1), Ȳ is the steady-state level of output, and {ξG,t, ξA,t} follows a stationary

stochastic process with unconditional mean of zero. Let ξt denote the vector of these exogenous

disturbances:

ξt = (ξG,t, ξA,t).

When Bt is allowed to fluctuate, we let Bt = B̄eξB,t , and ξt = (ξG,t, ξA,t, ξB,t).
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3 Efficient allocation and flexible-price equilibrium

In this section we first rewrite the household’s utility in terms of aggregate output and a measure

of output dispersion across firms. A key finding is that the less risk sharing is, the less concave

the household’s utility is in aggregate output. Then we consider the efficient allocation given the

exogenous shocks: Gt and At. Here, efficiency is defined conditional on that the level of effort equals

the equilibrium level, e, and that unemployment insurance is limited by B̄. We shall also derive the

flexible-price equilibrium. It provides a useful benchmark, because, to a first-order approximation,

the level of output in the flexible-price equilibrium coincides with that in a sticky-price equilibrium

with zero inflation.

3.1 Utility flow of the household

Using (14)-(16), the flow utility of the household (i.e., the average utility flow of its members) is

given by

Wt ≡ NtU(Ce,t, et) + (1 − Nt)U(Cu,t, 0),

= Nt ln
[

1
Nt + (1 − Nt)Bt

Ct

]
+ (1 − Nt) ln

[
Bt

Nt + (1 − Nt)Bt
Ct

]
,

− ω
[
ln(H) − ln(H− he)

]
Nt + ln(H),

= ln(Yt − Gt) + z(Nt; B̄) − ω
[
ln(H) − ln(H− he)

]
Nt + ln(H), (17)

where

z(N ;B) ≡ (1 − N) ln B − ln
[
N + (1 − N)B

]
.

The function z(N ;B) represents the inefficiency caused by imperfect risk sharing, B. If B = 1,

z(N ; 1) = 0 for all N , so that the flow utility of the household takes the same form as in the

indivisible labor model of Hansen (1985) and Rogerson (1988):

Wt = ln(Yt − Gt) − ω
[
ln(H) − ln(H− he)

]
Nt + ln(H).

When B < 1, z(N ;B) has a minimum at N = N(B), where

N(B) ≡ 1 − B + B ln(B)
−(1 − B) ln(B)

<
1
2
,

and is increasing in N for N > N(B) and decreasing in N for N < N(B). In what follows, we

focus on the case where Nt > 1/2 holds almost surely for all t. Note also that the function z(N ;B)

is convex in N . Therefore, imperfect risk sharing makes the household’s objective function less

concave.
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The aggregate employment, Nt, is expressed as

Nt =
∫ 1

0

nt(i) di =
∫ 1

0

1
eh

[
yt(i)
At

]φ

di,

=
1
eh

(
Yt

At

)φ

Δt,

≡ N(Yt,Δt;At), (18)

where Δt is the output (or price) dispersion measure defined as

Δt ≡
∫ 1

0

[
yt(i)
Yt

]φ

di =
∫ 1

0

[
pt(i)
Pt

]−θφ

di ≥ 1. (19)

where the inequality follows from Jensen’s inequality.

Using this, the flow utility of the household can be expressed as a function of Yt, Δt, and

exogenous disturbances:

W(Yt,Δt; ξt) = U(Yt;Gt) + Z(Yt,Δ;At, B̄) − V (Yt,Δt;At) + ln(H), (20)

where

U(Y ;G) ≡ ln(Y − G), (21)

Z(Y,Δ;A,B) ≡ z
[
N(Y,Δ;A);B

]
, (22)

V (Y,Δ;A) = ω
[
ln(H) − ln(H− he)

]
N(Y,Δ;A) (23)

Since N(Y,Δ;A) is convex in Y , so is Z(Y,Δ;A,B). Hence imperfect unemployment insurance,

B̄ < 1, makes the objective function of the household less concave relative to the case of perfect

insurance. That is, ceteris paribus, the household tends to be willing to accept larger fluctuations

in output when risk sharing is not perfect. This property plays an important role in determining

the character of optimal monetary policy in our model. Throughout this paper we assume that

Z(Y,Δ;A,B) is not so convex that W(Y,Δ; ξ) is strictly concave in Y and Δ for each ξ.

Assumption 1. For each ξ, W(Y,Δ; ξ) is strictly concave in Y and Δ.

3.2 Efficient rate of output

The efficient allocation is the feasible allocation that maximizes the expected discounted sum of

the household’s average utility flows, {Wt}, in (20). This Pareto problem has no predetermined

variables and can be solved state by state in a static fashion. For each ξt, the efficient allocation,

{y∗
t (i) : i ∈ [0, 1]}, is the solution to

max
{yt(i)}

W(Yt,Δt; ξt)
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where Yt is given by (11). Under our assumption, it is straightforward to see that there is no

output dispersion in the efficient allocation:

y∗
t (i) = Y ∗

t , and Δ∗
t = 1,

and that the efficient level of aggregate output satisfies the first-order condition:

UY (Y ∗
t ;Gt) + ZY (Y ∗

t , 1;At, B̄) = VY (Y ∗
t , 1;At). (24)

As shown in Appendix, the efficient level of output is decreasing in the level of risk sharing, B̄:

∂Y ∗
t

∂B̄
≤ 0. (25)

Thus lower risk sharing (lower B̄) raises the efficient level of output. This is because less risk

sharing makes unemployment more costly, and hence the efficient level of unemployment is lower,

which implies that the efficient level of output is higher.

3.3 Flexible price equilibrium

Here we consider the flexible-price equilibrium, in which each firm can change its product price

freely in every period. The flexible-price equilibrium defines the “natural rates” of endogenous

variables, which are denoted by superscript n.

With flexible prices, each firm i ∈ [0, 1] chooses pt(i) so that

pt(i)
Pt

=
1

1 − Φ
st(i)

In the symmetric equilibrium, all firms charge the same price, pt(i) = Pt, which yields

st(i) = 1 − Φ, ∀i ∈ [0, 1]. (26)

In the flexible-price equilibrium, consumption of the employed can be written as

Cn
e,t = D(Y n

t ;At, B̄)(Y n
t − Gt),

where

D(Y ;A,B) ≡ 1
N(Y, 1;A) +

[
1 − N(Y, 1;A)

]
B

.

Using (9), (21) and (23), condition (26) can be expressed as

χ(1 − Φ)UY (Y n
t ;Gt)D(Y n

t ;At, B̄)−1 = VY (Y n
t , 1;At), (27)

where χ is the constant defined by

χ ≡ ω[ln(H) − ln(H− he)]
χw
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The natural rate of output, Y n
t , is defined implicitly in (27).

As shown in Appendix, in contrast with the case of the efficient rate of output (25), the natural

rate of output increases with the level of risk sharing:

∂Y n
t

∂B̄
≥ 0. (28)

This is because, other things being equal, an increase in risk sharing tends to reduce the amount

of consumption of the employed due to a rise in the unemployment-insurance fee. As shown in

equation (9), a decline in consumption of the employed, in turn, lowers the wage rate and hence

increases production.

4 Linear-quadratic approximation

We wish to characterize the optimal monetary policy using the linear-quadratic approach developed

by Woodford (2003) and Benigno and Woodford (2003, 2005). In that approach, the monetary

authority maximizes a quadratic approximation of the utility of the representative household sub-

ject to a log-linear approximation of the aggregate supply relation. Each approximation is taken

around the zero-inflation steady state.

With the Calvo pricing, the price index, Pt, evolves as

Pt =
[
(1 − α)p∗ 1−θ

t + αP 1−θ
t−1

] 1
1−θ , (29)

where p∗t is the newly set price in period t, defined in (13). It follows that

p∗t
Pt

=

(
1 − αΠθ−1

t

1 − α

) 1
1−θ

, (30)

where Πt ≡ Pt/Pt−1 is the gross rate of inflation in period t. Similarly, the evolution of the price

dispersion measure, Δt, is given by

Δt =
∫ 1

0

[
pt(i)
Pt

]−θφ

di

= (1 − α)
(

p∗t
Pt

)−θφ

+ αΠθφ
t Δt−1

Using (30), we obtain

Δt = (1 − α)

(
1 − αΠθ−1

t

1 − α

) θφ
θ−1

+ αΠθφ
t Δt−1 (31)

Consider the zero-inflation steady state, that is, the equilibrium in which ξt = 0 and Πt = 1,

for all t. In what follows, the value of each variable at the zero-inflation steady state is denoted

13
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by a bar. Equation (31) implies that Δt = 1, all t. The first-order condition (13) reduces to

st(i) = 1−Φ, for all i, which implies that the level of output at the zero-inflation steady state, Ȳ ,

is the solution to

χ(1 − Φ)UY (Ȳ ; Ḡ)D(Ȳ ; Ā, B̄)−1 = VY (Ȳ , 1; Ā)

We assume that the zero-inflation steady-state equilibrium is (conditionally) efficient.

Assumption 2. The tax rate on monopoly revenue, τ , is set so that the level of output in the

zero-inflation steady state is efficient:

Ȳ = Ȳ ∗

Whether or not unemployment insurance is perfect, imperfect competition would cause inef-

ficiency at the steady state. How such inefficiency affects the optimal equilibrium path has been

analyzed, for instance, by Khan, King and Wolman (2003) and Benigno and Woodford (2003,

2005). With Assumption 2, we can focus on the inefficiency that imperfect unemployment insur-

ance introduces outside the steady state.

As shown in Appendix, a log-linear approximation of first-order condition (13) for p∗t is given

by

πt = κxt + βEtπt+1 + ut. (32)

Here xt is the (welfare-relevant) output gap:

xt ≡ Ŷt − Ŷ ∗
t ,

ut is the “cost-push shock,” defined by

ut ≡ κ(Ŷ ∗
t − Ŷ n

t ),

and κ is the constant defined by

κ ≡ (1 − α)(1 − αβ)
α

σ−1 − δ + φ − 1
1 + (φ − 1)θ

,

where σ−1 and δ are the elasticities of UY and D−1 with respect to Y evaluated at the zero-inflation

steady state:

σ−1 ≡ −UY Y Ȳ

UY
=

1
1 − sG

> 1, δ ≡ −DY Ȳ

D
=

(1 − B̄)N̄
N̄ + (1 − N̄)B̄

≥ 0.

Note that δ = 0 with perfect insurance. It immediately follows that imperfect insurance makes κ

smaller. In other words, the real effect of a nominal shock is larger with imperfect insurance.

14
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Proposition 1. Imperfect insurance makes the coefficient κ in the AS relation (32) smaller:

κ|B̄<1 < κ|B̄=1.

Also as shown in Appendix, a quadratic approximation of the household’s utility is given by

E0

∞∑
t=0

βtWt = −Ȳ VY E0

∞∑
t=0

βt 1
2

[
qππ2

t + qyx2
t

]
, (33)

where

qπ ≡ αθ
[
1 + (φ − 1)θ

]
(1 − α)(1 − αβ)

(1 − Γ),

qy ≡ σ−1(1 − Γ) − ζΓ + φ − 1.

Here, ζ and Γ are constants defined by

ζ ≡ ZY Y Ȳ

ZY
≥ 0, Γ ≡ ZY

UY + ZY
∈ [0, 1],

where all derivatives are evaluated at the zero-inflation steady state. From (32) and (33), it follows

that the exogenous shocks relevant for the optimal policy problem are summarized into a single

composite variable, ut.

5 Optimal policy with constant risk sharing

In the traditional (Ramsey) approach, the optimal policy problem, say at date t0, is to choose a

state-contingent path, {πt, xt}t≥t0 , so as to maximize the household’s utility (33) subject to the

aggregate-supply relation (32) for t ≥ t0. As is well known, this type of optimization fails to be time

consistent: if the planner is allowed to reoptimize at a future date, it will choose a different path

of inflation and output gap. Concerning this issue, Woodford (2003) and Benigno and Woodford

(2003, 2005) have shown that the optimal policy problem can be modified into a recursive form with

an additional constraint, which is to allow the planner to make a commitment for one period. The

solution to such a constrained policy problem is called optimal policy from a timeless perspective.

Specifically, in the linear-quadratic problem here, the modified policy problem at any date t0 is to

choose a state-contingent path, {πt, xt}t≥t0 , so as to maximize the household’s utility subject to

the aggregate-supply relation as well as to the commitment from the previous period of the form:

πt0 = π̄t0 .

Following Woodford (2003) and others, we shall consider the policy problem constrained in this

fashion. Note, however, that it yields the same impulse responses to exogenous disturbances as

the traditional, unconstrained policy problem (Woodford, 2003, Proposition 7.9).

15
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Letting ϕt be the Lagrange multiplier for (32), the first-order conditions yield

πt =
1
qπ

(ϕt−1 − ϕt), (34)

xt =
κ

qy
ϕt. (35)

Substituting into (32), we obtain the second-order difference equation in ϕt:

βqyEtϕt+1 −
[
(1 + β)qy + κ2qπ

]
ϕt + qyϕt−1 = qπqyut. (36)

Its characteristic equation,

βqyμ2 − [(1 + β)qy + κ2qπ

]
μ + qy = 0,

has a solution pair, μ ∈ (0, 1) and 1/(βμ) > 1. It follows that a bounded solution to (36) takes the

form of

ϕt = μϕt−1 − qπ

∞∑
j=0

βjμj+1Etut+j (37)

where ϕt0−1 satisfies the initial condition: ϕt0−1 − ϕt0 = qππ̄t0 . Given {ϕt}, the optimal state-

contingent evolution of πt and xt are derived using (34)-(35).

Equations (34), (35) and (37) tell us how the optimal state-contingent paths of πt and xt

depend on the composite shock, ut = κ(Ŷ ∗
t − Ŷ n

t ). For example, consider impulse responses to

a cost-push shock in period t. To be specific, suppose that ut follows an AR(1) process given by

ut = ρuut−1 + εu,t where ρu ∈ (−1, 1) and εu,t is i.i.d. with zero mean. Equation (37) implies that

ϕt+j = μϕt+j−1 + φuut+j ,

where φu ≡ −μqπ/(1−βμρu). It follows that impulse responses at dates t+j, j = 0, 1, . . ., become

Etϕt+j − Et−1ϕt+j =
μj+1 − ρj+1

u

μ − ρu
φuεu,t

Etxt+j − Et−1xt+j =
κ

qy

μj+1 − ρj+1
u

μ − ρu
φuεu,t

Etpt+j − Et−1pt+j = − 1
qπ

μj+1 − ρj+1
u

μ − ρu
φuεu,t

and

Etπt+j − Et−1πt+j =

⎧⎪⎨
⎪⎩

− 1
qπ

φuεu,t, for j = 0

1
qπ

μj(1 − μ) − ρj
u(1 − ρu)

μ − ρu
φuεu,t, for j ≥ 1

16
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To see now how ut depends on the fundamental shocks, log-linearize the first-order conditions

(24) and (27) around the zero-inflation steady state:

Ŷ ∗
t = c∗AξA,t + c∗GξG,t (38)

Ŷ n
t = cn

AξA,t + cn
GξG,t (39)

where7

c∗A ≡ φ − Γ(ζ + 1)
σ−1(1 − Γ) − ζΓ + φ − 1

(40)

c∗G ≡ σ−1(1 − Γ)sG

σ−1(1 − Γ) − ζΓ + φ − 1
> 0 (41)

cn
A ≡ φ − δ

σ−1 − δ + φ − 1
> 0 (42)

cn
G ≡ σ−1sG

σ−1 − δ + φ − 1
> 0 (43)

Given this, we can express the cost push shock as

ut = cu
AξA,t + cu

GξG,t,

where cu
s ≡ κ(c∗s − cn

s ), for s = A,G.

5.1 Effects of imperfect insurance: Theoretical results

Optimal policy involves strict price stability (zero inflation), if the flexible price equilibrium is

optimal so that Ŷ n
t = Ŷ ∗

t and ut = 0. It is obviously the case when unemployment insurance is

perfect: B̄ = 1. It is also the case when the technology shock, At, is the only shock to the economy,

sG = 0. This is due to our homothetic preferences, as is discussed in Benigno and Woodford (2005).

The following proposition summarizes.

Proposition 2. (a) If B̄ = 1, then c∗A = cn
A and c∗G = cn

G. (b) If sG = 0, then c∗A = cn
A.

In general, the flexible-price equilibrium is not efficient outside the steady state, Y n
t �= Y ∗

t , in

spite of Assumption 2. Given the first-order conditions (24) and (27), the elasticities of UY + ZY

and UY D−1 with respect to Y are important in determining the nature of optimal monetary policy.

At the zero-inflation steady state, those elasticities are given by

−UY Y Y + ZY Y Y

UY + ZY
= σ−1(1 − Γ) − ζΓ ≤ σ−1

−UY Y Y

UY
+

DY Y

D
= σ−1 − δ ≤ σ−1

7If inequality (44) below holds, c∗A > 0.
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With B̄ = 1, they are both equal to σ−1 since δ = Γ = 0. Thus, imperfect insurance makes

both UY + ZY and UY D−1 less elastic with respect to Y . The former follows from the fact that

imperfect insurance makes the aggregate utility less concave. The latter follows from the fact that

an increase in Y raises Ce less than C, because it reduces unemployment (this effect is reflected in

the term D−1). As the next proposition states, this property implies that the response of Y ∗
t and

Y n
t to an exogenous shift in Gt is larger with imperfect insurance than with perfect insurance.

Proposition 3. Assume that sG > 0. The responses of Y ∗
t and Y n

t to Gt are larger with imperfect

insurance than with perfect insurance:

c∗G|B̄=1 < c∗G|B̄<1,

cn
G|B̄=1 < cn

G|B̄<1.

In other words, imperfect insurance makes the efficient and natural rates of output more volatile

in response to a “demand shock.” The opposite is true for the response to a “supply shock,” At.

Proposition 4. Assume that sG > 0. The responses of Y ∗
t and Y n

t to At are smaller with imperfect

insurance than with perfect insurance:

c∗A|B̄<1 < c∗A|B̄=1,

cn
A|B̄<1 < cn

A|B̄=1.

With perfect insurance, the efficient (and the natural) rate of output is determined by the

equation UY = VY , where the left-hand side expresses the marginal benefit of increasing Y and

the right-hand side its marginal cost. An increase in productivity, A, lowers the marginal cost but

does not affect the marginal benefit, and hence raises the efficient rate of output. With imperfect

insurance, this effect is partially offset because A lowers ZY and D−1.

Whether G and A are positive or negative cost push shocks depends on the elasticities of

UY + ZY and UY D−1. The following lemma provides a necessary and sufficient condition that the

former is greater than the latter.

Lemma 1.

σ−1(1 − Γ) − ζΓ > σ−1 − δ > 0 (44)

if and only if σ−1 − δ > 0 and

(σ−1 − δ)
[
2δ + ln(B̄)Nφ

]
> (φ − 1)

[− ln(B̄)Nφ − δ
]

Condition (44) holds if φ = 1 and B̄ ∈ (0.21, 1). Indeed, it is satisfied for all the numerical

exercises we have considered, and hence, we shall restrict our attention to such a case.
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Proposition 5. Assume that sG > 0, B̄ < 1 and (44) holds. Then the government-purchase

shock, G, is a negative cost-push shock and the productivity shock, A, is a positive cost-push shock:

cu
G < 0, and cu

A > 0.

The following proposition shows how imperfect insurance affects the persistence parameter μ

of optimal policy.

Proposition 6. Under condition (44), imperfect insurance makes the persistence parameter μ in

(37) larger:

μ|B̄=1 < μ|B̄<1.

5.2 Effects of imperfect insurance: Quantitative results

We have seen that exact price stability is not optimal if unemployment insurance is not perfect.

Here we examine quantitatively how different optimal policy is from complete price stabilization.

Assume that the exogenous disturbances, ξA,t and ξG,t, follow the AR(1) process given by ξA,t =

ρAξA,t−1 + εA,t and ξG,t = ρGξG,t−1 + εG,t, where εA,t and εG,t are i.i.d. random variables with

mean zero. In the numerical exercise below, we set α = 0.66, β = 0.99 (the time unit is a quarter),

φ = 1.47, θ = 10, which are in accordance with the parameter values assumed in Woodford (2003,

Table 5.1). In addition we assume sG = 0.2 and N̄ = 0.94. Different values are examined for B̄,

ρA and ρG.

Figures 1-4 plot optimal responses of πt, xt ≡ Ŷt − Ŷ ∗
t , and Ŷt to the productivity and

government-purchase shocks, for different values of B̄, ρA, and ρG.8 We set the size of the initial

innovation to the two shocks as εA,0 = −2.34% and εG,0 = −13.76%, both of which reduce the

efficient level of output by 2 percent, Ŷ ∗
0 = −2%, in the case of B̄ = 1 and ρA = ρG = 0. In

Figures 1-2, shocks are serially uncorrelated, ρA = ρG = 0, and different degrees of risk sharing are

considered: B̄ = 0.5, 0.75, 1.0. Consistent with the theoretical results above, exact price stabiliza-

tion is optimal in the case of perfect insurance (B̄ = 1), and the less risk sharing is (the lower B̄

is), the more optimal policy differs from the complete price stabilization. Consistent with Propo-

sitions 3-4, less insurance makes optimal responses of output to the government-purchase shock

(the productivity shock) larger (smaller). In Figures 3-4, B̄ = 0.75 and ρA, ρG = 0, 0.5, 0.9. As the

persistence of a shock becomes greater, the optimal responses to it involve larger fluctuations in

inflation and the output gap. Those figures show, however, that, regardless of the values of B̄, ρA,

and ρG, deviations of optimal policy from the complete price stabilization is quantitatively very

small (note that the inflation rate is expressed in percent per year). We thus conclude that, as far
8Specifically, those figures plot E0πt − E−1πt etc. for t = 0, 1, . . . , 8.
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as the degree of risk sharing is constant, imperfect risk sharing does not have quantitatively big

impact on optimal policy so that optimal policy is essentially characterized by price stabilization.

6 Optimal policy with countercyclical idiosyncratic shocks

We have so far focused on the case where the degree of risk sharing is constant, Bt = B̄. However,

evidence seems to suggest that idiosyncratic risk is countercyclical. In particular, what is relevant

for this paper is that earning losses of displaced workers are countercyclical.9 In this section we

shall see that optimal policy would involve much larger fluctuations in inflation if idiosyncratic

earning losses are countercyclical, that is, if Bt fluctuate procyclically.

With time-varying Bt = B̄ exp(ξB,t), the efficient and the natural rates of output are given,

respectively, as

Ŷ ∗
t = c∗AξA,t + c∗GξG,t + c∗BξB,t

Ŷ n
t = cn

AξA,t + cn
GξG,t + cn

BξB,t

where c∗A, c∗G, cn
A and cn

G are as given in (40)-(43), and

c∗B ≡ 1
σ−1(1 − Γ) − ζΓ + φ − 1

φ(1 − B̄)N̄ [(1 − N̄)2B̄ − N̄2]
[σ−1 − ln(B̄)N̄φ − δ][(1 − B̄)N̄ + B̄]2

cn
B ≡ 1

σ−1 − δ + φ − 1
(1 − N̄)B̄

N̄ + (1 − N̄)B̄

It follows from equations (25) and (28) that cn
B > 0 and c∗B < 0. Hence Bt is a negative cost-push

shock.

Proposition 7. The insurance shock, Bt, is a negative cost-push shock:

cu
B < 0.

Now let us examine quantitatively how countercyclical idiosyncratic earning losses affects op-

timal policy. Assume the same size of the initial innovations to the productivity and government-

purchase shock as in the previous figures: εA,0 = −2.34% and εG,0 = −13.76%. Let also the steady-

state level of risk sharing is given by B̄ = 0.75 and shocks are serially uncorrelated: ρA = ρG = 0.

Furthermore, assume that those negative shocks arrive with a temporary decline in the degree of

risk sharing. We consider three values for B0 = 0.65, 0.7, 0.75. It returns to the steady state level

after one period: Bt = B̄ for t ≥ 1. Note that even the largest decline in B we consider (from

B̄ = 0.75 to B0 = 0.65) seems to be an empirically plausible value. For instance, based on various

9See, for instance, Storesletten, Telmer and Yaron (2004) and Jacobson, LaLonde and Sullivan (1993).
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empirical work, Krebs (2005) assumes that the difference in the earnings losses of displaced workers

between booms and recessions is 12 percent in his numerical analysis.

Figures 5-6 plot the impulse response functions for those composite shocks. As we have al-

ready seen, with constant risk sharing, optimal policy is essentially characterized as complete

price stabilization. For instance, when Bt ≡ 0.75, εA,0 = −2.34% leads to π0 = −0.0063%.

As we know from Figure 1, even with Bt ≡ 0.5, π0 = −0.011%. However, if B0 moves to-

gether with εA,0, then optimal policy involves much larger responses of the inflation rate: when

B0 = 0.7 = B̄−0.05, π0 = 0.12%; when B0 = 0.65 = B̄−0.1, π0 = 0.25%. Similarly, such counter-

cyclical idiosyncratic income losses imply much larger responses of the output gap, x0 = Ŷ0 − Ŷ ∗
0

(x0 = 0.013%,−0.25%,−0.53% for B0 = B̄, B̄ − 0.05, B̄ − 0.1, respectively). It is also noteworthy

that countercyclical idiosyncratic income shock calls for more stabilization of the actual level of

output, Ŷt: Ŷ0 = −1.966%,−1.159%,−0.29% for B0 = B̄, B̄ − 0.05, B̄ − 0.1, respectively. Figure 6

illustrates that optimal responses to the government-purchase shock share similar characters.

We find it interesting that the actual level of output, Ŷt, is stabilized quite strongly under

optimal policy when idiosyncratic earning losses are countercyclical. In the case where B0 declines

to 0.65, the optimal responses of π0 and Ŷ0 are in similar magnitude. There are two reasons for

this. First, although negative shocks εA,0 and εG,0 tend to reduce the efficient level of output, Y ∗
0 ,

the deterioration in risk sharing calls for stimulation of the economy and hence tends to raise the

efficient level of output. These two forces offset each other so that Ŷ ∗
0 is close to zero and the

equilibrium level of output is stabilized under optimal policy. Second, fluctuations in the inflation

rate and the output gap are larger with countercyclical idiosyncratic shock because u0 is larger,

which, in turn, is the result that a shock to risk sharing affects the efficient and natural levels of

output in the opposite directions (recall that cn
B > 0 and c∗B < 0).

7 Concluding remarks

In this paper, we have considered an efficiency-wage model with the Calvo-type sticky prices and

examined optimal monetary policy when unemployment insurance is not perfect. In the standard

sticky-price model, the strict zero-inflation policy becomes optimal if the zero-inflation steady state

is efficient. This is because relative-price distortions would be the only distortion in that case and

such distortions would vanish under the strict zero-inflation policy. We have seen, however, that

with imperfect unemployment insurance, the strict zero-inflation policy is no longer optimal even

if the zero-inflation steady-state equilibrium is (conditionally) efficient. Quantitatively, though, if

the level of risk sharing is constant over business cycles, the difference between optimal policy and

strict zero-inflation policy is minimal. We have also shown, however, that if the level of risk sharing
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is procyclical, that is, if idiosyncratic shocks are countercyclical, as evidence suggests, the difference

becomes substantial. Indeed, in such a case, output must be stabilized much more compared to

the case with perfect insurance.

One important limitation of our model is that in order to keep the representative-household

framework idiosyncratic shocks are purely temporary. Evidence suggests that idiosyncratic shocks

are highly persistent as well as countercyclical.10 Krebs (2005) argues that persistence as well

as countercyclicality of idiosyncratic shocks matter a lot concerning the welfare cost of business

cycles. Incorporating persistent idiosyncratic shocks is left for future research.
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Appendix

Cost minimization problem of a firm

The first-order conditions for the cost minimization problem (8) are

e′(W )W
e

= 1,

Af(ehn) = y.
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The first equation implies that Cs/Ce = s̃ ∈ [s, 1], where s̃ is defined as the solution to

d(χ − s)(1 − s̃) = ω(1 − s)s̃(s̃−
d
ω − 1).

Then the cost-minimizing level of effort is given by

e =
H
h

− H
h

s̃
d
ω . (45)

The real wage rate is

Wt

Pt
=

χ

h
Ce,t, where χ ≡ 1 − s̃

1 − s
.

Equivalence with a version of Shapiro and Stiglitz’s (1984) model

Consider the following version of Shapiro and Stiglitz’s (1984) model: if a shirker gets caught she

is immediately fired and receives no wages; there are two levels of effort et ∈ {0, ē}. The rest is

the same as our model in text. Then the incentive compatibility constraint becomes

U(Ce,t, ē) ≥ (1 − d)U(Ce,t, 0) + dU(Cu,t, 0),

where Ce,t and Cu,t are as given in (4) and (6), respectively. This model and our model become

essentially identical if (i) ē is at the level given by (45) and (ii) the unemployment insurance

program is given by

UIft = (1 − Nt)shWt, and UIbt = NtshWt.

This is because this insurance program implies Cs,t = Cu,t in our original model.

Derivation of (25) and (28)

To derive inequality (25), note that

∂Y ∗

∂B̄
= − ZY B

UY Y + ZY Y − VY Y

The numeraire is negative, UY Y + ZY Y − VY Y < 0, because of Assumption 1. The denominator is

also negative:

ZY B = −NY

B
+

NY

N + (1 − N)B
+

(1 − B)(1 − N)NY

[N + (1 − N)B]2

=
(1 − B)NY

B[N + (1 − N)B]
B(1 − N)2 − N2

N + (1 − N)B
≤ 0,

where the last inequality follows from the assumption that N > 1/2.

For (28), d ln Y n
t /d ln B̄ is easier to compute:

∂ ln Y n

∂ ln B̄
=

1
σ−1 − δ + φ − 1

(1 − N)B̄
N + (1 − N)B̄

≥ 0.

Here, note that σ−1 ≥ 1 and φ ≥ δ.
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Derivation of the aggregate-supply relation (32)

A log-linear approximation of the first-order condition for p∗t , (13), is given by

Et

∞∑
T=t

(αβ)T−t

{
p̂∗t − ŝt,T −

T∑
τ=t+1

πτ

}
= 0, (46)

where p̂∗t ≡ ln p∗t − ln Pt.

The real marginal cost of firm i is written as

ŝt(i) = (φ − 1)ŷt(i) + (σ−1 − δ)Ŷt − (σ−1 − δ + φ − 1)Ŷ n
t

Taking the average over i ∈ [0, 1], the average real marginal cost in period t is

ŝt = (σ−1 − δ + φ − 1)(Ŷt − Ŷ n
t )

Log-linearizing the demand function (10) yields

ŷt(i) = Ŷt − θ
[
ln pt(i) − ln Pt

]
It follows that

ŝt,T = ŝT + (φ − 1)
(
ŷt,T − ŶT

)
= ŝT − (φ − 1)θp̂∗t + (φ − 1)θ

T∑
τ=t+1

πτ

Substituting this into (46) yields

Et

∞∑
T=t

(αβ)T−t

{[
1 + (φ − 1)θ]p̂∗t − ŝT +

[
1 + (φ − 1)θ]

T∑
τ=t+1

πτ

}
= 0

Solving for p̂∗t and writing it in a recursive form, we obtain

p̂∗t =
1 − αβ

1 + (φ − 1)θ
ŝt + αβEtπt+1 + αβEtp̂

∗
t+1 (47)

Log-linearizing the evolution of Pt, (29), leads to

πt =
1 − α

α
p̂∗t

Using this, (47) is rewritten as

πt =
1 − α

α

1 − αβ

1 + (φ − 1)θ
ŝt + βEtπt+1

=
1 − α

α

1 − αβ

1 + (φ − 1)θ
(σ−1 − δ + φ − 1)(Ŷt − Ŷ n

t ) + βEtπt+1

which is equation (32) in the main text.
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Derivation of the welfare approximation (33)

Remember that the household’s flow utility is given by

W(Yt,Δt; ξt) = U(Yt;Gt) + Z(Yt,Δ;At, Bt) − V (Yt,Δt;At) + ln(H),

where U , Z, and V are as defined in (21)-(23). We follow Woodford (2003), and Benigno and

Woodford (2003, 2005) to obtain a quadratic approximation of the household welfare.

We denote by Ξ the vector of expansion parameters: Ξ = (Ŷ , ξ,Δ1/2
−1 ). First, U(Yt;Gt) is

approximated as

U(Yt;Gt) = Ū + UY Ỹt − UY G̃t +
1
2
UY Y Ỹ 2

t − UY Y ỸtG̃t +
1
2
UY Y G̃2

t + O(‖Ξ‖3)

= UY Ȳ

(
Ŷt +

1
2
Ŷt

)
+

1
2
UY Y Ȳ 2Ŷ 2

t − UY Y Ȳ ḠξG, tŶt + t.i.p. + O(‖Ξ‖3)

= UY Ȳ Ŷt +
1
2
(
UY Ȳ + UY Y Ȳ 2

)
Ŷ 2

t − UY Y Ȳ 2gtŶt + t.i.p. + O(‖Ξ‖3)

where gt measures the change in Yt required to keep UY constant:

gt ≡ −UY GḠ

UY Y Ȳ
= sGξG,t

Next, note that the evolution of Δt, (31), implies that

Δ̂t = αΔ̂t−1 +
α

1 − α
θφ
[
1 + (φ − 1)θ

]π2
t

2
+ O(‖Ξ‖3)

It follows that

∞∑
t=0

βtΔ̂t =
αθφ

[
1 + (φ − 1)θ

]
(1 − α)(1 − αβ)

∞∑
t=0

βt π
2
t

2
+ t.i.p. + O(‖Ξ‖3) (48)

Then Z(Yt,Δt;At, Bt) and V (Yt,Δt;At) are approximated as

Z(Yt,Δt;At, Bt) =
ZY Ȳ

φ
Δ̂t + ZY Ȳ Ŷt +

1
2
(
ZY Ȳ + ZY Y Ȳ 2

)
Ŷ 2

t − ZY Y Ȳ 2ktŶt + t.i.p. + O(‖Ξ‖3)

V (Yt,Δt;At) =
VY Ȳ

φ
Δ̂t + VY Ȳ Ŷt +

1
2
(
VY Ȳ + VY Y Ȳ 2

)
Ŷ 2

t − VY Y Ȳ 2qtŶt + t.i.p. + O(‖Ξ‖3)

where kt and qt are the change in Yt required to keep ZY and VY constant, respectively:

kt ≡ ZY AĀ

ZY Y Ȳ
ξA,t − ZY BB̄

ZY Y Ȳ
ξB,t

qt ≡ −VY AĀ

VY Y Ȳ
ξA,t

Since the zero-inflation steady-state is conditionally efficient,

UY + ZY − VY = 0
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Note also that

Ŷ ∗
t =

1
UY Y + ZY Y − VY Y

(
UY Y gt + ZY Y kt − VY Y qt

)
It follows that

W(Yt,Δt; ξt) = −UY Ȳ

φ
Δ̂t +

1
2
Ȳ 2(UY Y + ZY Y − VY Y )(Ŷt − Ŷ ∗

t )2 + t.i.p. + O(‖Ξ‖3)

= −VY Ȳ

{
1 − Γ

φ
Δ̂t +

1
2
[
σ−1(1 − Γ) − ζΓ + φ − 1

](
Ŷt − Ŷ ∗

t

)2}

+ t.i.p. + O(‖Ξ‖3)

where Γ is defined by

Γ ≡ ZY Ȳ

UY Ȳ + ZY Ȳ

Finally, using (48), we obtain

E0

∞∑
t=0

βtWt = −Ȳ VY E0

∞∑
t=0

1
2
βt

×
{

αθ[1 + (φ − 1)θ]
(1 − α)(1 − αβ)

(1 − Γ)π2
t +

[
σ−1(1 − Γ) − ζΓ + φ − 1

](
Ŷt − Ŷ ∗

t

)2}

+ t.i.p. + O(‖Ξ‖3)

which is (33) in the main text.

Proof of Proposition 3

For the first part,

c∗G|B<1 − c∗G|B=1 =
σ−1(1 − Γ)sG

σ−1(1 − Γ) − ζΓ + φ − 1
− σ−1sG

σ−1 + φ − 1

=
σ−1sGΓ(ζ + 1 − φ)

[σ−1(1 − Γ) − ζΓ + φ − 1][σ−1 + φ − 1]
> 0

because

ζ + 1 − φ =
δ2

ZY Ȳ
> 0.

For the second part, note that

cn
G|B<1 − cn

G|B=1 =
σ−1sG

σ−1 − δ + φ − 1
− σ−1sG

σ−1 + φ − 1
> 0

because δ > 0.
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Proof of Proposition 4

For the first part, note that

c∗A|B<1 − c∗A|B=1 =
φ − Γ(ζ + 1)

σ−1(1 − Γ) − ζΓ + φ − 1
− φ

σ−1 + φ − 1

= − (σ−1 − 1)(ζ + 1)Γ
[σ−1(1 − Γ) − ζΓ + φ − 1][σ−1 + φ − 1]

< 0

because σ−1 ≡ 1/(1 − sG) > 1 as long as sG > 0. The second part follows from:

cn
A|B<1 − cn

A|B=1 =
φ − δ

σ−1 − δ + φ − 1
− φ

σ−1 + φ − 1

= − (σ−1 − 1)δ
[σ−1 − δ + φ − 1][σ−1 + φ − 1]

< 0,

again, because σ−1 > 1.

Proof of Lemma 1

Lemma 1 follows from

σ−1(1 − Γ) + ζΓ − (σ−1 − δ) = δ − Γ(σ−1 + ζ)

= δ − ZY Y

ZY Y + σ−1

{
σ−1 +

δ2

ZY Y
+ φ − 1

}

=
1

ZY Y + σ−1

{
(σ−1 − δ)

[
2δ + ln(B)Nφ

]− (φ − 1)
[− ln(B)Nφ − δ

]}

Proof of Proposition 5

That cu
G < 0 follows from

cu
G = c∗G − cn

G

=
σ−1(1 − Γ)sG

σ−1(1 − Γ) − ζΓ + φ − 1
− σ−1sG

σ−1 − δ + φ − 1
< 0

because Γ > 0 and σ−1(1−Γ)−ζΓ > σ−1−δ under condition (44). The second inequality, cu
A > 0,

is derived as:

cu
A = c∗A − cn

A

=
φ − Γζ − Γ

σ−1(1 − Γ) − ζΓ + φ − 1
− φ − δ

σ−1 − δ + φ − 1

=
(σ−1 − 1)

[
(1 − Γ)δ + Γ(φ − 1 − ζ)

][
σ−1(1 − Γ) − ζΓ + φ − 1

][
σ−1 − δ + φ − 1

]
Remember that

ζ = φ − 1 +
δ2

ZY Y
, and Γ =

ZY Y

ZY Y + σ−1
.
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Thus

(1 − Γ)δ + Γ(φ − 1 − ζ) =
δ

ZY Y
(σ−1 − δ)

We finally obtain

cu
A =

(σ−1 − 1)(σ−1 − δ)δ[
σ−1(1 − Γ) − ζΓ + φ − 1

][
σ−1 − δ + φ − 1

]
ZY Y

> 0

because σ−1 > 1 because sG > 0 and σ−1 > δ because of (44).

Proof of Proposition 6

Define the quadratic function f(μ) by

f(m) ≡ βm2 −
(

1 + β + κ2 qπ

qy

)
m + 1

Then f(m) = 0 has two roots: μ ∈ (0, 1) and (βμ)−1 > 1. Remember that

κ =
1 − α

α

1 − αβ

1 + θ(φ − 1)
(σ−1 − δ + φ − 1)

qπ =
αθ[1 + θ(φ − 1)]
(1 − α)(1 − αβ)

(1 − Γ)

qy = σ−1(1 − Γ) − ζΓ + φ − 1

It follows that

κ2 qπ

qy
= θ

(1 − α)(1 − αβ)
α[1 + θ(φ − 1)]

(1 − Γ)(σ−1 − δ + φ − 1)2

σ−1(1 − Γ) − ζΓ + φ − 1

For μ|B̄<1 > μ|B̄=1, it suffices to show that

(1 − Γ)(σ−1 − δ + φ − 1)2

σ−1(1 − Γ) − ζΓ + φ − 1
< σ−1 + φ − 1

Under our assumption,

σ−1 − δ + φ − 1 < σ−1(1 − Γ) − ζΓ + φ − 1

It then follows that

(1 − Γ)(σ−1 − δ + φ − 1)2

σ−1(1 − Γ) − ζΓ + φ − 1
< σ−1 − δ + φ − 1

< σ−1 + φ − 1
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Figure 1: Optimal responses to a productivity shock for different degrees of risk sharing. In each

panel, the solid, dashed, and dash-dotted lines correspond to B̄ = 0.5, 0.75, 1.0, respectively. The

inflation rate is expressed in percent per year. The output gap and the level of output are expressed

in percentage deviations from their respective steady-state values.
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Figure 2: Optimal responses to a government-purchase shock for different degrees of risk sharing.

In each panel, the solid, dashed, and dash-dotted lines correspond to B̄ = 0.5, 0.75, 1.0, respectively.

The inflation rate is expressed in percent per year. The output gap and the level of output are

expressed in percentage deviations from their respective steady-state values.
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Figure 3: Optimal responses to a productivity shock for different auto-correlation coefficients. In

each panel, the solid, dashed, and dash-dotted lines correspond to ρA = 0.9, 0.5, 0, respectively.

The inflation rate is expressed in percent per year. The output gap and the level of output are

expressed in percentage deviations from their respective steady-state values.
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Figure 4: Optimal responses to a government-purchase shock for different auto-correlation coef-

ficients. In each panel, the solid, dashed, and dash-dotted lines correspond to ρG = 0.9, 0.5, 0,

respectively. The inflation rate is expressed in percent per year. The output gap and the level of

output are expressed in percentage deviations from their respective steady-state values.
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Figure 5: Optimal responses to a productivity shock with countercyclical risk sharing. In each

panel, the solid, dashed, and dash-dotted lines correspond to B0 = 0.65, 0.7, 0.75, respectively.

The inflation rate is expressed in percent per year. The output gap and the level of output are

expressed in percentage deviations from their respective steady-state values.

0 1 2 3 4 5 6 7 8
-0.2

0

0.2

0.4

0.6
inflation

0 1 2 3 4 5 6 7 8
-0.8

-0.6

-0.4

-0.2

0

0.2
output gap

0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1
output

Figure 6: Optimal responses to a government-purchase shock with countercyclical risk sharing. In

each panel, the solid, dashed, and dash-dotted lines correspond to B0 = 0.65, 0.7, 0.75, respectively.

The inflation rate is expressed in percent per year. The output gap and the level of output are

expressed in percentage deviations from their respective steady-state values.
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