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Abstract. In this paper we investigate the sources of the important shifts in

the volatility of U.S. macroeconomic variables in the postwar period. To this

end, we propose the estimation of DSGE models allowing for time variation in

the volatility of the structural innovations. We apply our estimation strategy

to a large-scale model of the business cycle and �nd that investment speci�c

technology shocks account for most of the sharp decline in volatility of the last

two decades.

1. Introduction

It has been well documented that the volatility of output, in�ation, interest

rates and many other macroeconomic variables of the U.S. economy has exhibited

a very high degree of time variation over the last �fty years (see, for instance,

Sims and Zha (2004) or Stock and Watson (2003a)). Perhaps, the most notorious

episode of substantial volatility shift in recent U.S. economic history is the �Great

Moderation,�1 which corresponds to the sharp decline in the standard deviation of

output as well as other macroeconomic and �nancial variables since the mid 1980s.

While signi�cant e¤orts have been devoted to determine the timing of the Great

Moderation (see, among others, Kim and Nelson (1999), McConnell and Perez-

Quiros (2000), Stock and Watson (2002), Chauvet and Potter (2001), Herrera and

Pesavento (2005)), there have been surprisingly few studies attempting to identify

the structural disturbances responsible for these volatility changes.

Date : First draft: July 2005. This version: January 2006.
We would like to thank Jinill Kim, Ernst Schaumburg, Jim Stock and seminar participants at the
Sveridge Riksbank, Northwestern University, Ohio State University and the 2005 International
Conference on Computing in Economics and Finance for comments. We are also grateful to
Riccardo Di Cecio for providing some of the investment de�ators data. The views in this paper
are solely the responsibility of the authors and should not be interpreted as re�ecting the views
of the Board of Governors of the Federal Reserve System or any other person associated with the
Federal Reserve System.

1 The name Great Moderation is due to Stock and Watson (2002), although the phenomenon
was �rst noted by Kim and Nelson (1999) and McConnell and Perez-Quiros (2000).
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In this paper we �ll this gap, by estimating a DSGE model in which the volatility

of the structural innovations is allowed to change over time. First, we describe an

algorithm that allows for simultaneous inference on both the model�s parameters

and the stochastic volatilities. Then, we apply our modeling and estimation strat-

egy to a large-scale business cycle model of the U.S. economy, along the lines of

Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2003). The

model exhibits a number of real and nominal frictions, and various shocks with a

precise microeconomic interpretation. The novelty of our set-up is that all of these

shocks have variances that can �uctuate over time.

We believe that this is an interesting innovation because it enables us to identify

the sources of the changes in the volatility of the main macro variables during the

postwar period. Thereafter, we are able to shed light on the nature of the underlying

disturbances responsible for the Great Moderation and other shifts in the volatility

of the U.S. business cycle.

The main conclusions we reach in this study are as follows. First, the exoge-

nous structural disturbances hitting the U.S. economy display substantial stochastic

volatility. Nonetheless, the degree of time variation in variances di¤ers considerably

across shocks, being more pronounced for technology disturbances and, particularly,

monetary policy shocks. Consequently, while stochastic volatility is present in all

of the model�s observed endogenous variables, di¤erent series exhibit contrasting

patterns of �uctuations in their variances.

Second, the decline in the volatility of output, investment, hours and consump-

tion in the early 1980s is largely driven by investment speci�c technology shocks.

These shocks have an equivalent interpretation of disturbances to the inverse of the

price of investment in terms of consumption goods. We corroborate our �nding that

investment speci�c technology shocks have become less volatile by documenting a

decline in the standard deviation of the relative price of investment. Moreover,

motivated by Chari, Kehoe, and McGrattan (2005), we suggest an interpretation of

these disturbances as proxying for investment �nancial frictions. In line with this

interpretation, we rely on evidence outside our DSGE model to show that �nancial

frictions did indeed decline at the beginning of the 1980s, particularly in mortgage

�nancing.

From the methodological standpoint, this paper is related to the statistics litera-

ture on stochastic volatility models (for an overview, see Kim, Shephard, and Chib



THE TIME VARYING VOLATILITY OF MACROECONOMIC FLUCTUATIONS 3

(1998)) and, more generally, on partial non-Gaussian state-space models (Shephard

(1994)). Drawing from this literature, we develop an e¢ cient algorithm, based on

Bayesian Markov chain Monte Carlo (MCMC) methods, for the numerical evalu-

ation of the posterior of the parameters of interest. Methodologically, the paper

closest to ours is Laforte (2005), although in his analysis the time varying vari-

ances are modeled as Markov switching as opposed to the smoother processes in

the analysis here.

Regarding the application of these techniques, this paper is related to the large

literature using estimated micro-founded models to understand the main sources

of U.S. business cycle �uctuations (see, for instance, Rotemberg and Woodford

(1997), Ireland (2004), Christiano, Eichenbaum, and Evans (2005), Smets and

Wouters (2003), Altig, Christiano, Eichenbaum, and Linde (2005)). However, as

mentioned, we depart from previous work in this area by allowing for time vari-

ation in the volatility of the structural disturbances. Our approach is also linked

to the fairly large literature dealing with the estimation of vector autoregressions

with heteroskedastic shocks (see, for example, Bernanke and Mihov (1998), Cogley

and Sargent (2003), Sims and Zha (2004), Primiceri (2005) or Canova, Gambetti,

and Pappa (2005)). In contrast to this strand of work, one advantage of our analy-

sis is that a fully-�edged model provides an easy interpretation for the structural

disturbances hitting the economy.

The paper is organized as follows. Section 2 presents the class of models we

will deal with and outlines some methodological issues, with the details relegated

to an appendix. Section 3 and 4 illustrate our application to the model of the

U.S. business cycle and sketch the estimation technique. Section 5 and 6 discuss

the estimation results and address the causes of the Great Moderation. Section 7

concludes with some �nal remarks and priorities for future research.

2. Stochastic Volatility in DSGE Models

The general class of models we will work with is summarized by the following

system of equations:

(2.1) Et [f (yt+1; yt; yt�1; �t; �)] = 0,

where yt is a k�1 vector of states and endogenous variables, �t is an n�1 vector of
exogenous disturbances, � is a p�1 vector of structural parameters and Et denotes
the mathematical expectation operator, conditional on the information available at
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time t. For example, (2.1) can be thought as a collection of constraints and �rst

order conditions derived from a micro-founded model of consumers and/or �rms

behavior. The novelty here is that the standard deviation of the elements of �t is

allowed to change over time. In particular, we make the assumption that

log �t � �̂t = �t"t

"t � N(0; In),

where N indicates the normal distribution, In denotes an n � n identity matrix
and �t is a diagonal matrix with the n � 1 vector �t of time varying standard
deviations on the main diagonal. Following the stochastic volatility literature (see,

for instance, Kim, Shephard, and Chib (1998)), we assume that each element of �t

evolves (independently) according to the following stochastic processes:

log �i;t = (1� ��i) log �i + ��i log �i;t�1 + �i;t(2.2)

�i;t � N(0; s2i ) i = 1; :::; n.

Observe that modeling the logarithm of �t, as opposed to �t itself, ensures that the

standard deviation of the shocks remains positive at every point in time.

Our objective is to characterize the posterior distribution of the model structural

parameters (�) and the time varying volatility of the shocks (f�tgTt=1). Note that
the model described by (2.1) is in general nonlinear and its solution does not have

a closed-form expression. Therefore, an approximation of the solution is required.

Observe also that commonly used log-linearization methods would not serve our

purposes, as the time varying standard deviations would disappear under this ap-

proximation. Moreover, log-linear methods would be accurate in this set-up only if

the variability of the standard deviations were small. Higher order approximations

would instead preserve the interaction term �t"t. However, the additional non-

linear terms generated in this case would considerably complicate the estimation.2

For these reasons, we develop what we call a partially nonlinear approximation of

the model, which combines the appeal for our purposes of both log-linearization

and higher order approximations. In particular, we approximate the solution of the

model by the partially nonlinear function

(2.3) ŷt = Aŷt�1 +B�̂t = Aŷt�1 +B�t"t,

2 There has been recent work estimating nonlinear DSGE models, as in Fernandez-Villaverde
and Rubio-Ramirez (2004) or An and Schorfheide (2005). However, these methods have been
applied only to small scale models.
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where ŷt denotes log deviations from the non-stochastic steady state of the variable

y. Appendix A proves that (2.3) represents a valid approximation of the model

solution.

3. The Model

We apply our method to a relatively large-scale model of the U.S. business cycle,

which has been shown to �t the data fairly well (Del Negro, Schorfheide, Smets,

and Wouters (2004)). The model is based on work by Christiano, Eichenbaum,

and Evans (2005) and Smets and Wouters (2003), to which the reader is referred

for additional details. Our brief illustration of the model follows closely Del Negro,

Schorfheide, Smets, and Wouters (2004).

3.1. Final goods producers. At every point in time t, perfectly competitive �rms

produce the �nal consumption good Yt, using the intermediate goods Yt(i), i 2 [0; 1]
and the production technology

Yt =

�Z 1

0

Yt(i)
1

1+�p;t di

�1+�p;t
.

�p;t follows the exogenous stochastic process

log �p;t = (1� �p) log �p + �p log �p;t�1 + �p;t"p;t,

where "p;t is i:i:d:N(0; 1) and �p;t evolves as in (2.2). Unless otherwise noticed,

this property of a time varying variance applies to all shocks in the model. Pro�t

maximization and zero pro�t condition for the �nal goods producers imply the

following relation between the price of the �nal good (Pt) and the prices of the

intermediate goods (Pt(i), i 2 [0; 1])

Pt =

�Z 1

0

Pt(i)
1

�p;t di

��p;t
,

and the following demand function for the intermediate good i:

Yt(i) =

�
Pt(i)

Pt

�� 1+�p;t
�p;t

Yt.

As a consequence, �p;t will also correspond to the price mark-up over marginal costs

for the �rms producing intermediate goods.
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3.2. Intermediate goods producers. A monopolistic �rm produces the inter-

mediate good i using the following production function:

Yt(i) = max
�
A1��t Kt(i)

�Lt(i)
1�� �AtF ; 0

	
,

where, as usual, Kt(i) and Lt(i) denote respectively the capital and labor input

for the production of good i, F represents a �xed cost of production and At is an

exogenous stochastic process capturing the e¤ects of technology. In particular, we

model At as a unit root process, with a growth rate (zt � log At

At�1
) that follows

the exogenous process

zt = (1� �z)
 + �pzt�1 + �z;t"z;t.

As in Calvo (1983), a fraction �p of �rms cannot re-optimize their prices and, as

we allow for indexation, set their prices following the rule

Pt(i) = Pt�1(i)�
�p
t�1�

1��p ,

where �t is de�ned as Pt
Pt�1

and � denotes the steady state value of �t. Subject to

the usual cost minimization condition, re-optimizing �rms choose their price ( ~Pt(i))

by maximizing the present value of future pro�ts

Et

1X
s=0

�sp�
s�t+s

nh
~Pt(i)

�
�sj=0�

�p
t�1+j�

1��p
�i
Yt+s(i)�

�
WtLt(i) +R

k
tKt(i)

�o
,

where �t+s is the marginal utility of consumption, Wt and Rkt denote respectively

the wage and the rental cost of capital.

3.3. Households. Firms are owned by a continuum of households, indexed by

j 2 [0; 1]. As in Erceg, Henderson, and Levin (2000), while each household is a mo-
nopolistic supplier of specialized labor (Lt(j)), a number of �employment agencies�

combines households�specialized labor into labor services available to the interme-

diate �rms

Lt =

�Z 1

0

Lt(j)
1

1+�w dj

�1+�w
.

Pro�t maximization and a zero pro�t condition for the perfectly competitive em-

ployment agencies imply the following relation between the wage paid by the inter-

mediate �rms and the wage received by the supplier of specialized labor Lt(j)

Wt =

�Z 1

0

Wt(j)
1
�w dj

��w
,
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and the following labor demand function for labor type j:

Lt(j) =

�
Wt(j)

Wt

�� 1+�w
�w

Lt.

Each household maximizes the utility function3

Et

1X
s=0

�sbt+s

�
log (Ct+s(j)� hCt+s�1(j))� 't+s

Lt+s(j)
1+�

1 + �

�
,

where Ct(j) is consumption, h is the �degree�of internal habit formation, 't is a

preference shock that a¤ects the marginal disutility of labor and bt is a �discount

factor�shock a¤ecting both the marginal utility of consumption and the marginal

disutility of labor. These two shocks follow the stochastic processes

log bt = �b log bt�1 + �b;t"b;t

log't = (1� �') log'+ �' log't�1 + �';t"';t.

The household budget constraint is given by

Pt+sCt+s(j) + Pt+sIt+s(j) +Bt+s(j) � Rt+s�1Bt+s�1(j) +Qt+s�1(j) + �t+s +

+Wt+s(j)Lt+s(j) +R
k
t+s(j)ut+s(j) �Kt+s�1(j)� Pt+sa(ut+s(j)) �Kt+s�1(j),

where It(j) is investment, Bt(j) denotes holding of government bonds, Rt is the

gross nominal interest rate, Qt(j) is the net cash �ow from participating in state

contingent securities, �t is the per-capita pro�t that households get from owning

the �rms. Households own capital and choose the capital utilization rate which

transforms physical capital ( �Kt(j)) into e¤ective capital

Kt(j) = ut(j) �Kt�1(j),

which is rented to �rms at the rate Rkt (j). The cost of capital utilization is

a(ut+s(j)) per unit of physical capital. Following Altig, Christiano, Eichenbaum,

and Linde (2005), we assume that ut = 1 and a(ut) = 0 in steady state. In our

partially nonlinear approximation of the model solution, only the curvature of the

function a in steady state needs to be speci�ed, � � a00(1)
a0(1) . The usual physical

capital accumulation equation is described by

�Kt(j) = (1� �) �Kt�1(j) + �t

�
1� S

�
It(j)

It�1(j)

��
It(j),

where � denotes the depreciation rate and, as in Christiano, Eichenbaum, and

Evans (2005) and Altig, Christiano, Eichenbaum, and Linde (2005), the function

3 We assume a cashless limit economy as described in Woodford (2003).
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S captures the presence of adjustment costs in investment, with S0 = 0 and S00 >

0. Lucca (2005) shows that this formulation of the adjustment cost function is

equivalent (up to a �rst order approximation of the model) to a generalization of

a time to build assumption. As in Greenwood, Hercowitz, and Krusell (1997) and

Fisher (2005), �t is a random shock to the production technology of capital goods

and evolves following the exogenous process

log�t = �� log�t�1 + ��;t"�;t.

Following Erceg, Henderson, and Levin (2000), in every period a fraction �w of

households cannot re-optimize their wages and, therefore, set their wages following

the indexation rule

Wt(j) =Wt�1(j) (�t�1e
zt�1)

�w (�e
)
1��w .

The remaining fraction of re-optimizing households set their wages by maximizing

Et

1X
s=0

�sw�
sbt+s

�
�'t+s

Lt+s(j)
1+�

1 + �

�
,

subject to the labor demand function.

3.4. Monetary and Government Policies. Monetary policy sets short term

nominal interest rates following a Taylor type rule. In particular, the rule allows

for interest rate smoothing and interest rate responses to deviations of in�ation

from the steady state and deviations of output from trend level:

Rt
R
=

�
Rt�1
R

��R "��t
�

��� �Yt=At
Y=A

��Y #1��R
e�R;t"R;t ,

where R is the steady state for the gross nominal interest rate and "R;t is a monetary

policy shock. We also consider an alternative speci�cation of the policy rule, in

which the monetary authority responds to output growth.

Fiscal policy is assumed to be fully Ricardian and public spending is given by

Gt =

�
1� 1

gt

�
Yt,

where gt is an exogenous disturbance following the stochastic process

log gt = (1� �g) log g + �g log gt�1 + �g;t"g;t.

3.5. Market Clearing. The resource constraint is given by

Ct + It +Gt + a(ut) �Kt�1 = Yt,
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3.6. Steady State and Model Solution. Since the technology process At is

assumed to have a unit root, consumption, investment, capital, real wages and

output evolve along a stochastic growth path. Once the model is rewritten in

terms of detrended variables, we can compute the non-stochastic steady state and

employ the partially nonlinear method illustrated in section 2 and appendix A, to

approximate the model around the steady state. This delivers a partial nonlinear

state space model of the kind described in Shephard (1994).

We conclude the discussion of the model by specifying the vector of observables,

completing the state space representation of our model:

(3.1) [� log Yt;� logCt;� log It; logLt;� log
Wt

Pt
; �t; Rt],

where � logXt denotes logXt � logXt�1.

4. Inference

4.1. The Data. We estimate the model using seven series of U.S. quarterly data,

as in Levin, Onatski, Williams, and Williams (2005) and Del Negro, Schorfheide,

Smets, and Wouters (2004). These series correspond to the vector of observable

variables of our model, reported in section 3.6. The sample for our dataset spans

from 1954QIII up to 2004QIV. All data are extracted from Haver Analytics data-

base (series mnemonics in parenthesis). Following Del Negro, Schorfheide, Smets,

and Wouters (2004), we construct real GDP by diving the nominal series (GDP)

by population (LF and LH) and the GDP De�ator (JGDP). Real series for con-

sumption and investment are obtained in the same manner, although consumption

corresponds only to personal consumption expenditures of non-durables (CN) and

services (CS), while investment is the sum of personal consumption expenditures of

durables (CD) and gross private domestic investment (I). Real wages corresponds

to nominal compensation per hour in the non-farm business sector (LXNFC) di-

vided by the GDP de�ator. Our measure of labor is given by the log of hours of all

persons in the non-farm business sector (HNFBN) divided by population. In�ation

is measured as the quarterly log di¤erence in the GDP de�ator, while for nominal

interest rates we use the e¤ective Federal Funds rate. We do not demean or detrend

any series.

4.2. Bayesian Inference. Bayesian Markov chain Monte Carlo (MCMC) methods

are used to characterize the posterior distribution of the model�s structural para-

meters (�), the time varying volatility of the shocks (f�tgTt=1) and the coe¢ cients of
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the volatility processes (
�
�; ��; s

2
�
). Bayesian methods deal e¢ ciently with the high

dimension of the parameter space and the nonlinearities of the model, by splitting

the original estimation problem into smaller and simpler blocks. In particular, the

MCMC algorithm for this paper is carried out in three steps. First, a Metropolis

step is used to draw from the posterior of the structural coe¢ cients �. Drawing

the sequence of time varying volatilities �T (conditional on �, �, �� and s
2) is in-

stead more involved and relies mostly on the method presented in Kim, Shephard,

and Chib (1998). It consists of transforming a nonlinear and non-Gaussian state

space form in a linear and approximately Gaussian one, which allows the use of

simulation smoothers such as Carter and Kohn (1994) or Durbin and Koopman

(2002). Simulating the conditional posterior of
�
�; ��; s

2
�
is standard, since it is

the product of independent normal-inverse-Gamma distributions. The details are

left to appendix B.

4.3. Priors. As customary when taking DSGE models to the data, we �x a small

number of the model parameters to values that are very common in the existing

literature. In particular, we set the steady state share of capital income (�) to

0:3, the quarterly depreciation rate of capital (�) to 0:025 and the steady state

government spending to GDP ratio to 0:22, which corresponds to the average share

of government spending in total GDP (Gt=Yt) in our sample. Moreover, in order

to reduce the number of free parameters, we set all the autoregressive coe¢ cients

of the log-volatilities, ���s, to 1, which re�ects the assumption that the volatilities

follow geometric random walk processes.

The �rst three columns of table 1 report our priors for the remaining parameters

of the model. While most of these priors are relatively disperse and re�ect previous

results in the literature, a few of them deserve some further discussion. For all

but one persistence parameters we use a Beta prior, with mean 0:5 and standard

deviation 0:15. The exception is the autoregressive coe¢ cient of the mark-up shock

due to a weak identi�cation problem between this parameter and the one capturing

the degree of price indexation. As a result, we imposed a tighter prior on �p to

avoid convergence problems in our MCMC algorithm.

The priors for the variances of the shocks are Inverse-Gamma distributions with

mean and standard deviation equal to 0:15, with the exception of the investment

speci�c technology shock. In fact, as we will see in the next section, this shock

turned out to be (somewhat to our surprise) very important. To be conservative,
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we decided to impose a prior favouring slightly less variation than other shocks.

Notice, however, that this prior enters only in the speci�cation of the model without

stochastic volatility that we estimate only for comparison.

The priors on the variance (s2) of the innovations to the log-volatility processes

deserve some comment as well, as these coe¢ cients are new in the DSGE liter-

ature. We chose an inverse-Gamma prior with mean equal to 0:012 for several

reasons. First, assuming that the log-volatilities behave as random walks, this pa-

rameterization implies an average variation of about 15 percent over our sample

of forty years. We regard this as a conservative estimate. Second, in the context

of time varying vector autoregressions, Primiceri (2005) has tested several prior

speci�cations and concluded that this value attains the highest marginal likelihood.

Nonetheless, we assessed the sensitivity of the estimates to alternative speci�cations

of the prior (especially for the variance of the innovation to the log-volatilities) and

found that these modi�cations had no important in�uence on the results.

5. Estimation Results

5.1. Parameter estimates. The last three columns of table 1 summarize the pos-

terior distribution of the model coe¢ cients, reporting posterior medians, standard

deviations and 5th and 95th percentiles computed with the draws. All coe¢ cients

estimates are fairly tight and seem for the most part in line with those reported in

Del Negro, Schorfheide, Smets, and Wouters (2004) and Levin, Onatski, Williams,

and Williams (2005).

One important exception is the wage stickiness parameter (�w), which is lower

than previous estimates reported in the literature dealing with inference in DSGE

models. In view of the welfare implications of wage rigidity (see, for instance,

Levin, Onatski, Williams, and Williams (2005)) these variations in estimates may

be important, although we do not explore these issues in the current paper. The

estimate of the Calvo stickiness parameters for prices (�p) is approximately equal

to 2
3 , which is also a value slightly below those found in other papers.

4 This number

seems still higher than estimates in micro studies (see, for instance, Bils and Klenow

(2004)), although the presence of indexation mechanisms (which assures that prices

are actually changed in every period) makes the results potentially consistent with

the micro evidence on the high frequency of price changes.

4 See Altig, Christiano, Eichenbaum, and Linde (2005) for an example of a model generating
an even lower estimate of the price stickiness parameter.
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For comparison, table 1 also reports posterior medians, standard deviations, 5th

and 95th percentiles of a model estimated with time invariant volatilities. Notice

that most of the coe¢ cient estimates are similar to the time varying model, although

there are some important exceptions. Most notably, two of the coe¢ cients related

to the labor market block of our framework change importantly when stochastic

volatility is allowed for. Speci�cally, the Calvo wage stickiness parameter (�w)

drops from 0:71 to 0:38 and the inverse Frisch elasticity of labor supply (�) declines

as well from 3:8 to 2:5. The higher elasticity of labor supply and the more volatile

behavior of wages are compensated by a smoother pattern of the intra-temporal

preference shock ('t), whose autocorrelation coe¢ cient is estimated much higher

in the stochastic volatility model. This suggests that not accounting for stochastic

volatility might introduce some identi�cation bias in the estimation.5

Finally, table 4 shows that the estimates of the �xed coe¢ cients are quite robust

to the alternative speci�cation of the monetary policy rule, in which the monetary

authority responds to output growth.

5.2. Volatility estimates. Figure 1 presents the plots of the time varying stan-

dard deviations for the seven shocks of our model. Notice that the degree of stochas-

tic volatility varies substantially across disturbances. Three of the shocks seem to

have relatively constant standard deviations. This is the case for the price mark-up

shock (�p;t), and the two taste shocks (bt and 't). The evidence is very di¤er-

ent for the volatility of the four remaining shocks, which exhibit a very important

amount of time variation. The exogenous disturbance showing the highest degree

of time varying volatility is the monetary policy shock ("MP
t , �gure 1a), for which

the di¤erence between the lowest and the highest levels of the standard deviation is

roughly 500 percent. Observe that the �Volcker episode�6 is perfectly captured in

our estimates, as well as the reduction in the volatility of monetary policy shocks

during the Greenspan period.

5 It is worth pointing out that the posterior distribution of the time invariant model is bimodal.
The values reported in table 1 are relative to the global maximum. However, there exists a local
maximum for which the level of the log-posterior is only slightly lower (just by one point) and
the values of the coe¢ cients are much closer to the estimates of the time varying model. Notice
also that the time varying model does not exhibit the problem of two modes, suggesting that
accounting for stochastic volatility might help to solve some of the identi�cation problems, which
are common in this class of models (Canova and Sala (2005)).

6 The �Volcker episode�refers to the high volatility of interest rates in the 1979-1983 period, due
to the monetary targeting regime initiated by chaiman Paul Volcker in response to the dramatic
rise in U.S. in�ation in the 1970s.
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Monetary policy shocks are not the only ones exhibiting a clean pattern of time

varying volatility. The standard deviation of technology shocks (zt, �gure 1b)

seems to decrease by almost 50 percent in the second part of the sample. This is

potentially consistent with the observed reduction in the volatility of GDP in the

last two decades, an issue addressed in more detail in the next section. A similar

pattern is observed for the volatility of the investment speci�c technology shock

(�t, �gure 1d) and the government spending shock (gt, �gure 1c). Note, however,

that between these two shocks the fall in volatility at the beginning of the 1980s

seems more dramatic in the case of the investment speci�c technology shock.

One contribution of our analysis is the ability to quantify how the importance

of various shocks has changed over time in generating economic �uctuations. To

this end, we analyze the variance decomposition of each series, which will lead us to

address the causes of the Great Moderation in the next subsection. We perform the

variance decomposition exercise in the following way: for every draw of the para-

meters and the volatilities of the exogenous disturbances, we construct the implied

variances of the (endogenous) observable variables, using the state space represen-

tation of the model solution. Then, we re-compute the variances of the observable

variables, by sequentially setting to zero the volatility of all disturbances but one,

for all time periods. In this way we are able to investigate the contribution of each

shock to the variance of the observables. Notice that, since the variances are chang-

ing over time, our variance decomposition is a time varying �object�as well. Due

to space considerations, we do not present the graph of the variance decomposition

for all of the observables. Instead, we present a complete characterization of the

variance decomposition for GDP, while for the remaining series we only report the

time varying share of the variance explained by selected shocks.

Figure 2 presents the time varying shares of the variance of GDP growth due to

each exogenous disturbance. Consistent with Greenwood, Hercowitz, and Krusell

(2000) and Fisher (2005), the most important shock in explaining the variability

of GDP growth seems to be the investment speci�c technology shock (�gure 2d).

Indeed, at least in the �rst part of the sample, this disturbance explains roughly

40 percent of the variance of GDP growth. Note, however, that the importance of

this shock declines over time.

On average, neutral technology and labor preference shocks each explain 20 per-

cent of the variance of GDP. This share seems to remain relatively stable over

time for the neutral technology shock (�gure 2b), while it increases in the last two
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decades for the disturbances to labor preferences (�gure 2f). Other shocks are less

central for output. The limited importance of the monetary policy shock (�gure

2a) is striking and probably related to the observation that, in this class of mod-

els, �exible price output seems to track quite closely actual output (Walsh (2005)),

which represents a shortcoming of current sticky price models.

For the remaining series, �gure 3 plots the time varying variance shares explained

by selected shocks. A major portion of the variance of consumption is explained by

the inter-temporal shock to the discount factor (�gure 3a). Although not crucial

for output, monetary policy and mark-up shocks are each quite important for the

volatility of interest rates (�gure 3b) and in�ation (�gure 3c). Moreover, as one

would expect, the investment speci�c technology shock and the labor preference

shock explain most of the variability of investment (�gure 3d) and hours (�gure 3e)

respectively, while the neutral technology shock accounts for about 40 percent of

the variance of real wages (�gure 3f).7

Figure 4 plots the model�s spectral variance decomposition for output, in devi-

ations from the model�s common stochastic trend, driven by neutral technology.

We consider periodicities between 8 and 32 quarters. Figure 4 corroborates the

evidence on the importance of the investment speci�c technology shock, suggesting

that this disturbance is crucial in explaining output �uctuations at the business

cycle frequencies (�gure 4d). Note, however, that the labor disutility shock plays

also a very important role in this case (�gure 4f).

6. The Great Moderation

6.1. The Great Moderation and the role of investment speci�c technology

shocks. We now apply our methodology and our results to analyze in greater

detail the Great Moderation episode that we have alluded to earlier. In two very

in�uential papers, Kim and Nelson (1999) and McConnell and Perez-Quiros (2000)

drew attention to the dramatic reduction in the volatility of U.S. GDP, which has

characterized the last two decades relative to the pre-1980s period.8 This change

seems to be more abrupt than gradual (Kim and Nelson (1999) and Stock and

Watson (2002)) and the break date is estimated to approximately correspond to

1984. In our sample, the standard deviation of GDP growth over the 1984-2004

period is almost one half of the standard deviation computed over the 1955-1983

7 The complete set of variance decomposition graphs is available upon request.
8 Stock and Watson (2003b) show a similar pattern for other G7 countries.
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sample. As mentioned, the literature has labeled this phenomenon as the Great

Moderation.

A number of hypothesis have been put forward to account for this decline in

volatility and exhaustive reviews can be found in Blanchard and Simon (2001) and

Stock and Watson (2002, 2003a). Explanations of this phenomenon can be broadly

bunched as corresponding to simply good luck, technological progress (particularly

in managing inventories) or improvements in the conduct of monetary policy under

the Volcker and Greenspan chaimanships. However, several authors have found

evidence contrary to the technological progress and improved monetary policy hy-

potheses (see, for instance, Stock and Watson (2002), Maccini and Pagan (2003) or

Ahmed, Levin, and Wilson (2004)).

Therefore, the starting point of the analysis of the Great Moderation undertaken

in this paper is the very robust �nding of Stock and Watson (2002, 2003a), who

conclude that �this reduction in volatility is associated with an increase in the

precision of forecasts of output growth�(Stock and Watson (2002), p 42). Notice

that our framework is a natural candidate to understand the structural causes of

the reduction in forecast errors. In fact, given that our methodology allows for

time varying volatilities and is based on a fully-�edged model, it provides an easy

interpretation for the structural disturbances hitting the economy.

Figure 5a plots the volatility of GDP growth implied by our model. There are

at least two things to notice. First, although the evolution of the standard devia-

tion of GDP growth is very similar to the one obtained from univariate estimates,

we notice that the DSGE model somewhat overpredicts the level of the volatility.

This problem is common to the time invariant version of the model and is there-

fore indicative of di¢ culties in simultaneously matching the levels of persistence,

comovements and volatilities observed in the data, even with state of the art DSGE

models (Del Negro, Schorfheide, Smets, and Wouters (2004)). Second, nonetheless,

the model captures remarkably well the timing and the size of the Great Modera-

tion, despite the abrupt nature of this fall in volatility. Observe that the volatility

of GDP growth starts declining around 1981, which is slightly earlier than some

estimates provided by the literature using models with discrete structural breaks.

This is due to the speci�cation of our time varying volatility model, which tends to

smooth out abrupt changes (see, for example, Boivin (2001)).

To assess the role played by each shock in accounting for the Great Moderation,

we rely on counterfactual simulations exercises. Our approach consists of using
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our model to simulate the volatility of GDP growth under alternative paths for

the volatility of each structural disturbance. This counterfactual simulations can

be interpreted as the hypothetical pattern of the volatility of GDP growth in the

period 1981-2004, had the standard deviation of that particular structural shock

only remained unchanged with respect to the 1980 level.9

Figure 6 presents the results of our counterfactual exercises. Our approach gives

a very strong conclusion about the causes of the Great Moderation. As evident

from �gure 6d, the main explanation for the Great Moderation seems to be the

sharp reduction in the volatility of investment speci�c technology shocks. That

is, had the volatility of investment speci�c technology shocks remained at its 1980

level, then the standard deviation of GDP growth would have been substantially

higher than the realized one in the 1981-2004 period.

Finally, it is worth noting that changes in the volatility of the monetary policy

shock have had a rather modest e¤ect on the decline in the variance of output

(�gure 6a). This is the case, despite the fact that the model reproduces quite well

the time varying pattern of the standard deviation of interest rates observed in the

data (�gure 5b).

6.2. The relative price of investment. In our model, investment speci�c tech-

nology shocks can be equivalently interpreted as disturbances to the inverse price

of e¢ cient units of investment in terms of consumption goods.10 Although this

variable is not used in our estimation, data on the price of investment relative to

consumption has been used by other authors to proxy for investment speci�c tech-

nology shocks (see, for instance, Greenwood, Hercowitz, and Krusell (1997, 2000)

and Fisher (2005)).

In order to verify that the reduction in the volatility of investment speci�c tech-

nology shocks is not somewhat spurious and speci�c to our model, we rely on data

outside our DSGE model and analyze the volatility of this relative price. In partic-

ular, we construct the chain-weighted de�ators for our components of consumption

(non-durables and services) and investment (durables and total private investment)

and estimate the standard deviation of its growth rate using a simple 10-year mov-

ing window. Figure 7 plots the estimate of the time varying standard deviation and

9 More precisely, we �x the volatility of each shock to the average of the time varying standard
deviation for all four quarters in 1980. A longer window does not a¤ect our results.

10 See Fisher (2005) for an explanation of this alternative interpretation.
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makes clear that this volatility has sharply decreased in the second part of the post-

war sample. Moreover, the timing of the decline corresponds remarkably well with

the timing of the Great Moderation. We regard the fact that our model provides a

very similar insight (without using any data on the relative price of investment) as

a remarkable result.

6.3. Interpretation. What are the main implications of our results? The answer

to this question depends on the interpretation of disturbances in DSGE models.

Most of the existing literature regards these shocks as genuinely exogenous shifts

in tastes, technology and policies. An alternative interpretation, however, is that

these disturbances can proxy for features of the economy that we wish to abstract

from when writing down our model (Hall (1997) and Chari, Kehoe, and McGrattan

(2005)). In particular, Chari, Kehoe, and McGrattan (2005) have recently argued

that disturbances similar to our investment speci�c technology shock might proxy

for investment �nancial frictions. This link becomes evident in models that take

into consideration agency costs for the �nancing of investment, such as Carlstrom

and Fuerst (1997).11 If we subscribe this view, a natural explanation of the Great

Moderation would be based on a reduction in �nancial frictions.

Interestingly, this purely �theoretical�hypothesis squares remarkably well with

the empirical and anecdotal evidence about the expanded access to credit and

borrowing for �rms and particularly households since the beginning of the 1980s.

The mortgage industry underwent substantial �nancial deregulation in this period,

following the passing of the Depository Institutions Deregulation and Monetary

Control Act (DIDMCA) in 1980 and the Garn-St Germain Act of 1982. An impor-

tant component of this transformation was the demise of Regulation Q which had

established a ceiling for banks deposit rates, limiting de facto the amount of bank

lending in periods of rising interest rates. Overall, these new laws ignited other

developments (such as mortgage securitization) that fostered greater integration

between mortgage and capital markets and consequently led to greater availability

of mortgage credit at prevailing market interest rates (see, for instance, Hender-

shott (1990), Dynan, Elmendorf, and Sichel (2005) and Campbell and Hercowitz

(2004)).

Since our model is not rich enough to analyze this issue in greater detail, we

rely on alternative evidence to support our claim that a reduction in investment

11 See Faia and Monacelli (2004) for an analysis of alternative speci�cations of agancy costs
models and their implications for dynamics in New-Keynesian DSGE models.
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�nancial frictions�proxied by the decline in variability of our investment speci�c

technology shock�played a predominant role in the Great Moderation. This alter-

native evidence in support of our hypothesis is summarized in �gures 8 and 9.

Figure 8 plots the time varying standard deviations of consumption, investment

and several of their components, obtained using an AR(4) model with stochastic

volatility. Notice that the most drastic reduction in volatility has characterized the

time series of investment and particularly residential investment, whose standard

deviation has decreased by more than 70 percent. The volatilities of the other

components exhibit smoother evolutions with the exception, perhaps, of durable

consumption. This is consistent with the sizable reduction in the variability of

production in the automobile industry (as detailed in Ramey and Vine (2005)), as

it reasonable to expect that the automobile industry would also be quite sensitive

to deepening of credit markets (Campbell and Hercowitz (2004)).

Finally, observe that we present alternative series for real investment in equip-

ment and software, depending on whether Gordon (1990)-Cummins and Violante

(2002) or NIPA de�ators are used to construct these series. This is done in order to

asses the robustness of our results to additional quality adjustments in the NIPA de-

�ator for equipment and software, as noted by Greenwood, Hercowitz, and Krusell

(1997) and Fisher (2005) in their analysis of investment speci�c technology shocks.

As it is clear from �gures 8f and 8h, these data considerations are inconsequential

for our analysis of volatility.

Further compelling evidence on the role of �nancial frictions�particularly for

residential investment�in explaining the Great Moderation is presented in �gure 9

(�rst column) which plots the spreads between the 30-year �xed mortgage interest

rate and the AAA Moody bonds, 10-year and 30-year Treasury constant maturity

rates.12 The large and volatile spreads of the early 1980s correspond to the end of a

system dominated by heavily regulated thrift institutions, in which credit availabil-

ity was subject to large swings due to �uctuations in deposits (Bradley, Gabriel,

and Wohar (1995)). The transition to smaller spreads is commonly associated with

the beginning of a more e¢ cient and integrated mortgage market (McCarty and

Peach (2002), Dynan, Elmendorf, and Sichel (2005) or Schnure (2005)).

With this observation in mind, next to each series, we also plot an estimate of the

time varying standard deviation for each spread, obtained using an AR(4) model

12 Our plots of the spreads start in 1978 because data about the 30-year Treasury constant
maturity rate are not available before that date.
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with stochastic volatility. Three points deserve particular attention: �rst, all three

volatilities decline quite sharply at the beginning of the 1980s; second, the timing

of the decline coincides perfectly with the timing of the Great Moderation and,

particularly, of the important reduction in the volatility of residential investment

already documented (�gure 9d). Finally, the timing and the sharpness of the decline

in volatility of the mortgage over 30-year Treasury Bills spread (�gure 9f) suggests

that the turmoil in the mortgage market before the early 1980s was probably due

to other factors, beyond the chaos caused by the behavior of in�ation and in�ation

expectations during this period.

To summarize, the sharp decline in the volatility of investment speci�c technology

shocks, as well as the relative price of investment to consumption, matches very

well with the empirical evidence on the expanded access to credit and borrowing

for �rms and especially households since the beginning of the 1980s. Indeed, the

Great Moderation is most evident for residential investment, and the timing of this

reduction in volatility accords well with developments in the mortgage market that

are widely believed to have fostered a decline in �nancial frictions. We therefore

view the development of more elaborate DSGE models, relative to ours, that could

shed light on these issues as a worthy endeavor.

6.4. Robustness issues. In this subsection we perform robustness checks on our

important �nding that the Great Moderation appears to have been driven by the

decline in volatility of investment speci�c technology shocks.

Our focus is on two of the main explanations that have been provided for the

Great Moderation: changes in the conduct of monetary policy (Bernanke (2004))

and technological improvement in inventory management (McConnell and Perez-

Quiros (2000) and Kahn, McConnell, and Perez-Quiros (2002)). To deal with the

�rst issue, we perform a simple experiment which suggests that in the context

of this model, the lower variability of U.S. output is di¢ cult to explain when only

considering changes in the systematic part of monetary policy. Regarding inventory

management, our second exercise is to re-estimate our model using series that

abstract from the role of inventories in order to show that the Great Moderation is

still evident in this case, albeit in a somewhat less drastic manner. The results of

these two exercises (although they echo �ndings elsewhere using other methods and

models) cannot be taken as conclusive evidence against these two hypotheses, which

may have played some role in the Great Moderation. Nonetheless, they show that
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when these variants are considered, the decline in the variability of GDP growth is

once again largely attributed to a reduction in the volatility of investment speci�c

technology shocks.

6.4.1. Changes in monetary policy. Our strategy to address the importance of the

changes in the systematic part of monetary policy consists of estimating our model

(without stochastic volatility) on two separate subsamples, 1953-1979:II and 1983-

2004:III. Notice that, following Hanson (2003), we exclude the 1979:III-1982:IV

period from the estimation since monetary policy during this period may not be

correctly characterized by a Taylor rule.13 Table 2 presents posterior modes and

standard deviations of the coe¢ cients estimated over these two periods. Observe

that there are some di¤erences in the coe¢ cient estimates across subsamples. Con-

sistent with the evidence presented earlier, this is particularly the case for the

standard deviations of the shocks. In addition, table 3 highlights that the uncon-

ditional standard deviation of output growth in the second subsample relative to

the �rst is 0:52. In the context of our model this discrepancy can potentially be

explained by three di¤erent sets of parameters: the monetary policy coe¢ cients,

the remaining structural parameters and the standard deviations of the shocks.

With regard to the policy coe¢ cients, notice that, as expected, monetary policy

in the second subsample seems to have been more responsive to in�ation (Clarida,

Gali, and Gertler (2000)). To assess the role of these change in the systematic part of

policy on the volatility of output, table 3 presents the relative standard deviation

of GDP growth when the coe¢ cients of the Taylor rule estimated in the second

subsample replace the corresponding coe¢ cients in the �rst subsample, leaving all

other coe¢ cients unchanged. In order to gauge the possible role of changes in

the remaining structural parameters, table 3 also presents the relative volatility

of GDP growth when a similar counterfactual exercise is performed by replacing

all coe¢ cients (other than the volatilities) from the second sub-sample. Table 3

makes clear that neither changes in the systematic part of monetary policy nor the

remaining structural coe¢ cients of the model seem to account for the decline in

the volatility of output. This result is in line with Sims and Zha (2004), Hanson

(2003), Leduc and Sill (2003), Primiceri (2005), Ahmed, Levin, and Wilson (2004).

13 To further check the robustness of this experiment, we have also estimated the model
from 1979:III to 2004:III allowing for stochastic volatility in order to capture the large degree of
variability of interest rates during this period. Our results are una¤ected by this modi�cation.
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The split-sample estimates of table 2 are obtained using the priors reported in

table 1 for both subsamples. Notice that the prior for the coe¢ cient of the policy

response to in�ation (��) is a normal distribution with mean equal to 1:7 and

standard deviation equal to 0:3. This prior speci�cation puts very low probability

on values of �� smaller than one, which, according to Clarida, Gali, and Gertler

(2000), are plausible parameter values for the pre-1980 period. Interest in this

case arises from noting that, when �� < 1, the model admits multiple (sunspot)

equilibria, which can generate arbitrarily high volatility in the macroeconomy. At

least in principle, this could potentially explain the larger volatility of GDP growth

in the pre-Volcker period.

To assess whether our results are driven by not allowing for indeterminacy, we re-

estimate the model in the pre-Volcker period using a di¤erent prior for the reaction

coe¢ cient to in�ation. In particular, the new prior density for �� has a larger

standard deviation (equal to 0:7) and, hence, puts considerably more weight on the

indeterminacy region. Interestingly, our new estimate of the reaction coe¢ cient

to in�ation remains almost unchanged across priors (�rst two columns of table 4).

In particular, the 90 percent posterior interval is well above one and none of the

generated draws from the posterior falls close to the indeterminacy region.

We do not view the absence of indeterminacy in our estimates as surprising. In

fact, sunspot equilibria due to an accommodating central bank tend to generate a

positive comovement between in�ation and real activity in sticky prices models, as

forcefully argued by Christiano and Gust (1999). This is clearly at odds with the

U.S. experience in the 1970s. As a result, we conclude that in our model, an ex-

planation of the Great Moderation based on indeterminacy seems at odds with the

data, while we recognize that there are certainly other models in which an expla-

nation along these lines could be more promising. Similarly, we acknowledge that

the role of real time data combined with mismeasurement of the variables entering

the Taylor rule may, in smaller models, provide a stronger case for monetary policy

as responsible, at least in part, for greater stability after 1984 (see Orphanides and

Williams (2005)). However, the validity of this explanation in the context of large

scale models like ours has not yet been addressed and remains a topic for future

research.
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6.4.2. Changes in inventory management. Regarding the role of inventories in ex-

plaining the Great Moderation, we proceed with the rather simple exercise of con-

structing series of investment and, therefore, output that abstract from inventories.

This approach corresponds with the measurement of investment series in some

business cycle quantitative studies (for example, Fisher (2005)). Furthermore the

rationale for subtracting inventories from output, as opposed to working with the

series for inventories themselves, arises from the ambiguity of whether invento-

ries bu¤er or rather amplify economic �uctuations.14 That is, it remains unclear

whether an increase in the volatility of inventories would map into a rise or a decline

of the volatility of output. Our aim here is simply to check whether when removing

inventories the Great Moderation is still evident and, furthermore, whether our

conclusions regarding the importance of investment speci�c technology shocks in

accounting for this episode still hold.

Using this new series for investment and output15 we re-estimate the model with

stochastic volatility over the full sample. Figure 8 presents counterfactual exercises

constructed similarly to those reported in section 6.1, using the new coe¢ cient and

volatility estimates. In this case, the moderation in the variability of output growth

is still evident although the decline is somewhat more prolonged as opposed to

abrupt. Moreover, monetary policy shocks seem to be slightly more important than

in the baseline case. Notice, however, that the role of investment speci�c technology

shocks in accounting for the lower volatility of output growth remains for the most

part unaltered. This exercise suggests that, while inventories may be important for

understanding the sharp drop in the variability of output growth, it would seem

that additional explanations are needed to address the Great Moderation (see also

Stock and Watson (2002), Maccini and Pagan (2003), Herrera and Pesavento (2005)

or Ramey and Vine (2005) for similar conclusions). In this respect, and consistently

once again with our previous �ndings, our results point to the predominant role of

investment speci�c technology shocks in explaining the reduced volatility of the

U.S. economy after 1984.

14 Kahn and McConnell (2002), for instance, argue that while in theory inventories should
bu¤er production from �uctuations in sales, in practice the opposite occurs as inventories and
sales comove in the same direction.

15 We use nominal �xed investment and accordingly subtract inventories from nominal GDP.
Consistent with our previous data, per-capita series are obtained by dividing through with popu-
lation and the GDP de�ator.
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7. Concluding Remarks

In this paper we have estimated a large scale DSGE model of the U.S. business

cycle allowing for the volatility of the structural innovations to change over time.

Our results indicate that the volatility of several shocks has changed dramatically

in the postwar period. However, the sharp reduction in the standard deviation of

GDP growth that has characterized the last twenty years can be explained mostly

due to the decline in the variability of a single disturbance: the investment speci�c

technology shock. This crucial disturbance has the equivalent interpretation of a

shock to the inverse price of e¢ cient units of investment in terms of consumption

goods and, indeed, we also document that this series has exhibited a substantial

moderation in its variability, in accordance with the predictions of our model.

Our results provide guidance for future research on the volatility of the U.S.

business cycle, suggesting that a fruitful avenue would be to model the variability

of disturbances a¤ecting the relative price of investment goods. In particular, it

would be useful to extend the DSGE model of this paper in order to provide a

more structural interpretation for the sharp reduction observed in the volatility of

these shocks. Although beyond the scope of this paper, we note that explanations

based on increased access to credit markets (Campbell and Hercowitz (2004)) and a

decline in investment �nancial frictions (like the ones modeled in Bernanke, Gertler,

and Gilchrist (1999) or Iacoviello (2005)) are potentially consistent with the decline

in the volatility of the relative price of investment.

We conclude by pointing out that the applicability of the modeling framework of

this paper goes well beyond the Great Moderation. Indeed, macro-�nance applica-

tions seem particularly suitable for this methodology. In fact, contrary to standard

models with homoskedastic innovations, DSGE models with stochastic volatility as

introduced in this paper generate time varying risk premia even with second order

approximations of the model solution. More generally, DSGE models with stochas-

tic volatility are appropriate for analyzing the e¤ects of shocks to uncertainty and

risk, not only for asset prices, but also for the level of real activity.

Appendix A. Partially nonlinear approximation

This appendix proofs the validity of the partially nonlinear approximation of

the model solution. To simplify the notation, here we work with linearizations (as

opposed to log-linearizations). Consider the general class of models described by
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the following system of rational expectations equations:

Et [� (xt+1; xt; "t; �t)] = 0,(A.1)

"t � N(0; I),

where each element of �t evolves as in (2.2). Relative to (2.1), (A.1) abstracts from

the presence of lagged values of x for simplicity. This is without loss of generality,

since the vector of state variables can always be extended to include lags. Let�s

de�ne

(A.2) �t � �t � "t,

with ���denoting the element-by-element product between two vectors. (A.2) can
be used to reparameterize (A.1) as follows:

(A.3) Et [	 (xt+1; xt; �t; �t)] = 0.

Assume that (A.3) admits a unique solution in the neighborhood of the non-

stochastic steady state (described by 	(x; x; 0; 0) = 0). This solution has the

form

(A.4) xt = g (�t; �t) .

To characterize the the �rst order approximation of (A.4), plug (A.4) into (A.3),

obtaining

Et
�
	
�
g
�
�t+1; �t+1

�
; g (�t; �t) ; �t; �t

��
= 0,

and then take a �rst order Taylor expansion. Since �t and "t never enter (A.1) sep-

arately (but always as a product), the partial derivative of the function 	(�; �; �; �)
with respect to its fourth argument is equal to zero, implying a �rst order approx-

imation of the solution of the form

(A.5) xt = g1�t + o(jj�t; �tjj)

where the matrix g1, is a function of the partial derivatives of the function	(�; �; �; �).
Equation (A.5) makes evident that the �rst order approximation of the model

solution as a function of �t does not include �t explicitly.

Observe that the more conventional linear approximation of the model solution

derived directly from (A.1) would have the form

(A.6) xt = g1� � "t + o(jj"t; �tjj).
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Notice that the norms of both vectors, "t and �t, are required to approach zero

for (A.6) to be an accurate approximation of the model solution. These conditions

are su¢ cient but not necessary for the accuracy of the approximation in (A.5),

therefore validating our partially nonlinear approximation.

Appendix B. The estimation algorithm

B.1. The Standard Case: Homoskedastic Disturbances. For the model with-

out stochastic volatility, the estimation algorithm is simply a random walk Metrop-

olis MCMC procedure, as suggested originally by Schorfheide (2000). To initialize

the chains we compute the posterior ordinate for 5; 000 draws from the priors, se-

lect the ten points attaining the highest posterior density and use a maximization

algorithm (Chris Sims�csminwel) to �nd the posterior mode. Having observed that

all chains lead to the same mode, the inverse Hessian at the peak is used as the vari-

ance of a proposal density for generating draws with the random walk metropolis.

We initialize multiple chains by scaling the inverse Hessian upwards and drawing

randomly from a normal centered at the mode. The variance-covariance matrix of

the proposal density is adjusted to attain an acceptance rate close to 0:25, as it

is usually suggested. Trace plots, kernel estimates as well as the variants of the

potential scale-reduction factors proposed by Brooks and Gelman (1998) are used

to gauge the convergence of the algorithm.

B.2. Stochastic Volatility. When the structural shocks exhibit stochastic volatil-

ity, this algorithm must be modi�ed to account for inference on the unobserved sto-

chastic volatilities. A Metropolis within Gibbs MCMC algorithm allows us to itera-

tively draw from the posterior densities of the DSGE model�s parameters, stochastic

volatilities and associated innovation variances. As discussed below, generating a

draw for the stochastic volatilities entails using a normal mixture approximation

and sampling a set of latent indicators for the components of this mixture.

To illustrate the steps involved in sampling from the di¤erent blocks, let the

vector � collect all parameters of the DSGE model (other than the standard devi-

ations of the structural disturbances of the time invariant model) and notice that

the solution of the linearized DSGE model leads to a state-space representation of

the form
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xt = Dyt(B.1)

yt = A(�)yt�1 +B(�)�t(B.2)

where xt and yt represent the observable variables and the endogenous / state

variables respectively. (B.2) is the same equation as in (2.3), but we have dropped

the �hats� to simplify the notation. As discussed in section A the novelty of our

framework is that the vector of structural innovations �t (dimension n�1) is allowed
to have a time varying variance covariance matrix. Indexing each structural shock

by i, the stochastic volatilities for each shocks are modelled as

�i;t = �i;t"i;t(B.3)

log �i;t = (1� ��i) log �i + ��i log �i;t�1 + �i;t(B.4)

"i;t � N(0; 1)(B.5)

�i;t � N(0; s2i ) i = 1; :::; n.

Let the vector ht, with entry i given by hi;t = log �i;t, collect the log volatilities

for all shocks at time t and stack the whole sample of stochastic volatilities into

the matrix HT = [h1; h2; :::; ht; :::; hT ]
0. Finally, we denote the sample of structural

shocks as �T = [�1;�2; :::; �t; :::; �T ]
0.

Suppose that the MCMC algorithm has completed iteration g (> 0); producing

samples �(g); HT;(g) and V (g):of the parameters of interest (individual elements of

a vector are indexed by i while (g) indicates the current state of the chain). In

iteration g + 1, the following �ve steps are used to generate a set of new draws.

B.2.1. Step 1: Draw the structural shocks �T;(g+1). In order to generate a new sam-

ple of the stochastic volatilities we must �rst obtain a new draw of the structural

shocks. This can be done easily using the e¢ cient simulation smoother for dis-

turbances developed by Durbin and Koopman (2002). The simulation smoother is

applied to the state space representation given by (B.1) and (B.2).

B.2.2. Step 3: Draw the stochastic volatilities HT;(g+1). With a draw of �T

in hand the system of nonlinear measurement equations in (B.3) for each structural

shock, can be easily converted in a linear one, by squaring and taking logarithms

of every element. Due to the fact that the squared shocks �2i;t can be very small,

an o¤set constant is used to make the estimation procedure more robust. Dropping
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the iteration indicators momentarily for ease of notation, this leads to the following

approximating state space form:

~�i;t = 2hi;t + ei;t(B.6)

hi;t = hi;t�1 + �i;t.(B.7)

where ~�i;t = log[(�i;t)
2 + c]; c is the o¤set constant (set to 0:001); ei;t = log("2i;t).

Observe that the e�s and the ��s are not correlated. The resulting system has a

linear, but non-Gaussian state space form, because the innovations in the mea-

surement equations are distributed as a log�2(1). In order to further transform

the system in a Gaussian one, a mixture of normals approximation of the log �2

distribution is used, as described in Kim, Shephard, and Chib (1998). Under the

assumption of orthogonality across the "�s (recall the variance covariance matrix of

the "�s is the identity matrix) this implies that the variance covariance matrix of

the v�s is also diagonal, allowing to use the same (independent) mixture of normals

approximation for any for each innovation:

f(ei;t) =

KX
k=1

qkfN (ei;tjsi;t = k), i = 1; :::; n

where si;t is the indicator variable selecting which member of the mixture of nor-

mals has to be used at time t for the innovation i, qk = Pr(si;t = k) and fN (�)
denotes the pdf of a normal distribution. Kim, Shephard, and Chib (1998) select

a mixture of 7 normal densities (K = 7) with component probabilities qk, means

mk � 1:2704, and variances r2k, j = 1; :::; 7, chosen to match a number of moments
of the log�2(1) distribution. For completeness the constants are reported below

fqj ;mj ; r
2
jg below.16

16 We abstract from the reweighting procedure used in Kim, Shephard, and Chib (1998) to
correct the minor approximation error.
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! qj = Pr(! = j) mj r2j

1 0.00730 -10.12999 5.79596

2 0.10556 -3.97281 2.61369

3 0.00002 -8.56686 5.17950

4 0.04395 2.77786 0.16735

5 0.34001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 -1.08819 1.26261

Source: Kim, Shephard and Chib (1998).

Conditional on ST;(g), the system has an approximate linear and Gaussian

state space form. Therefore a new draw for the complete history of the volatil-

ity HT;(g+1)can be obtained recursively with the standard Gibbs sampling for state

space forms using, for instance, the forward-backward recursion of Carter and Kohn

(1994).

B.2.3. Step 3: Draw the indicators of the mixture approximation sT;(g+1). A new

sample of the indicators, si;(g+1)t , for the mixture is obtained conditional on �T;(g+1)

and HT;(g+1) by independently sampling each from the discrete density de�ned by

Pr(s
(g+1)
i;t = j j ~�(g+1)i;t ; h

(g+1)
i;t ) _ qjfN (~�(g+1)i;t j2h(g+1)i;t +mj�1:2704; r2j ), j = 1; :::; 7

Consistent with notation above, collect the indicators for which component of the

mixture of the normal approximation to use for each structural shock and time

period into a stacked matrix sT;(g+1) = [s(g+1)1 ; s
(g+1)
2 ; :::; s

(g+1)
t ; :::; s

(g+1)
T ]0

B.2.4. Step 4: Draw the coe¢ cients of the stochastic volatility processes.

Having generated a sample HT;(g+1), the vector
h
�
(g+1)
i ; �

(g+1)
�i ; s

2 (g+1)
i

i
, i =

1; :::; n, can be generated easily from the usual Normal inverse-Gamma distribu-

tion.

B.2.5. Step 5: Draw the DSGE parameters �(g+1). As in the time invariant al-

gorithm, a new candidate parameter �� is drawn from a proposal density. However,

in this case, the computation of the likelihood used to construct the probability

of acceptance depends on HT;(g+1). More formally the candidate draw is accepted

with probability

a = min

(
1;

L(Y T j��;HT;(g+1))�(��)

L(Y T j�(g) ;HT;(g+1))�(�(g))

)
,
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where L(�) and �(�) denote the likelihood and the prior distribution respectively.
These �ve steps are repeated N times, across multiple chains. As in the case of

the time invariant model, we apply a battery of diagnostics to gauge the convergence

of the chains.
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Coefficient Description Prior 
Density 1/

Mean Std Median Std [5,95] Prob Median Std [5,95] Prob

ι p Price indexation B 0.5 0.15 0.149 0.059 [ 0.072 , 0.263 ] 0.288 0.091 [ 0.158 , 0.4529 ]

ι w Wage indexation B 0.5 0.15 0.11 0.031 [ 0.064 , 0.164 ] 0.134 0.035 [ 0.081 , 0.197 ]

γ SS technology growth rate N 0.5 0.025 0.425 0.024 [ 0.39 , 0.46 ] 0.4344 0.023 [ 0.4 , 0.47 ]

h Consumption habit B 0.5 0.1 0.809 0.03 [ 0.759 , 0.864 ] 0.748 0.027 [ 0.705 , 0.793 ]

λ p SS mark-up goods prices N 0.15 0.05 0.243 0.038 [ 0.18 , 0.304 ] 0.218 0.034 [ 0.161 , 0.275 ]

λ w SS mark-up wages N 0.15 0.05 0.127 0.046 [ 0.054 , 0.207 ] 0.171 0.038 [ 0.114 , 0.241 ]

L ss (log) SS leisure N 396.83 0.5 397.218 0.451 [ 396.507 , 397.986 ] 396.799 0.479 [ 396.045 , 397.624 ]

π SS quarterly inflation N 0.5 0.1 0.578 0.098 [ 0.415 , 0.735 ] 0.712 0.056 [ 0.625 , 0.81 ]

r SS real interest rate N 0.5 0.1 0.997 0.073 [ 0.876 , 1.117 ] 0.996 0.067 [ 0.89 , 1.114 ]

ν Inverse Frisch labor G 2 0.75 3.856 0.914 [ 2.598 , 5.618 ] 2.423 0.759 [ 1.57 , 4.036 ]

ξ p Calvo prices B 0.75 0.1 0.784 0.023 [ 0.745 , 0.821 ] 0.681 0.027 [ 0.637 , 0.725 ]

ξ w Calvo wages B 0.75 0.1 0.718 0.051 [ 0.619 , 0.784 ] 0.379 0.051 [ 0.302 , 0.472 ]

χ Elasticity capital utilization costs G 5 1 7.136 1.104 [ 5.552 , 9.133 ] 7.328 1.050 [ 5.773 , 9.222 ]

S'' Investment adjustment costs N 4 1.5 2.051 0.586 [ 1.331 , 3.244 ] 2.447 0.490 [ 1.702 , 3.338 ]

Φ p Taylor rule inflation N 1.7 0.3 2.014 0.144 [ 1.804 , 2.275 ] 2.503 0.184 [ 2.225 , 2.832 ]

Φ y Taylor rule output G 0.125 0.1 0.072 0.014 [ 0.05 , 0.097 ] 0.024 0.011 [ 0.008 , 0.045 ]

Notes:

Posterior  2/ Posterior with Stochastic Volatility 3/

Table 1: Prior densities and posterior estimates with and without stochastic volatility 

Prior 

2/  Median, standard deviations and posterior percentiles of 110,000 draws from the Random Walk metropolis algorithm for the model without stochastic volatility. We discard the initial 50,000 draws. 
3/  Median, standard deviations and posterior percentiles of 120,000 draws from the Random Walk metropolis within Gibbs algorithm for the model with stochastic volatility. We discard the initial 50,000 

Calibrated coefficients: labor share (α) at 0.3,  depreciation rate (δ) is 0.025, g at 1/0.77 which implies a SS government share of 0.22

1/  N stands for Normal, B Beta, G Gamma and I Inverted-Gamma1 distribution 

Relative to the text, γ is expressed in percentage points, while π and r are expressed as net rates, in percentage points. Finally, the standard deviations of the innovations are also scaled by 100 for the 
estimation. All these changes are reflected in the specification of the priors. 



Coefficient Description Prior 
Density 1/

Mean Std Median Std [5,95] Prob Median Std [5,95] Prob

ρ μ Investment specific technology B 0.5 0.15 0.909 0.028 [ 0.859 , 0.949 ] 0.831 0.036 [ 0.772 , 0.888 ]

ρ λ Mark-up B 0.8 0.1 0.876 0.036 [ 0.81 , 0.925 ] 0.908 0.029 [ 0.854 , 0.95 ]

ρ φ Labor disutility B 0.5 0.15 0.489 0.07 [ 0.379 , 0.609 ] 0.924 0.033 [ 0.857 , 0.964 ]

ρ b Intertemporal preference B 0.5 0.15 0.822 0.051 [ 0.716 , 0.884 ] 0.822 0.042 [ 0.745 , 0.883 ]

σ r Monetary policy I 0.15 0.15 0.254 0.014 [0.232 , 0.28 ]

σ z Technology growth I 0.15 0.15 1.097 0.057 [1.006 , 1.192 ]

σ g Government spending I 0.15 0.15 0.553 0.035 [0.501 , 0.615 ]

σ μ Investment specific technology I 0.1 0.1 0.136 0.021 [0.108 , 0.178 ]

σ λ Mark-up I 0.15 0.15 0.096 0.011 [0.08 , 0.115 ]

σ φ Labor disutility I 0.15 0.15 0.988 0.283 [0.587 , 1.52 ]

σ b Intertemporal preference I 0.15 0.15 0.55 0.202 [0.387 , 1.083 ]

Notes:

3/  Median, standard deviations and posterior percentiles of 120,000 draws from the Random Walk metropolis within Gibbs algorithm for the model with stochastic volatility. We discard the initial 50,000 

Calibrated coefficients: labor share (α) at 0.3,  depreciation rate (δ) is 0.025, g at 1/0.77 which implies a SS government share of 0.22
Relative to the text, γ is expressed in percentage points, while π and r are expressed as net rates, in percentage points. Finally, the standard deviations of the innovations are also scaled by 100 for the 
estimation. All these changes are reflected in the specification of the priors. 
1/  N stands for Normal, B Beta, G Gamma and I Inverted-Gamma1 distribution 
2/  Median, standard deviations and posterior percentiles of 110,000 draws from the Random Walk metropolis algorithm for the model without stochastic volatility. We discard the initial 50,000 draws. 

Table 1 (continued): Prior densities and posterior estimates with and without stochastic volatility

Prior Posterior  2/ Posterior with Stochastic Volatility 3/



Coefficient Description Mode Std Mode Std 

ι p Price indexation 0.218 0.088 0.178 0.073

ι w Wage indexation 0.094 0.031 0.410 0.075

γ SS technology growth rate 0.461 0.025 0.476 0.024

h Consumption habit 0.817 0.032 0.688 0.041

λ p SS mark-up goods prices 0.180 0.004 0.122 0.039

λ w SS mark-up wages 0.150 0.002 0.178 0.009

L ss (log) SS leisure 397.072 0.454 396.941 0.486

π SS quarterly inflation 0.576 0.115 0.646 0.059

r SS real interest rate 0.734 0.089 0.731 0.066

ν Inverse Frisch labor 2.270 0.738 1.723 0.566

ξ p Calvo prices 0.708 0.046 0.721 0.034

ξ w Calvo wages 0.626 0.084 0.350 0.073

χ Elasticity capital utilization costs 6.014 1.814 6.180 1.016

S'' Investment adjustment costs 0.814 0.227 1.875 0.544

Φ p Taylor rule inflation 1.644 0.099 2.386 0.170

Φ y Taylor rule output 0.057 0.015 0.031 0.016

ρ r Taylor rule smoothing 0.787 0.038 0.815 0.023

ρ z Technology growth 0.306 0.081 0.321 0.071

ρ g Government spending 0.922 0.022 0.965 0.011

ρ μ Investment specific technology 0.911 0.041 0.847 0.041

ρ λ Mark-up 0.893 0.035 0.902 0.040

ρ φ Labor disutility 0.515 0.145 0.919 0.041

ρ b Intertemporal preference 0.508 0.143 0.833 0.050

σ r Monetary policy 0.234 0.027 0.153 0.013

σ z Technology growth 1.198 0.143 0.727 0.061

σ g Government spending 0.700 0.060 0.438 0.035

σ μ Investment specific technology 0.085 0.013 0.061 0.011

σ λ Mark-up 0.142 0.035 0.102 0.017

σ φ Labor disutility 0.693 0.188 0.246 0.037

σ b Intertemporal preference 0.881 0.249 0.202 0.039

Calibrated coefficients: labor share (α) at 0.3,  depreciation rate (δ) is 0.025, g at 1/0.77 which implies a SS government share of 0.22

Table 2: Posterior estimates on Split Sample (without stochastic volatility) 

Prior distributions are identical to those reported in Table 1. 

Posterior                           
Sample II: 1984q1 - 2004q4

Posterior                           
Sample I: 1954q3 - 1979q3

Relative to the text, γ is expressed in percentage points, while π and r are expressed as net rates, in percentage points. Finally, the standard deviations of the 
innovations are also scaled by 100 for the estimation. All these changes are reflected in the specification of the priors.



A B C  D

Sample I : 1954q3- 
1979q3

Sample II : 1984q1 - 
2004q4

Sample I: monetary 
policy coefficients 

Sample II    1/

Std only Sample I; all 
other coefficients Sample 

II   2/ 

Std of output 
(relative to std 
sample I) 1 0.526 1.026 1.114

1/ All coefficients and standard deviations at median estimates for sample I, but replace coefficients of the Taylor rule and the mean of 
inflation with median estimates for sample II.

2/ Standard deviations at median estimates for sample I, while all other coefficients are at their median estimates for sample II. 

Table 3: Model implied relative standard deviations for output 

Split sample estimates and counterfactuals 



Coefficient Description Median Std Median Std Median Std 

ι p Price indexation 0.218 0.086 0.141 0.053 0.221 0.071

ι w Wage indexation 0.094 0.032 0.096 0.032 0.084 0.024

γ SS technology growth rate 0.460 0.025 0.448 0.024 0.436 0.022

h Consumption habit 0.817 0.011 0.780 0.028 0.740 0.031

λ p SS mark-up goods prices 0.170 0.005 0.295 0.006 0.235 0.035

λ w SS mark-up wages 0.141 0.002 0.113 0.002 0.120 0.039

L ss (log) SS leisure 397.080 0.447 396.780 0.482 396.288 0.419

π SS quarterly inflation 0.576 0.095 0.838 0.059 0.755 0.050

r SS real interest rate 0.730 0.079 0.939 0.068 0.950 0.056

ν Inverse Frisch labor 2.253 0.558 2.838 0.887 2.582 0.705

ξ p Calvo prices 0.706 0.019 0.783 0.023 0.746 0.028

ξ w Calvo wages 0.622 0.026 0.769 0.039 0.483 0.046

χ Elasticity capital utilization 6.022 1.019 7.029 2.187 7.696 0.981

S'' Investment adjustment cost 0.796 0.166 1.212 0.349 3.091 0.752

Φ p Taylor rule inflation 1.625 0.121 2.224 0.133 2.735 0.163

Φ y Taylor rule output 0.057 0.001 0.802 0.131 0.615 0.095

Notes:

Posterior 

Table 4: Posterior estimates (without stochastic volatility) based on 

Sample I: 1954q3 - 1979q3
Looser prior on Φp, Taylor 

Rule Inflation 1/

Posterior 

Full Sample 
Output growth in Taylor 

Rule /2

alternative prior and output growth specification for the Taylor Rule

Output growth in Taylor 
Rule /2

Full Sample 

Posterior with Stochastic 
Volatility

Except for the coefficients of the Taylor rule, all other priors are identical to those in Table 1/ 
1/  Prior for Φp is Normal(1.7,0.7) to provide greater prior mass to the region of indeterminacy. Prior for Φy is N(0.125,0.1) as in Table 1. 
2/  Prior for Φp is Normal(1.7,0.3) as in Table 1. Prior for Φy is N(0.5,0.3) and in terms of output growth.  

Calibrated coefficients: labor share (α) at 0.3,  depreciation rate (δ) is 0.025, g at 1/0.77 which implies a SS government share of 0.22
Relative to the text, γ is expressed in percentage points, while π and r are expressed as net rates, in percentage points. Finally, the standard deviations of the innovations are also scaled by 
100 for the estimation. All these changes are reflected in the specification of the priors.



Coefficient Description Median Std Median Std Median Std 

ρ r Taylor rule smoothing 0.784 0.030 0.833 0.017 0.861 0.014

ρ z Technology growth 0.308 0.059 0.232 0.054 0.294 0.051

ρ g Government spending 0.922 0.024 0.984 0.001 0.982 0.006

ρ μ Investment specific techno 0.912 0.027 0.888 0.022 0.803 0.034

ρ λ Mark-up 0.891 0.035 0.886 0.036 0.858 0.041

ρ φ Labor disutility 0.509 0.048 0.579 0.063 0.851 0.063

ρ b Intertemporal preference 0.504 0.059 0.703 0.064 0.786 0.053

σ r Monetary policy 0.234 0.019 0.251 0.015

σ z Technology growth 1.193 0.082 1.113 0.056

σ g Government spending 0.701 0.058 0.570 0.035

σ μ Investment specific techno 0.084 0.006 0.115 0.016

σ λ Mark-up 0.143 0.006 0.104 0.011

σ φ Labor disutility 0.683 0.042 1.129 0.301

σ b Intertemporal preference 0.880 0.050 0.468 0.120

Notes:

Relative to the text, γ is expressed in percentage points, while π and r are expressed as net rates, in percentage points. Finally, the standard deviations of the innovations are also scaled by 
100 for the estimation. All these changes are reflected in the specification of the priors.
Except for the coefficients of the Taylor rule, all other priors are identical to those in Table 1/ 

Full Sample Full Sample 
Looser prior on Φp, Taylor 

Rule Inflation 1/
Output growth in Taylor 

Rule /2
Output growth in Taylor 

Rule /2

Posterior 

Calibrated coefficients: labor share (α) at 0.3,  depreciation rate (δ) is 0.025, g at 1/0.77 which implies a SS government share of 0.22

1/  Prior for Φp is Normal(1.7,0.7) to provide greater prior mass to the region of indeterminacy. Prior for Φy is N(0.125,0.1) as in Table 1. 
2/  Prior for Φp is Normal(1.7,0.3) as in Table 1. Prior for Φy is N(0.5,0.3) and in terms of output growth.  

Table 4 (continued): Posterior estimates (without stochastic volatility) based on 
alternative prior and output growth specification for the Taylor Rule

Sample I: 1954q3 - 1979q3

Posterior 
Posterior with Stochastic 

Volatility



Figure 1: Stochastic Volatility of the DSGE Model Shocks
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Figure 2: Variance Decomposition for Output Growth 1/

1/  For variance decompositions, medians need not add up to exactly one, but means do 
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Figure 3: Selected Variance Decomposition for Other Series 
( Series , Shock ) 
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Figure 4: DSGE Spectral Variance Decomposition for Output  1/

1/  For variance decompositions, medians need not add up to exactly one, but means do 

Spectrum decomposition for (log) output, in deviations from the model's common stochastic trend, for periodicities between 
8 and 32 quarters
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Figure 6: Actual and counterfactual standard deviation (std) for output growth 

Counterfactual std obtained by fixing for the remainder of the sample the std of each shock, one at a time, to the average 
level of the time variying standard deviations in 1980
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Note: Consistent with the data used to estimate the DSGE model,
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Investment is the sum of Private Investment and Durables
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Figure 9: Mortgage Spreads
Levels and Time Varying Standard Deviations

Median standard deviation from an AR(4) with stochastic volatility



Figure 10:  Actual and counterfactual standard deviation (std) for output growth exlcuding stocks

Counterfactual std obtained by fixing for the remainder of the sample the std of each shock, one at a time, to the average level of the time variying 
standard deviations in 1980
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B. Technology Shock
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 C. Government Spending Shock 
Counterfactual Median, 5th and 95th percentiles
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D. Investment Specific Technology Shock
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E. Mark-up Shock
Counterfactual Median 5th and 95th percentiles
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F.  Labor Disutility Shock 
Counterfactual Median, 5th and 95th percentiles
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