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Abstract

A settlement system is a set of rules and procedures that govern when and
how funds are transferred between banks. Perhaps the most crucial feature
of a settlement system is the frequency with which settlement occurs. On
the one hand, a higher frequency of settlement limits the risk of default
should a bank be rendered insolvent. On the other hand, a lower frequency
of settlement is less costly for banks to operate. We construct a model
of the banking sector in which this trade-off between cost and risk arises
endogenously. We then complete the economy with a trading sector that
has a micro-founded role for credit as a media of exchange. The result is a
general equilibrium model that allows for welfare and policy analysis. We
parameterize the economy and study the optimal intra-day borrowing policy
that the operator of a settlement system should impose on member banks.
We also determine conditions under which one settlement system is more
appropriate than another.
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1 Introduction

Many purchases, particularly of large value, are paid for with credit; that is, a

buyer transfers to the seller a claim on funds held at his financial institution,

which the seller can subsequently redeem at her financial institution. In such a

transaction, the exchange of goods and the finalization of payment are separate

events, and therefore require a specification for when and how the actual funds are

delivered from the buyer’s financial institution to the seller’s. Such a specification,

called a settlement system, is a ”contractual and operational arrangement that

banks and other financial institutions use to transfer funds to each other.” (Zhou,

2000)

As a result of recent advances in technology, as well as international financial

integration, both the regularity and the value of these transactions have increased

dramatically. For example, in the United States the average daily value of trans-

fers processed by the two primary settlement systems exceeds three trillion dol-

lars, or approximately one third of annual GDP.1 Therefore, an efficient, stable

settlement system is an increasingly essential component of a well-functioning

modern economy. While there are many features to a settlement system, per-

haps the most crucial is the frequency with which settlement occurs. This paper

develops a framework to analyze the costs and risks associated with settlement

frequency.

As the frequency of settlement increases, the settlement system becomes more

costly to banks. While there are several sources of this costliness, this paper

focuses on financial costs.2 If banks do not have on hand sufficient reserves to

finalize payments at the time of settlement, they must borrow the necessary funds.
1These statistics are similar across most developed countries. For example, in the United

Kingdom and Canada the average daily value of transactions equates to approximately 20% and

15%, respectively, of annual GDP.
2A second type of costs that arise as settlement frequency increases are resource costs. These

would include expenditures for the transfer, collection, accounting, and monitoring of payment

finalization, among many others. We ignore these here. See Berger, Hancock, and Marquardt

(1996) for a more complete exposition of costs inherent in payment systems.
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This borrowing is costly, as nearly all systems impose either interest charges or

collateral requirements for borrowing, or penalties on banks that are unable to

meet their liabilities. Therefore, when a bank is forced to make settlements more

often, it chooses to hold a larger amount of idle, liquid reserves. This sub-optimal

portfolio allocation bears the opportunity cost of holding assets that could be

generating revenue in the loan market.

In a world with perfect commitment between banks, the optimal settlement

system would simply be the least costly, and therefore frequent settlement would

be undesirable. However, in reality we observe occasional events in which a

financial institution is unable to deliver payments to finalize its customers’ trans-

actions, and therefore must default on its outstanding liabilities. The settlement

system in place will be a crucial determinant of how the economy as a whole is

affected by such events.3 Increased settlement frequency mitigates this risk in two

important ways. First, as the frequency of settlement increases, the number of

parties awaiting payment decreases. Therefore, a settlement system that reduces

the time between the initial transaction and the finalization of payment decreases

the potential size of a default. Secondly, since banks retain a higher level of re-

serves under systems with more frequent settlement, they are more equipped to

honor outstanding liabilities in the case of insolvency.

Therefore, there exists tension between the risk associated with large defaults

and the costs of controlling that risk. In Section 3, we begin by constructing

a partial equilibrium model (in the sense that the price of loans is exogenous)

of the banking sector in which a bank’s intra-day net liabilities are stochastic,

borrowing is costly, and banks are subject to random, exogenous solvency shocks.

Within this framework, the risk-cost tradeoff discussed above arises naturally. In

Section 4, we introduce a simple example to illustrate the key results from the

partial equilibrium model. We proceed with sensitivity analysis, which allows us
3There are several papers that assess the performance of a settlement system after a large

disruption to the financial sector. See Bernanke (1990) for analysis of clearing and settlement

during the 1987 stock market crash, and Fleming and Garbade (2002) for an account of settle-

ment performance after the September 11th terrorist attacks.
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to better understand how the magnitude of the risk-cost tradeoff is affected by

changes to the parameters of the model economy.

The partial equilibrium example is a useful tool in that it clearly illustrates

the tradeoff within the banking sector. However, it takes as given the demand

for loans, as well as the willingness of buyers and sellers to trade, and therefore

does not consider how their behavior might respond to changes in the costs or

risks of banking. As a result, any attempt at welfare analysis within the partial

equilibrium setting would require arbitrary weights on the costs and risks of

settlement frequency. In Section 5, we complete the economy by introducing

a trading sector in which agents conduct transactions using bank credit as the

means of payment. The complete economy is a general equilibrium model in the

usual sense: there are two sectors, and variables that are endogenously determined

in one sector are taken as given in the other. In equilibrium, of course, there is

aggregate consistency between the behavior in the two sectors. The complete

model allows us to analyze behavioral and welfare implications of the risk-cost

tradeoff within the context of a monetary economy.

In section 6, we extend the example introduced earlier to the general equilib-

rium framework. By considering welfare under alternative settlement frequencies,

borrowing policies, and parameter specifications, several insights emerge. First,

we find that the determination of the optimal settlement system requires joint

consideration of both settlement frequency and intra-day borrowing practices.

This is a natural result: the frequency of settlement and the costly provision of

liquidity are both levers that can be employed to reduce the risks associated with

default. However, the method by which they do so is different, as are the finan-

cial inefficiencies that they introduce. Therefore, to find the optimal settlement

system, one must determine both the proper balance between risk and cost, and

the most efficient way of achieving that balance. Our welfare analysis also reveals

that the optimal use of these two levers will depend heavily on the underlying

parameters of the economy. In particular, the factors governing the probability

of solvency and liquidity shocks, as well as the costs of recovering from a default,
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will be the primary determinants of the optimal settlement system. In an econ-

omy in which these factors generate a sufficiently high risk, some combination of

real-time settlement and costly provision of liquidity may be desirable in order

to curb the effects of potential defaults. On the other hand, should these risks

be small relative to the financial costs incurred, less frequent settlement and/or

free intra-day liquidity may be optimal.

Section 7 concludes, and offers potential extensions of the model.

2 Literature Review

Following Freeman (1996), many economists have assessed settlement system is-

sues with relatively abstract models in which the agents are the banks, and the

need for a third party to provide liquidity arises from spatial and intertempo-

ral miscoordination. The first generation of these papers, which would include

Freeman (1999) and Zhou (2000), introduced default as an exogenous event and

concluded that intra-day liquidity should be provided free of charge. In more

recent work by Mills (2005) and Koeppl, Monnet, and Temzelides (2005), default

has been modeled as the product of a moral hazard; that is, banks choose to

default on their outstanding debt because it is no longer incentive compatible

to repay.4 In this framework, the authors consider various instruments that the

central counter-party may wish to implement in order to limit the risk of default,

including collateral requirements, interest charges, and borrowing caps. Their

findings suggest that the free provision of intra-day liquidity may not be optimal

in the presence of a moral hazard problem.5

The approach in these papers is appealing because there is a natural definition

of welfare and a transparent role for a welfare-improving monetary authority.

However, since these models require a highly stylized timing sequence, they do
4Martin (2004) implements a similar model, though he motivates default in a manner more

similar to the current paper.
5Note that we characterize collateral requirements as being costly, as they generally introduce

opportunity costs of foregone investment.
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not easily accommodate analysis of one of the key features of a settlement system:

the frequency with which settlement occurs. Moreover, by modelling banks and

consumers as a single agent, the authors ignore the fact that the two parties have

different incentives. As a result, these models will fail to capture the behavior

of buyers and sellers in response to a banks choice of risk, and the effect of that

behavior on instruments (such as loan prices) that relate consumers and banks.

In response to the first of these limitations, several models have been devel-

oped which showcase a relatively sophisticated notion of banks. In Kahn and

Roberds (1998), for example, banks must choose the proper portfolio of liquid

and non-liquid assets given that intra-day liabilities (to and from other banks) are

stochastic.6 In the presence of a moral hazard problem similar to those discussed

above, the model successfully generates the trade-off between cost and risk that

is inherent to the choice of settlement frequency. However, as they ignore the be-

havior of the agents involved in the underlying transactions, Kahn and Roberds

require arbitrary weights to conduct welfare and policy analysis.

The current paper hopes to bridge the gap between the two strands of lit-

erature by constructing a model that has both a realistic banking environment

which allows for the analysis of settlement frequency and a trading sector that

provides a natural definition of welfare. Yet there remains an important differ-

ence between much of the existing literature and the framework developed here.

Many of the papers above incorporate risk into a model of payments via strategic

default ; when a bank is able to settle its debts, but it chooses not to. Policy

analysis, therefore, is tantamount to finding the mechanism that properly bal-

ances the benefits of (a) maintaining banks incentive compatibility constraints,

and (b) ensuring that all welfare-increasing transactions are executed. In con-

trast, this paper concerns itself solely with solvency shocks; when a bank simply

cannot settle its outstanding liabilities.7 As a result, the risk of default arises

from the fact that, when choosing the profit-maximizing level of reserves, banks
6Also see Kahn and Roberds (2001), and Kahn, McAndrews, and Roberds (2003).
7See Rochet and Tirole (1996) for an excellent discussion on why solvency shocks, and not

liquidity shocks, should be the primary area of concern.
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do not internalize the effects of a default on the economy as a whole. Therefore,

when exogenous solvency shocks occur, the size of banks’ default is larger than is

socially optimal. This motivates the role of central bank policy to promote more

conservative reserve management.

Zhou (2000) specifies four main criteria that a model of payment systems

should satisfy. First, she proposes that it should directly model the exchange

of goods, so that the structure of the system affects the allocation. Secondly,

the model should treat separately the debt issued as a means of payment and

the debt assumed by the banks for settlement. Finally, she suggests that the

model incorporates both liquidity shortage and credit risk, and that these should

be generated endogenously by the actions of the agents. In what follows, we

construct a model that is able to satisfy each of these four criteria.

3 The Banking Sector

We consider a discrete time, infinite horizon model in which each period, or

”day”, consists of a finite number of sub-periods. There are a large number of

ex-ante identical banks, each with an initial mass of depositors d. Upon receiving

a deposit, a bank issues the depositor some form of receipt that can then be

used to purchase goods in the trading sector. We loosely refer to this receipt

as a ”check,” though it should be understood that the usual settlement system

associated with checks does not necessarily apply. Banks face a fixed cost a to

manage each deposit, and charge each depositor a fee φ. It is possible, however,

that φ < 0, in which case the bank must pay the depositor. This case has the

natural interpretation of an interest-bearing bank account.

Before the day’s trading begins, banks choose a fraction α of initial deposits to

retain as reserves, and loan out the remaining 1−α in exchange for an up-front fee

ρ. We assume that the probability of an agent redepositing a loan at the lending

bank is zero, so that each bank has a mass d of active buyers in the market.

We also assume that sellers are pre-assigned a bank to deposit any payments
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received, and that sellers are uniformly distributed across banks. Sellers deposit

checks immediately after the transaction takes place. Therefore, throughout the

day, a bank accrues due-to’s and due-from’s as its buyers and sellers, respectively,

trade with other banks’ customers in the marketplace. A bank’s net liabilities at

any time are equal to the difference between due-to’s and due-from’s.

Suppose that transactions occur at T discrete intervals throughout each day,

and that a bank has cumulative intra-day net liabilities lt ∈ [Lt, L̄t] at each

t ∈ T ≡ {1, 2, ..., T}, where L̄t (Lt) is the maximum (minimum) net position

that occurs at time t with strictly positive probability, and −d ≤ Lt < 0 <

L̄t ≤ d for all t ∈ T . We denote the maximum possible net liability position

L̄ = maxt∈T {L̄1, ..., L̄T }. Therefore, a bank’s intra-day net liabilities is a T x 1

random variable l ≡ (l1, ..., lT ) with density λ(·), which we assume is continuous.

Any outstanding liabilities are settled at the end of each day, so that each period

begins with l0 = 0. Moreover, each night deposits are reallocated across banks

so that the following morning all banks begin with d deposits.

3.1 Notation, Definitions, and Key Concepts

A settlement system specifies the frequency with which banks must settle net

liabilities incurred since the previous settlement. For a given frequency F ≤ T ,

banks will settle at intervals of length S = T
F .8 Let S ⊂ T denote the subset of

points in time in which banks settle, so that S ≡ {S, 2S, ..., FS}, where FS = T .

Also, for any given point in time t, let st denote the time of the previous settle-

ment. That is,

st =





max{t′ ∈ S : t′ < t}, for t > S

0, for 0 ≤ t ≤ S

The settlement system is operated by a third party which we will refer to as

the central bank, as this is both convenient and consistent with many settlement
8For simplicity, we consider frequencies for which S is an integer.
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systems world-wide. Each bank has an account at the central bank, where it

keeps its reserves. At the time of settlement, the central bank will transfer the

appropriate amounts from the accounts of banks that have accrued positive net

liabilities since the previous settlement to the accounts of banks that have accrued

negative net liabilities since the previous settlement. Our analysis thus requires

that we keep track of a bank’s reserves held at the central bank.
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Definition 1 Let a bank’s reserves at time t for any realization of net liabili-

ties l, reserve ratio α, and settlement frequency F be denoted Rt(l, α; F ), and be

recursively defined:

Rt(l, α; F ) =





αd, for t = 0

max{0, Rst(l, α;F )− (lt − lst)}, for t ∈ S
Rst(l, α;F ), for t /∈ S

As the formula suggests, a bank’s account balance at the central bank is non-

negative, increases at settlements in which the bank receives payment (when

lt − lst < 0 for t ∈ S), and decreases when a bank must settle outstanding

liabilities (when lt − lst > 0 for t ∈ S). Notice that for any t that does not

correspond to a settlement period, the level of reserves does not change.

Should a bank’s obligations exceed its reserves at any settlement time t ∈ S,

it must borrow the difference, (lt − lst)−Rst(l, α; F ), from the central bank.

Definition 2 Let a bank’s total intra-day borrowing requirement for a given

realization of net liabilities l, reserve ratio α, and settlement frequency F be

denoted b(l, α; F ) and be defined:

b(l, α;F ) =
∑

t∈S
max{0, (lt − lst)−Rst(l, α;F )}.

At the end of the trading day, a bank is assessed a fee based on it’s total intra-day

borrowing requirement given by ψ
[
b(l, α;F )

]
. In reality, these fees are imposed

through a combination of interest charges, collateral requirements, and borrow-

ing caps (in which a bank is penalized for exceeding a predetermined borrowing

limit).9 Moreover, many systems maintain deductibles for small intra-day over-

drafts, while they levy far more severe penalties on large overdrafts. Therefore,

the following assumption on the convexity of ψ is not only convenient in that

it provides curvature to our problem, but also seems consistent with real world

practice.10

9For a detailed comparison of these various instruments, see Mills(2005).
10It is important to note that we are beginning with the assumption that the central bank
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Assumption 1 The cost function for borrowing fees, ψ(·), is C2, strictly in-

creasing, strictly convex, and satisfies the property ψ(0) = 0.

Since banks choose their reserve levels before the start of the day, they must

project borrowing fees for any given level of reserves.

Definition 3 Let a bank’s expected borrowing fees, given reserve ratio α and

settlement frequency F , be denoted Ψ(α;F ) and be defined:

Ψ(α; F ) = El

[
ψ

[
b(l, α;F )

]]
=

∫
ψ

[
b(l, α; F )

]
λ(l)dl.

Now that we have defined the structure of the banking sector, we are ready to

turn our analysis to the problem facing a profit-maximizing bank.

3.2 The Problem of the Bank

For each deposit, a bank receives a deposit fee (or pays interest) φ and earns

additional revenue (1−α)rρ in loans, where r is the rate of time preference of the

bank’s customers. However, a bank must spend a fixed amount a to manage each

account, and expects an additional borrowing fee Ψ(α; F ). Therefore, a bank’s

expected profits are given by

π(φ, α;F ) = d[φ + (1− α)rρ− a]−Ψ(α;F ). (1)

Assuming perfect competition in the banking sector, we use the zero expected

profit condition to get

φ = a− (1− α)rρ +
Ψ(α; F )

d
. (2)

We are able to characterize α(F ), the optimal level of reserves that a profit-

maximizing bank will choose under a settlement system with frequency F , as the

only provides liquidity at a cost. We will later relax this assumption to consider the optimality

of free provision of intra-day liquidity.
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solution to the first order condition11

− ∂

∂α

[
Ψ(α; F )

]
= drρ. (3)

This first order condition has the usual interpretation: the marginal benefit from

an increase in the reserve ratio, resulting from a reduction in expected borrowing

fees, is equated to the marginal cost of foregone loan revenue.

3.3 Bank Insolvency

In this paper, we take the view that defaults tend to be the result of sudden events

that render a bank insolvent. Such events may be caused by poor investments

(Continental Illinois Bank or the creditors to Long Term Capital Management),

fraud (Barings Bank), or other calamities (such as a hurricane or tsunami). There

is a large literature devoted to the analysis of solvency shocks, the difficulties

of distinguishing them from liquidity shocks in an environment with imperfect

monitoring, and the optimal bail-out policy for the central bank.12 In addition,

there is an equally large literature on bankruptcy laws, and how the priority

of claimants to an insolvent institution affects the bank’s behavior. However,

since the current paper wishes to focus on settlement systems, we will abstract

from many of these intricacies and instead motivate insolvency and default by

the following simple observations: (1) from time to time, a bank is suddenly

rendered insolvent, and (2) an insolvent bank with more available capital (or

reserves) is better able to settle outstanding debts than an insolvent bank with

fewer available funds. We formalize these ideas below.

3.3.1 Solvency Shocks

Suppose that every day a stochastic fraction ∆ of banks are rendered insolvent

just prior to the final settlement at t = T . We assume that this fraction is i.i.d.
11Here we restrict our attention to interior solutions, though we consider corner solutions in

the example presented in Section 3. Also, notice that this is a strictly concave function over a

convex set, so that we are assured of a unique solution.
12See, for example, Aghion, Bolton, and Fries(1999), and Freixas, Parigi, and Rochet(2004).
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across days and distributed over the [0, 1] interval according to density g(·). We

denote the expected fraction of insolvent banks ∆̄, where

∆̄ =
∫

∆ · g(∆) d∆.

3.3.2 Default

We make two simplifying assumptions that govern our notion of default. First,

we assume that the central bank perfectly observes solvency shocks, and thus

will never extend a loan to an insolvent bank.13 Secondly, we assume that banks

awaiting payment are given top priority to an insolvent bank’s available assets.

Therefore, there are two important statistics to consider when a bank is rendered

insolvent: its remaining liabilities (lT − lsT ) and its available assets (RsT ). Should

an insolvent bank’s available assets be greater than its remaining liabilities (so

that RsT ≥ lT − lsT ), the bank is simply liquidated, all outstanding transactions

are finalized, and the bank is replaced by an identical, solvent bank. However,

an insolvent bank with remaining liabilities greater than available assets (so that

RsT < lT − lsT ) must default on all liabilities in excess of its current liquidation

value (i.e. its current reserves). For the ensuing analysis, the following definition

is convenient.

Definition 4 Let a bank’s outstanding liabilities in excess of reserves at

time t for a given realization of net liabilities l, reserve ratio α, and settlement

frequency F be denoted l̂t(l, α;F ) and be recursively defined:

l̂t(l, α; F ) = max{0, lt − lst −Rst(l, α; F )} for all t ∈ T ,

with l̂0(l, α; F ) = 0.
13That insolvency is perfectly - and in particular instantaneously - observed implies that an

insolvent bank would be forced to default immediately, regardless of whether or not there was

a scheduled settlement during that interval. Under this assumption, all of the ensuing results

are maintained under the more general assumption that there exists a probability of default at

every interval t ∈ T .
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Note that, for a solvent bank, this is simply the amount they need to borrow at

time t. However, for a bank that is insolvent at time T , l̂T (l, α; F ) is the size of

default. Assuming that l is i.i.d. across banks, the law of large numbers implies

that the total defaults which occur in a given day can be defined in the following

manner.

Definition 5 Let the aggregate daily default under settlement system F

for a given realization of ∆ be denoted δ(∆, F ) and be defined

δ(∆, F ) = ∆
∫

l̂T (l, α(F );F ) λ(l) dl ≡ ∆ El

[
l̂T (l, α(F );F )

]
. (4)

Moreover, if ∆ and l are independently drawn, the expected value of defaults is

also easily defined.

Definition 6 Let the expected aggregate daily default under settlement

system F be denoted δ̄(F ) and be defined

δ̄(F ) =
∫

δ(∆, F ) g(∆) d∆ ≡ ∆̄ El

[
l̂T (l, α(F );F )

]
. (5)

3.4 The Tradeoff Between Cost and Risk

We now turn to the relationship between those variables determined endogenously

in the model - namely the reserve ratio α and the subsequent borrowing fee Ψ,

banking fee φ, and default size δ - and the exogenously specified frequency of

default F and borrowing policy ψ. We present our results in the context of the

special case of T = 2, as this captures the key insights most clearly. However,

this is only for the ease of exposition; the analagous results for an arbitrary, finite

T , along with the necessary proofs, are presented in the appendix.

For T = 2, there are only two possible settlement systems. The first, with

settlement frequency F1 = 1, is a deferred settlement system, as transactions

occurring at t = 1 are not finalized until the end of the period (at t = 2).

The second settlement system, with frequency F2 = 2, is a real-time settlement

system, as transactions are finalized as they take place.
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3.4.1 The Costs of Frequent Settlement

We first illustrate how increasing the frequency of settlement will increase the

financial costs to banks, and subsequently increase the fees paid (or decrease the

interest earned) by depositors. In what follows, we restrict α to the relevant open

set (0, L̄
d ), so that banks hold strictly positive reserves, but not amounts greater

than or equal to the maximum net liability position.14

Claim 1 Increasing the reserve ratio decreases the expected borrowing fees at any

settlement frequency. That is, for F ∈ {F1, F2},

∂

∂α

[
Ψ(α; F )

]
< 0.

Claim 2 For any level of reserves, expected borrowing fees are larger under a

real-time settlement system than they are under a deferred settlement system.

That is, ∀ α ∈ (0, L̄
d ),

Ψ(α; F1) ≤ Ψ(α;F2).

The claims above allow us to formalize the relationship between settlement fre-

quency and the endogenously determined reserve ratio.

Result 1 Profit-maximizing banks choose to retain a larger fraction of deposits

as reserves under a real-time settlement system than they do under a deferred

settlement system. That is,

α(F1) ≤ α(F2).

Since banking fees are a function of the reserve ratio and the reserve ratio is

endogenously determined as the optimal solution to the banking problem under

settlement system F , φ can be expressed as a function of F :

φ(F ) = a− [1− α(F )]rρ +
Ψ(α(F );F )

d
. (6)

14The assumption that α∗ > 0 can be motivated by the assumption that ψ is sufficiently

steep, while α∗ < L̄
d

can be justified by assuming that ψ is not too steep. Therefore, bounding

Dψ is a sufficient condition for interiority.
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We are now ready to formalize the first major result, relating settlement frequency

to the banking fees faced by agents.

Result 2 For any loan price ρ, banking fees are higher under a real-time settle-

ment system than they are under a deferred settlement system. That is,

φ(F1) ≤ φ(F2).

3.4.2 The Risks of Infrequent Settlement

Though increased settlement frequency is costly, it decreases the risk posed by

bank insolvency. In particular, a higher frequency of settlement reduces the size

of potential defaults in two important ways.15 On the one hand, more frequent

settlement prohibits the accumulation of large outstanding net liability positions.

We refer to this as the accumulation effect, and present it formally with the

following result.

Result 3 At any time t ∈ T and for any reserve ratio α, the size of outstanding

liabilities in excess of reserves is always smaller under a real-time settlement

system than under a deferred settlement system. That is, for any t, α, and l,

l̂t(l, α; F1) ≥ l̂t(l, α; F2).

The second way in which increased frequency decreases risk, which we will call

the reserve effect, is illustrated in Result 4. It suggests that the size of a default

is decreasing in α, the reserve ratio.

Result 4 At any time t ∈ T and for any settlement frequency F ∈ {F1, F2},
increasing the reserve ratio decreases the size of outstanding liabilities in excess

of reserves. That is, for any t, F , and l,

α2 > α1 ⇒ l̂t(l, α1;F ) ≥ l̂t(l, α2; F ).
15Kahn, McAndrews, and Roberds (2003) point out a third effect of settlement frequency on

default that we do not consider. They point out that deferred settlement may decrease the risk

of ”gridlock”, and thus defaults arising from liquidity shortages.
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From Results 1, 3, and 4, we trivially arrive at the second major result, relating

settlement frequency to total expected defaults.

Result 5 For any realization of ∆, the aggregate daily default is larger under a

deferred settlement system than it is under a real-time settlement system. That

is, for any ∆ ∈ [0, 1],

δ(∆, F1) ≥ δ(∆, F2).

Naturally, it follows that expected aggregate daily defaults are larger under a

deferred settlement system as well; that is, δ̄(F1) ≥ δ̄(F2).

4 An Example

We now develop a simple example of the banking sector defined above. One reason

for this exercise is to make the results introduced in Section 3 more intuitive and

concrete to the reader. Moreover, the example we develop illustrates the type of

analysis that the model allows for, and provides a context for the consideration

of several important issues often debated in the literature.

Suppose that at t = 1, net liabilities increase by d
2 , stay the same, or decrease

by d
2 with equal probability 1

3 . If l1 = d
2 , then at t = 2 net liabilities return to zero

with probability 1− q and increase to d with probability q. Similarly, if l1 = −d
2 ,

then at t = 2 net liabilities return to zero with probability 1 − q and decrease

to −d with probability q. Finally, if l1 = 0, then at t = 2 net liabilities remain

at zero with probability 1− 2q, and increase or decrease to d with probability q.

Figure 1 below illustrates the distribution of net liabilities.
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FIGURE 1: DISTRIBUTION OF l
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Suppose further that ψ : [0, d] → R+ is of the form ψ(b) = ηb2 for some η > 0.

This function is clearly consistent with the conditions specified in Assumption 1.

We restrict our analysis to parameter values that satisfy the condition 2
3 < rρ

dqη ,

which guarantees that the optimal reserve ratio under both F1 and F2 is strictly

less than 1
2 .16 However, we do consider parameter values for which bank’s choose

the minimum reserve ratio, which we set to zero for simplicity.

4.1 Deferred Settlement

Consider first a deferred settlement system (F1) in which settlement occurs only

once at t = 2. Banks face ex-ante expected borrowing costs

Ψ(α, F1) = (
2
3
)q(d− αd)2η. (7)

16If α(F1) ∈ [ 1
2
, 1], then α(F1) = α(F2), and we lose two margins of interest: the banking fees

are identical under F1 and F2 and the reserve effect vanishes.
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Therefore, the first order condition for the optimal reserve ratio under settlement

system F1 implies

α(F1) =





0, for 4
3 ≤ rρ

dqη

1− 3rρ
4ηdq , for 4

3 > rρ
dqη > 2

3 .
(8)

As a result, depositors face a banking fee

φ(F1) =





a− rρ + 2ηdq
3 , for 4

3 ≤ rρ
dqη

a− 3
8( (rρ)2

ηdq ), for 4
3 > rρ

dqη > 2
3

(9)

under a deferred settlement system.

Now consider expected aggregate daily defaults under a deferred settlement

system. By construction, there are only two realizations, l = (d
2 , d) and l = (0, d),

for which a bank has positive net liabilities at t = 2, so we can restrict our atten-

tion to these outcomes. For either realization, outstanding liabilities in excess of

reserves are the same:

l̂2

(
(d
2 , d), α(F1);F1

)
= l̂2

(
(0, d), α(F1);F1

)
=





d, for 4
3 ≤ rρ

dqη

3rρ
4ηq , for 4

3 > rρ
dqη > 2

3 .

Therefore, we employ equation (5) to conclude that the expected aggregate daily

defaults are

δ̄(F1) =





2q∆̄d
3 , for 4

3 ≤ rρ
dqη

∆̄rρ
2η , for 4

3 > rρ
dqη > 2

3 .
(10)

4.2 Real-Time Settlement

Now consider a real-time settlement system with frequency F2 = 2, so that set-

tlement occurs at both t = 1 and t = 2. We first observe that the expected

borrowing fees are increased under a real-time system, because banks now must
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make payments for the realizations l = (d
2 , d), l = (0, d), and l = (d

2 , 0). There-

fore,

Ψ(α, F2) = (
2
3
)q(d− αd)2η + (

1
3
)(1− q)(

d

2
− αd)2η, (11)

or, equivalently,

Ψ(α, F2) = Ψ(α, F1) + (
1
3
)(1− q)(

d

2
− αd)2η.

A profit-maximizing bank will find the optimal reserve ratio under F2 to be

α(F2) =





0, for 1 + 1
3q ≤ rρ

dqη

3
2(1+q) [

1
3 + q − rρ

ηd ], for 1 + 1
3q > rρ

dqη > 2
3 .

(12)

Simple algebra confirms that α(F2) ≥ α(F1). Given the optimal reserve ratio

α(F2), the banking fees imposed on depositors are uniquely determined by (6):

φ(F2) =





a− rρ + 3ηdq
4 , for 1 + 1

3q ≤ rρ
dqη

a− 1
2(1+q) [(1− q)(rρ− ηdq

3 ) + 3(rρ)2

2ηd ], for 1 + 1
3q > rρ

dqη > 2
3 .

(13)

Though it is not immediately obvious from the equation above, again it can be

easily shown that φ(F2) ≥ φ(F1).

Finally, we consider expected aggregate daily defaults under a real-time sys-

tem. Again, we restrict our attention to l = (d
2 , d) and l = (0, d). However, under

frequency F2, outstanding liabilities in excess of reserves will not be the same for

these two realizations. For l = (d
2 , d), the bank is forced to settle at t = 1 so that,

for rρ
dqη > 2

3 ,

l̂2

(
(
d

2
, d), α(F1);F1

)
=

d

2
.

That a higher frequency of settlement limits the potential default for l = (d
2 , d)

to d
2 , as opposed to d under deferred settlement, is precisely the accumulation

effect presented in result 3. For l = (0, d), on the other hand,
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l̂2

(
(0, d), α(F1);F1

)
=





d, for 1 + 1
3q ≤ rρ

dqη

d
2(1+q) [1− q + 3rρ

ηd ], for 1 + 1
3q > rρ

dqη > 2
3 .

Here, the size of a potential default has been reduced via the reserve effect ;

a real-time system has encouraged more conservative reserve management, and

therefore insolvent banks are better able to meet outstanding liabilities. We cal-

culate expected aggregate daily defaults under frequency F2,

δ̄(F2) =





q∆̄d
2 , for 1 + 1

3q ≤ rρ
dqη

q∆̄d
6 + q∆̄

3 [ d
2(1+q) [1− q + 3rρ

ηd ]], for 1 + 1
3q > rρ

dqη > 2
3 ,

(14)

and conclude that, due to both the accumulation and the reserve effect, δ̄(F1) ≥
δ̄(F2).

4.3 The Magnitude of the Risk-Cost Tradeoff

We’ve established above the existence of a tradeoff between risk and cost that

arises within the analysis of settlement frequency. However, the magnitude of

this tradeoff depends heavily on the parameters of the economy. In an effort to

better understand the key forces at play, we now parameterize the economy, and

consider the sensitivity of α(Fi), φ(Fi), and δ̄(Fi) to two key parameters: η and

q.17

Let a = 0, d = .15, r = .02, and ρ = .1, and the distribution of shocks, g(·),
be such that

∆ =





0, with probability 1− p

.1, with probability p
(15)

This distribution is meant to reflect that there is a high probability of zero sol-

vency shocks, and a small probability of a solvency shock affecting a fraction of

banks in the settlement system. We set p = .05, so that ∆̄ = .005.

First, we will fix q = .1 and focus on how the policy parameter η, representing

the cost of borrowing from the central bank, affects a bank’s choice of reserves,
17Note that this is not a calibration, but rather a purely illustrative exercise.
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along with the resulting fees and defaults. Figure 2A illustrates that, for small

η, banks choose to retain the minimum level of reserves (zero) under either set-

tlement system. However, notice in Figure 2B that even when banks hold zero

reserves, the banking fees are larger under F2 than they are under F1, as the

increased intra-day borrowing costs are passed along to the depositors. More-

over, due to the increased liquidity requirements under a real-time system, banks

begin to hold strictly positive reserves for smaller values of η under F2 than they

do under F1; at these values of η, the difference between banking fees under the

two systems is most pronounced. As η increases towards its upper bound, the

difference in banking fees diminishes. Figure 2C illustrates the two key effects of

settlement frequency on total defaults: the accumulation effect and the reserve

effect. As in the previous graphs, the solid line and the dotted line represent

the equilibrium expected aggregate daily defaults under frequencies F1 and F2,

respectively. However, here we’ve added a third component: the intermediate

dashed line represents the expected aggregate daily default under frequency F1

for a bank that has chosen the optimal reserve ratio for frequency F2 (i.e. α(F2)).

Therefore, the distance between the dashed and dotted lines represents the accu-

mulation effect - the decreased size of expected defaults resulting from a shorter

interval between settlements. This effect is most pronounced for small values

of η, when there is no reserve effect, and vanishes as α(F2) approaches 1
2 . The

distance between the solid and dashed lines represents the reserve effect, which

accounts for the downward slope of the curves corresponding to regions where

they retain strictly positive reserves. Naturally, the size of this effect corresponds

directly to the difference between α(F1) and α(F2).

[INSERT FIGURE 2A - 2C HERE]

We now fix η = .1, and concentrate on the magnitude of the risk-cost tradeoff

for different values of q. Recall that q represents the conditional probability that

a bank’s intra-day liabilities will increase to d , leaving a bank with positive

outstanding net liabilities at t = 2. In other words, q is the probability of a bank
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receiving a liquidity shock. For small values of q, banks in a deferred settlement

system will not retain any reserves, since the probability of needing them for

settlement at t = 2 is small. However, as is evident in Figure 3A, banks in a

real-time settlement system with η = .1 will always retain positive reserves to

meet liabilities accrued at t = 1. Furthermore, notice that for small q, φ(F2) is

noticeably larger than φ(F1), while δ̄(F2) and δ̄(F1) appear similar. One might

conclude that for small q, a deferred settlement system would be preferred. As

q increases, the tradeoff seems to skew toward a real-time settlement system,

as the fees become similar while the difference in default sizes becomes more

pronounced.

[INSERT FIGURE 3A - 3C HERE]

Overall, the partial equilibrium example above is a useful tool for illustrating

the primary forces at work within the banking sector. However, since it takes

the underlying transactions as exogenous, it ignores the behavior of buyers and

sellers; and therefore does not consider how their behavior might respond to

changes in the banking fees or default risks. Moreover, we have thus far ignored

any profits or losses assumed by the central bank. As such, any definition of

welfare (and thus optimality) would require arbitrary weights on the risks and

costs of settlement. We now introduce a trading sector to complete the economy.

In this general equilibrium model, we have a more clear definition of welfare and

a framework to discuss optimal settlement policies.

5 The Trading Sector

5.1 The Basic Model

The trading sector is modeled in the spirit of He, Huang, and Wright (2005),

which we find appropriate for several reasons. First, the use of credit as a medium

of exchange is micro-founded, in the sense that agents choose whether or not to

use the banking system given the costs and risks. This feature provides some
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discipline as we consider various policy choices, as all equilibria must satisfy the

incentive constraints of buyers and sellers. Moreover, this framework generates a

simple demand for money that responds to changes in interest rates, loan prices,

and the risks of failed settlement. Finally, the model assumes that bilateral trans-

actions occur randomly across time, which seems consistent with the stochastic

evolution of intra-day net liabilities that we introduced in section 3.18

There is a [0, 1] continuum of agents, and a fraction M are initially endowed

with one unit of fiat money. Money is indivisible and agents hold either zero or

one unit. Before entering the market, an agent with money has the option to

deposit his money at the bank in exchange for a ”check.” Again, this service has

a cost φ, where φ > 0 can be interpreted as a banking fee, and φ < 0 as interest

earned on deposits. An agent with money will trivially choose to use banking if

φ ≤ 0 and not if φ > 0. Since this paper is concerned with payment systems, we

will restrict our attention to equilibria in which φ ≤ 0 and sellers always accept

checks as payment. An agent without money can take out a loan for an up-front

fee ρ.19 Therefore, when all agents choose to deposit their money at the bank, a

fraction M1 = M
α will enter the market with checks (these are buyers), while the

remaining 1−M1 enter the market without money (these are sellers). Naturally,

M1 is the total money supply. To ensure that M1 ≤ 1, we will impose a required

reserve ratio α ≥ M .

Agents trade in a random, bilateral matching (or decentralized) market in

which meetings occur at T discrete points in time throughout the day. When a

consumer meets a producer, there is probability x that he likes the producer’s

specialized good. In this case, the seller produces the good at cost c in exchange
18The key distinction here is that we do not introduce theft to motivate banking, as in He,

Huang, and Wright (2005). Instead, we will concentrate on the case of interest-bearing bank

accounts. Moreover, we do not require a Lagos-Wright (2005) framework, in which agents

alternate between a centralized and decentralized market, because we limit our analysis to the

case of {0, 1} money holdings.
19As He, Huang, and Wright (2005) point out, this fee can be interpreted as a coupon payment

of rρ in each period.
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for the buyer’s check, and the buyer immediately consumes the good and receives

utility u. The probability of a double-coincidence of wants is zero. Goods are

indivisible, non-storable, and they are produced, traded, and consumed imme-

diately. After an agent sells her good, she leaves the market and deposits the

check at her bank. When the bank receives payment finalization, her account is

credited one unit and she becomes a buyer the following day.

5.2 The Costs of Default

As we have seen in Section 3, each day a fraction ∆ of banks are rendered insolvent

at t = T . We assume that a deposit at an insolvent bank will be honored at the

solvent bank that is created in its place the following morning. Therefore, buyers

who have not spent their check are fully insured. However, a seller who has

accepted a check does not necessarily enjoy such insurance. On any given day,

a fraction δ(∆, F ) of agents will fail to receive payment finalization for goods

they’ve produced and sold. Recovering these payments is a costly endeavor; in

general, the process proves much more costly than simply the size of the default

itself. For one thing, a default by one bank can trigger defaults by other banks

within the settlement system. Moreover, defaults erode confidence in the banking

sector, increasing the perceived risk of deposits and potentially sparking bank

runs. Finally, the default process is generally costly in terms of both time and

legal fees. Though we don’t model any of these effects directly, we would like

to capture the notion that recovering from a default has potentially large social

costs. To this end, we assume that there is a cost Ω
(
δ) of recovering from a

default of size δ.

Definition 7 Let the expected costs of default under settlement system

F be denoted ω(F ) and be defined

ω(F ) =
∫

Ω
(
δ(∆, F )

)
g(∆) d∆. (16)

Depending on the specifications of the settlement system, these costs may

be born (ultimately) by either the buyers or the sellers. One common practice,
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known as survivors pay, requires that the remaining solvent banks pay the recov-

ery costs. Under the assumption of perfect competition in the banking sector,

this implies that the buyers will absorb the burden of default through increased

banking fees. On the other hand, if the system does not require the participants

of the settlement system to pay for recovery, then the costs may be born by the

sellers. In such a case, we assume the sellers will pay an (actuarially fair) insur-

ance premium to protect themselves from payment default. This practice, the

so-called third party pays, is also fairly common. Let us assume that a fraction

of the recovery costs, ξ ∈ [0, 1], are paid by the buyers and the remaining 1− ξ

by the sellers. Such generality nests the two most common practices discussed

above as special cases (ξ = 1 and ξ = 0, respectively).

5.3 The Central Bank and Transfers

A general equilibrium model also requires that we account for the revenue and

operating expenses of the central bank. In particular, any profits or losses should

be incorporated into a welfare comparison of settlement frequency. To this end,

suppose that the central bank issues a lump-sum transfer to the consumers equal

to the revenue generated from providing intra-day liquidity less operating ex-

penses. Since we have assumed for simplicity that the central bank can perform

the necessary tasks costlessly, the expected lump-sum transfer for a particular

policy (ψ, F ) is given by

τ(ψ, F ) = (1− ∆̄)Ψ(α(F ), F ). (17)

Notice that τ(ψ,F ) is simply the borrowing fees collected from solvent banks at

the end of the day.

5.4 Banking Equilibria

We denote the value function of an agent with zero money holdings (prior to

paying the costs of default) V0, and the value function of an agent with one unit
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of money (prior to paying banking fees or the costs of default) V1. With this

notation, we derive the flow Bellman equations:

rV0 = M1x(V1 − V0 − c)− (1 + r)[(1− ξ)ω] + τ (18)

rV1 = (1−M1)x(u + V0 − V1)− (1 + r)[φ + ξω] + τ (19)

where we’ve simplified notation by suppressing the arguments of functions such

as φ, ω, and τ .

An equilibrium in which agents use banks must satisfy the following condi-

tions:

1. Individual Rationality : neither producers nor consumers would rather drop

out of the economy and live in autarchy.

V0 ≥ 0 (20)

V1 ≥ 0 (21)

2. Incentive Compatibility : both producers and consumers will trade in a bi-

lateral match.

V1 − c ≥ V0 (22)

u + V0 ≥ V1 (23)

3. Banking : agents with money choose to use banks.

φ ≤ 0 (24)

These simplify to the following conditions, expressed as constraints on the bank-

ing fee φ:20

φ ≤ 0 (25)

φ ≤ (1−M1)x(u− c)− rc

1 + r
+ ω

[
1− 2ξ − (r + x)(1− ξ)

M1x

]
+

(r + x)τ
(1 + r)M1x

(26)

φ ≥ M1xc + (1 + r)(1− 2ξ)ω − (r + M1x)u
1 + r

(27)

20It turns out that V0 ≥ 0 ⇒ V1 − V0 − c ≥ 0, and that this further implies that V1 ≥ 0.
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The first and second conditions, respectively, ensure that banks pay interest on

deposits, and that this interest is sufficiently large that a seller is willing to incur

the costs of production in order to become a buyer. The third condition ensures

that the interest earned on deposits is not so high that buyers are unwilling to

withdraw their deposits from the bank.

In equilibrium, the loan price (or interest rate) that clears the market must

satisfy ρ = V1 − V0. From (18) and (19), it follows that

ρ =
(1−M1)xu−M1xc− (1 + r)φ + (1 + r)(1− 2ξ)ω

r + x
. (28)

Definition 8 Consider an economy {a, d, r, u, c, x, ξ, T,M, τ, λ(·), g(·),Ω(·)}. Given

a settlement system {F, ψ}, a banking equilibrium is a fixed point {α∗, ρ∗} such

that

• Given ρ∗, α∗ satisfies the bank’s optimality condition in equation (3). More-

over, α∗ uniquely determines banking fees φ∗ according to (6), the expected

costs of default ω∗ according to (16), and the total money supply M∗
1 = M

α .

• Given {φ∗, ω∗,M∗
1 }, the constraints (25) - (27) are satisfied and the price

of loans ρ∗ is determined as in equation (28).

• Deposits equal the supply of fiat money, so that d = M .

• Transfers τ are determined as in (17).

5.5 Welfare

Assuming equal weight on all agents, we can define equilibrium welfare

W ∗ = (1−M∗
1 )V ∗

0 + M∗
1 V ∗

1 . (29)

Substituting (18) and (19) into (29) implies that

W ∗ ∝ M∗
1

[
(1−M∗

1 )x(u−c)−(1+r)φ∗
]
−(1+r)

[
M∗

1 (2ξ−1)+1−ξ
]
ω∗+τ. (30)

Armed with a clear definition of welfare, we are now able to identify the opti-

mal settlement system as the set (ψ, F ) that maximizes W ∗. In the next section,
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we extend the partial equilibrium example from Section 4 in order to consider

how settlement frequency affects equilibrium prices, behavior, and welfare; and

pinpoint which features of an economy might make one settlement system more

appropriate than another.

6 Extending the Example

Let λ(·) remain as depicted in Figure 1, and g(·) as described in (15). Let the cost

of default be specified as Ω(δ) = κδ2. We begin with benchmark parameter values

p = .05, q = .1, and κ = 150, though we will later analyze how the equilibria

change as these values vary. Finally, we set ξ = .5, u = .6, c = .05, x = .4,

α = M , and maintain the remaining parameter values from section 4.

A demand curve for each Fi can be derived by substituting the appropriate

equations for φ(Fi) (equations (9) and (13), respectively) and δ(Fi) (equations

(10) and (14), respectively) into equation (28). This demand curve relates the

price of money, ρ, to the supply of money M
α , and is downward sloping. The

supply curve, given by the banks optimality condition (equations (8) and (12),

respectively), implies an upward-sloping relationship between the price of loans

and a bank’s willingness to supply them. We compute the intersection to find

{α∗, ρ∗}, which can be used to pin down the banking fees φ∗, the costs of default

ω∗, and equilibrium welfare W ∗. Though closed form solutions are not practical,

we continue our analysis graphically.21

We present equilibria under two different assumptions on the initial supply of

money, M . First, we assume that M is fixed. Under this assumption, the banks’

choice of reserves has real effects on the allocation of goods, as α(Fi) determines

the ratio of buyers to sellers M1
1−M1

. Our analysis under a fixed money supply

suggests that general equilibrium effects are important, in the sense that some
21All parameter values considered below support equilibria that satisfy the constraints (25) -

(27), as well as the example-specific constraint 2
3

< rρ
ηdq

.
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previous conclusions from the partial equilibrium analysis are not necessarily

sustained.

Unfortunately, the effect of Fi on the ratio of buyers to sellers when M is

fixed is the dominating factor in the analysis of welfare (particularly for corner

solutions); and while it is important to be aware of this effect, there are several

reasons - both practical and model-specific - to believe that it may be more

marginal than the results suggest. For one, the choice of a settlement system is

a relatively long-run decision, and affords the central bank ample time to adjust

the money supply to any large changes in the reserve ratio. Therefore, the money

supply is somewhat flexible over this sort of time range. Moreover, that this effect

is the dominating factor in welfare analysis is more an artifact of our modeling

strategy than a true concern in the choice of settlement systems. In particular, the

assumption that agents are either buyers or sellers implies that M1 completely

determines the probability of a trade. Therefore, as M1 approaches either 0 or 1,

trade comes to a halt and welfare is drastically reduced, regardless of the banking

fees or default costs. In response to these concerns, we also consider equilibria

under the assumption that M is flexible, and can be adjusted by the central bank

to achieve the optimal M1.

6.1 Equilibrium analysis with a fixed money supply

Figure 4A illustrates the optimal reserve ratio under F1 and F2 as a function

of η, the cost of intra-day borrowing. As expected, we find that a bank will

choose to retain more reserves under a real-time system than they will under a

deferred system for all values of η in the relevant parameter space. Figure 4C

also illustrates an expected result: the costs of default are less under F2 than F1.

[INSERT FIGURE 4A - 4E HERE]

On the contrary, the results presented in Figure 4B are not as expected; after

all, in section 3 we prove that for any ρ, it must be that φ(F1) ≤ φ(F2). However,

in the general equilibrium framework, ρ is an endogenous variable and will depend
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on the settlement frequency. At low levels of η, banks choose to retain few reserves

and flood the market with loans, putting downward pressure on the price ρ. Since

banks are more inclined to hold reserves under a real-time system, we see that

the price of loans is greater under F2 than it is under F1. The effect of increased

revenue from larger values of ρ is sufficiently strong that it dominates the effect of

decreased revenue from larger intra-day liquidity requirements, and the result is in

fact decreased banking fees (or increased interest payments) under F2. Therefore,

in equilibrium, the costs of increased settlement frequency are passed to agents

in the form of higher loan fees, and not banking fees.

Turning to welfare analysis, Figure 4E illustrates the concerns expressed

above. As η approaches zero, α(Fi) → α and M1 → 1, thereby drasti-

cally reducing welfare. Similarly, as η tends toward its upper bound, α(Fi) → 1

and M1 → M , also reducing welfare substantially. To shut down this effect and

concentrate on the costs (φ) and risks (ω) of settlement frequency, we now move

to the case of a flexible money supply.

6.2 Equilibrium analysis with a flexible money supply

Suppose now that M can be adjusted by the central bank so that M1 = .5

for any frequency F . Under this assumption, the equilibrium values of α, φ,

and ω depicted in Figures 5A - 5C are similar to those presented in section

4. Moreover, since ρ is independent of M1, it is primarily determined by φ.

Therefore, since deposits earn higher interest under a deferred system, loans are

more attractive and therefore priced higher under F1 than they are under F2. As η

increases, interest rates decline and the price of loans follows. Finally, we consider

Figure 5E, which illustrates welfare under the two settlement frequencies for all

possible intra-day borrowing policies. For the benchmark values, the optimal

settlement system is a real-time system with free intra-day liquidity. The risk

posed by default is substantial enough that the accumulation effect is a factor,

which explains the gap between welfare under F2 and F1 for η = 0. However, as

η increases the reduction in risk from the reserve effect is small relative to the

30



increase in costs, so that welfare decreases as liquidity becomes more costly.

[INSERT FIGURE 5A - 5E HERE]

Of course, the optimal settlement system (F,ψ) will depend heavily on the

values of several key parameters. Perhaps the most obvious such parameter is p,

the probability of a solvency shock. In Figure 6A, we consider equilibrium welfare

across borrowing policies for the case of no solvency shocks (i.e. p = 0), holding all

other parameters at their benchmark values. As expected, in an economy without

risk, a deferred settlement system dominates a real-time system. Moreover, there

is no reason for costly intra-day liquidity, as it serves only a negative, distortionary

role in this economy. On the opposite extreme, Figure 6B plots welfare when

solvency shocks occur at a high rate of 10 %. Here, the risks associated with

default are sufficiently high that a real-time system is warranted. However, again

the reserve effect is not sufficiently strong that costly liquidity would improve

welfare.

[INSERT FIGURE 6A - 6B HERE]

Another variable of interest is q, the probability of a bank receiving a liquid-

ity shock and accruing large intra-day net liabilities. Figures 7A - 7B illustrate

welfare when q assumes two extreme values: .05 and .5, respectively. When there

is a small probability of a liquidity shock, again the risks of default are small and

a deferred system with free liquidity is preferred. However, when liquidity shocks

are more likely, a real-time system with costly intra-day borrowing becomes op-

timal. As is evident in Figure 7B, both the accumulation effect and the reserve

effect are pertinent: the accumulation effect is evident at η = 0, and the reserve

effect is illustrated by the upward slope of the welfare graph at values of η such

that banks retain reserves strictly above the required level.

[INSERT FIGURE 7A - 7B HERE]
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Finally, we consider the optimal settlement system as the cost of recovering

a default, κ, varies. Consistent with the results above, when κ assumes a small

value a deferred settlement system with free liquidity is optimal. However, when

the costs of recovery become sufficiently large, the reduction in risk from high

frequency settlement outweighs the additional costs, and a real-time system is

optimal.

[INSERT FIGURE 8A - 8B HERE]

6.3 Discussion

There are two primary topics of debate in the literature on settlement systems.

The first is whether the system should be a real-time, a deferred, or (more re-

cently) a hybrid settlement system; and the second is whether the central bank

should provide intra-day liquidity at a cost or for free. However, much of the

literature has addressed these questions separately. That is, they have assumed

a particular settlement frequency and concentrated on the optimal borrowing

policy, or vice-versa.22 The current analysis suggests that these questions need

to be addressed jointly. As Figure 7B illustrates, the optimal borrowing policy

varies across settlement frequency; for this case, the best policy under a real-time

system is to allow banks to borrow free of charge, while a deferred system would

benefit from the costly provision of intra-day liquidity. Therefore, we conclude

that any discussion of borrowing policies must be made within the context of a

specific settlement frequency.

A second insight that arises from the analysis above is that the optimal set-

tlement system will depend very heavily on the economy in which it operates. An

economy in which solvency shocks, liquidity shocks, or recovery costs are small

will likely find a deferred settlement system with free liquidity to be optimal. On

the other hand, an economy with volatile intra-day net liabilities, or one that is
22A noteable exception is Kahn and Roberds (1998), who consider the optimal use of borrowing

caps in the context of both real-time and deferred settlement systems.
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vulnerable to solvency shocks or contagion can benefit from the risk reduction of

a real-time settlement system. From the analysis above, it seems clear that any

blanket statement claiming the superiority of one policy over another, irrespective

of the particulars of the economy of interest, would be erroneous.

7 Conclusion

This paper first develops a partial equilibrium model of reserve management in

the presence of stochastic realizations of intra-day liabilities and costly borrowing

from the central bank. Within this framework, increased settlement frequency

implies that banks face greater financial costs. In a perfectly competitive bank-

ing sector, these costs are transferred to the customers via higher banking fees.

However, in the presence of exogenous solvency shocks, increased settlement fre-

quency also mitigates the risk to the economy by decreasing the size of potential

defaults. In the context of a simple example, we illustrate this tradeoff between

cost and risk, and examine its sensitivity to key model parameters.

We then complete the model by introducing a trading sector in which agents

endogenously choose to use credit to conduct bilateral transactions. In this gen-

eral equilibrium framework, the effects of banking fees and default risk on the

behavior of both buyers and sellers are taken into account, and a natural def-

inition of welfare is established. Two key insights emerge from our analysis.

First, we find that determination of the optimal settlement system requires joint

consideration of both settlement frequency and intra-day borrowing practices.

Secondly, we conclude that the optimal use of these two policy levers will depend

heavily on the underlying parameters of the economy. In particular, the factors

governing the probability of solvency and liquidity shocks, as well as the costs of

recovering from a default, will be the primary determinants of the optimal set-

tlement system. Economies that face larger costs of recovery from a default, or

are more prone to solvency or liquidity shocks, prefer a real-time settlement sys-

tem. Conversely, when these risks are less substantial, a less expensive, deferred
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settlement system may be welfare-improving.

The primary contribution of this paper is the development and synthesis of

a partial equilibrium model of a banking sector with an existing model of trade.

The result is a general equilibrium model that captures key elements of both

bank’s and consumer’s behavior. The policy experiments and sensitivity analysis

we perform represent only a small fraction of the potential topics that this model

could address. More careful consideration of the informational issues that accom-

pany solvency shocks may provide new insights into settlement systems and the

effects of central bank bail-out policies and bankruptcy procedures. Alternatively,

heterogeneity with respect to the costs that banks (the variable a in the current

model) face may provide an interesting mechanism to explore why certain banks

choose to join a settlement system and others do not. Finally, by considering the

case of divisible money within the trading sector, we might find that equilibrium

prices differ for agents that pay with credit as opposed to cash (when both are

circulating). These are areas for future work.
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A Results and proofs for an arbitrary, finite T .

In Section 3, we presented several claims and results for the special case of T = 2.
We now present and prove the analogous claims and results for an arbitrary, finite
T . Of course, the proofs below encapsulate the special case of T = 2 with F1 = 1
and F2 = 2.

We require a slightly narrow definition of increased settlement frequency. In
words, for any settlement system which specifies a subset of intervals at which
settlement occurs, we say that increasing the settlement frequency implies adding
at least one additional interval to the existing subset. We formalize this now.

Definition 9 Consider an arbitrary, finite T , and settlement frequency F ′ with

an associated S ′ ⊂ T such that S ′ ≡ {t′1, t′2, ..., t′F } denotes the subset of in-

tervals in which settlement occurs. We say that F ′′, with associated set S ′′ ≡
{t′′1, t′′2, ..., t′′F }, has a higher frequency of settlement than F ′ if and only if

S ′ is a strict subset of S ′′. That is, ∀ t′i ∈ S ′, t′i ∈ S ′′ and ∃ t′′i ∈ S ′′ such that

t′′i /∈ S ′.

The following two results will be helpful in the ensuing proofs.

Result 6 For any l, α, t ∈ T , and F with associated S = {t1, . . . , tF },

l̂t(l, α; F ) = max
{

0,min{lt − lst , lt − lst−1, . . . , lt − lt1 , lt − αd}
}

, (31)

where st corresponds to the period in which the most recent settlement occurred
prior to t, st−1 the settlement prior to st, and so on. The proof follows immedi-
ately from recursive substitution.

Result 7 For any l, α, and F with associated S = {t1, . . . , tF },

b(l, α; F ) = max{0, lt1 − αd, lt2 − αd, . . . , ltF − αd, }. (32)

Proof. We sketch the proof, which proceeds by induction. Recall that

b(l, α; F ) = l̂t1 + l̂t2 + · · ·+ l̂tF ,

so that it is sufficient to show, for any finite N ∈ N,

l̂t1 + l̂t2 + · · ·+ l̂tN = max{0, lt1 − αd, lt2 − αd, . . . , ltN − αd, }. (33)

Step 1: By definition, this is true for N = 1.

Step 2: Assuming that this is true for an arbitrary N , we show that it is then
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true for N + 1.

If
l̂t1 + l̂t2 + · · ·+ l̂tN = max{0, lt1 − αd, lt2 − αd, . . . , ltN − αd, }

then using equation (31)

l̂t1 + · · ·+ l̂tN + l̂tN+1 = max{0, lt1 − αd, . . . , ltN − αd}+

max
{

0, min{ltN+1 − ltN , ltN+1 − ltN−1 , . . . , ltN+1 − lt1 , ltN+1 − αd}
}

.

Suppose ∃ ti ∈ {t1, . . . , tN} such that lti ≥ ltN+1 , then

max
{

0, min{ltN+1 − ltN , ltN+1 − ltN−1 , . . . , ltN+1 − lt1 , ltN+1 − αd}
}

= 0

and

l̂t1 + · · ·+ l̂tN + l̂tN+1 = max{0, lt1 − αd, . . . , ltN − αd}
= max{0, lt1 − αd, . . . , ltN − αd, ltN+1 − αd}.

Conversely, suppose ltN+1 > lti ∀ti ∈ {t1, . . . , tN} and let lt∗ = max{lt1 , . . . , ltN }.
Then

l̂t1 + · · ·+ l̂tN + l̂tN+1 = max{0, lt∗ − αd}+ max
{

0, min{ltN+1 − lt∗ , ltN+1 − αd}
}

= max{0, ltN+1 − αd}
= max{0, lt1 − αd, . . . , ltN − αd, ltN+1 − αd}.

We now present the claims and results for a generic T along with the necessary
proofs. Claims 3 and 4 are analogous to claims 1 and 2, respectively.

Claim 3 Increasing the reserve ratio decreases the expected borrowing fee at any

frequency. That is, for any F and α ∈ (0, L̄
d ),

∂

∂α

[
Ψ(α; F )

]
< 0.

Proof. From (32), it is clear that α2 > α1 implies

b(l, α1; F ) ≥ b(l, α2;F ) for all l

b(l, α1; F ) > b(l, α2;F ) for l = (L̄t, t ∈ S).

Since ψ is strictly increasing, this implies that

ψ[b(l;α1, F )] ≥ ψ[b(l; α2, F )] for all l

ψ[b(l;α1, F )] > ψ[b(l; α2, F )] for l = (L̄t, t ∈ S).
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We conclude that

α2 > α1 ⇒ El

[
ψ[b(l; α1, F )]

]
> El

[
ψ[b(l;α2, F )]

]

⇒ Ψ(α1; F ) > Ψ(α2; F ).

Claim 4 For any level of reserves, expected borrowing fees are larger under a

system with a higher frequency of settlement. That is, for F ′, F ′′ with associated

S ′ ⊂ S ′′, ∀ α ∈ (0, L̄
d ),

Ψ(α; F ′) ≤ Ψ(α;F ′′).

Proof. This result follows directly from (32).

We now present the generalized form of result 1.

Result 8 Profit-maximizing banks choose to retain a larger fraction of deposits

as reserves under a system with a higher frequency of settlement. That is, for

F ′, F ′′ with associated S ′ ⊂ S ′′,

α(F ′) ≤ α(F ′′).

Toward a Proof of Result 8. We require two intermediate results to prove
Result 8:

Result 9 Expected borrowing fees exhibit convexity in α at any settlement fre-

quency. That is, for any F ≤ T and any α1, α2 ∈ (0, L̄
d ),

α1 > α2 ⇒ ∂

∂α

[
Ψ(α1; F )

]
>

∂

∂α

[
Ψ(α2;F )

]
.

Proof. Suppose that α1 > α2. Since ψ is strictly increasing and strictly convex,
we know that

b2 > b1 ⇒ ψ(b2 + ∆b)− ψ(b2)
∆b

>
ψ(b1 + ∆b)− ψ(b1)

∆b

for ∆b > 0 sufficiently small. It follows that

b2 > b1 ⇒ ψ(b2 + ∆b2)− ψ(b2) > ψ(b1 + ∆b1)− ψ(b1) (34)

if ∆b2 ≥ ∆b1 > 0. Recall that a positive perturbation in α is a negative pertur-
bation in b. Therefore, let

b1 = b(l, α1 + ∆α;F ) = max{0, lt1 − (α1 + ∆α)d, . . . , ltF − (α1 + ∆α)d}
b1 + ∆b1 = b(l, α1; F ) = max{0, lt1 − α1d, . . . , ltF − α1d}

b2 = b(l, α2 + ∆α;F ) = max{0, lt1 − (α2 + ∆α)d, . . . , ltF − (α2 + ∆α)d}
b2 + ∆b2 = b(l, α2; F ) = max{0, lt1 − α2d, . . . , ltF − α2d}
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for sufficiently small ∆α > 0. We know that b2 ≥ b1 for all l, and strictly greater
for some l that occurs with positive probability. Further, let l′t∗ = maxt∈S′ lt and
l′′t∗ = maxt∈S′′ lt. Then

∆b1 = (b1 + ∆b1)− b1 = max{0, l′t∗ − α1d} −max{0, l′t∗ − (α1 + ∆α)d}
∆b2 = (b2 + ∆b2)− b2 = max{0, l′′t∗ − α2d} −max{0, l′′t∗ − (α2 + ∆α)d}

Consider the three possible cases:

l′′t∗ − α2d > l′t∗ − α1d > 0 ⇒ ∆b1 = ∆b2 = ∆αd.

l′′t∗ − α2d > 0 > l′t∗ − α1d ⇒ ∆b1 = 0 < ∆αd = ∆b2.

0 > l′′t∗ − α2d > l′t∗ − α1d ⇒ ∆b1 = ∆b2 = 0.

Clearly, ∆b1 ≤ ∆b2 for all l, and moreover ∆b1 > 0 for some l with λ(l) > 0. So
by (34) we have that α1 > α2 implies

ψ[b(l, α1 + ∆α;F )]− ψ[b(l, α1; F )] ≥ ψ[b(l, α2 + ∆α; F )]− ψ[b(l, α2; F )]

for all l and strictly greater than for some l that occurs with strictly positive
probability. Therefore, taking the expectation across l, we find

α1 > α2 ⇒ Ψ(α1 + ∆α;F )−Ψ(α1; F )
∆α

>
Ψ(α2 + ∆α; F )−Ψ(α2;F )

∆α
,

⇒ ∂

∂α

[
Ψ(α2; F )

]
>

∂

∂α

[
Ψ(α1; F )

]
,

the desired result.

Result 10 The impact of a marginal increase in the reserve ratio is larger (more

negative) under a higher frequency of settlement. That is, for F ′, F ′′ with asso-

ciated S ′ ⊂ S ′′,
∂

∂α

[
Ψ(α; F ′)

]
>

∂

∂α

[
Ψ(α;F ′′)

]
.

Proof. We follow the same logic employed in the proof of Result 1. Let

b1 = b(l, α + ∆α; F ′) = max{0, lt′1 − (α + ∆α)d, . . . , lt′F − (α + ∆α)d}
b1 + ∆b1 = b(l; α, F ′) = max{0, lt′1 − αd, . . . , lt′F − αd}

b2 = b(l; α + ∆α, F ′′) = max{0, lt′′1 − (α + ∆α)d, . . . , lt′′F − (α + ∆α)d}
b2 + ∆b2 = b(l; α, F ′′) = max{0, lt′′1 − αd, . . . , lt′′F − αd}
for a sufficiently small ∆α > 0. We have shown above that b2 ≥ b1 for all l
and strictly greater for some l with λ(l) > 0. Again, let l′t∗ = maxt∈S′ lt and
l′′t∗ = maxt∈S′′ lt, and consider ∆b1 and ∆b2:

∆b1 = max{0, l′t∗ − αd} −max{0, l′t∗ − (α + ∆α)d}
∆b2 = max{0, l′′t∗ − αd} −max{0, l′′t∗ − (α + ∆α)d}
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We know that l′′t∗ ≥ l′t∗ . If l′t∗ = l′′t∗ , we have that b1 = b2 and ∆b1 = ∆b2 so that
ψ(b1 + ∆b1) − ψ(b1) = ψ(b2 + ∆b2) − ψ(b2). For the case of l′′t∗ > l′t∗ , we have
three subcases:

l′′t∗ − α2d > l′t∗ − α1d > 0 ⇒ ∆b1 = ∆b2 = ∆αd.

l′′t∗ − α2d > 0 > l′t∗ − α1d ⇒ ∆b1 = 0 < ∆αd = ∆b2.

0 > l′′t∗ − α2d > l′t∗ − α1d ⇒ ∆b1 = ∆b2 = 0.

Therefore, by (34), we conclude that

ψ[b(l, α;F ′′)]− ψ[b(l, α + ∆α; F ′′)] ≥ ψ[b(l, α;F ′)]− ψ[b(l, α + ∆α; F ′)]

for all l and strictly greater than for some l which occurs with strictly positive
probability. Therefore, we can rearrange to conclude that

Ψ(α + ∆α; F ′)−Ψ(α; F ′)
∆α

>
Ψ(α + ∆α; F ′′)−Ψ(α;F ′′)

∆α
,

the desired result.

Proof of Result 8. By the bank’s first order condition, α(F ′) and α(F ′′)
satisfy

∂

∂α

[
Ψ(α(F ′);F ′)

]
=

∂

∂α

[
Ψ(α(F ′′);F ′′)

]
= drρ.

Suppose, towards a contradiction, that α(F ′) > α(F ′′). By Result 9,

∂

∂α

[
Ψ(α(F ′);F ′)

]
>

∂

∂α

[
Ψ(α(F ′′);F ′)

]
.

But by Result 10, we have

∂

∂α

[
Ψ(α(F ′′);F ′)

]
>

∂

∂α

[
Ψ(α(F ′′);F ′′)

]
,

implying that
∂

∂α

[
Ψ(α(F ′);F ′)

]
>

∂

∂α

[
Ψ(α(F ′′);F ′′)

]
,

a contradiction.

Similarly, the following result generalizes result 2 in section 3.

Result 11 For any loan price ρ, banking fees are larger under a higher frequency

of settlement. That is,for F ′, F ′′ with associated S ′ ⊂ S ′′,

φ(F ′) ≤ φ(F ′′).
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Proof. Since α(F ′) is the optimal solution to the bank’s problem,

[1− α(F ′)]rρ− a− Ψ(α(F ′);F ′)
d

≥ [1− α(F ′′)]rρ− a− Ψ(α(F ′′);F ′)
d

.

This simplifies to

[α(F ′′)− α(F ′)]rρ ≥ Ψ(α(F ′);F ′)−Ψ(α(F ′′);F ′)
d

.

We have shown that Ψ(α; F ′′) ≥ Ψ(α; F ′), so that

[α(F ′′)− α(F ′)]rρ ≥ Ψ(α(F ′), F ′)−Ψ(α(F ′′), F ′′)
d

.

This means that

a− [1− α(F ′′)]rρ +
Ψ(α(F ′′), F ′′)

d
≥ a− [1− α(F ′)]rρ +

Ψ(α(F ′), F ′)
d

,

or, equivalently,
φ(F ′′) ≥ φ(F ′).

We conclude with the the generalized results regarding the risks of infrequent
settlement (i.e. analogues to results 3, 4, and 5).

Result 12 At any time t ∈ T and for any reserve ratio α, the size of outstand-

ing liabilities in excess of reserves is always smaller under higher frequency of

settlement. That is, for any t, α, l, and F ′, F ′′ with associated S ′ ⊂ S ′′,

l̂t(l, α; F ′) ≥ l̂t(l, α; F ′′).

Proof. Since t′i ∈ S ′ ⇒ t′i ∈ S ′′ and ∃ t′′i ∈ S ′′ such that t′′i /∈ S ′, we know that

min{lt − ls′t , . . . , lt − lt′1 , ;t−αd} ≥ min{lt − ls′′t , . . . , lt − lt′′1 , ;t−αd},
where s′t (s′′t ) corresponds to the period in which the most recent settlement
occurred prior to t under frequency F ′ (F ′′). From (31), it follows directly that
l̂t(l, α;F ′) ≥ l̂t(l, α; F ′′).

Result 13 At any time t ∈ T and for any settlement frequency F , increasing

the reserve ratio decreases the size of outstanding liabilities in excess of reserves.

That is, for any t, F , and l,

α2 > α1 ⇒ l̂t(l, α1;F ) ≥ l̂t(l, α2; F ).
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We omit the proof, as it is a trivial implication of (31). From these two results,
we arrive at the following conclusion.

Result 14 For any realization of ∆, the aggregate daily default decreases under

increased settlement frequency. That is, for any ∆ ∈ [0, 1], and F ′, F ′′ with

associated S ′ ⊂ S ′′,
δ(∆, F ′) ≥ δ(∆, F ′′).

43










