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Abstract

1 Introduction

A large body of literature has documented an increase in wage inequality over the 1970’s and 1980’s (see,
for example, Levy and Murnane, 1992). This increase in wage inequality has occurred both within and
between education-experience groups. While the former unfolds during the 1970’s, the latter is experienced
over the 1980’s. Recent studies show that these trends are weakened in the 1990’s.

The analysis of Juhn, Murphy and Pierce (1993) links the increase in wage inequality to technological
progress. As technology advances the demand for ability grows at a faster pace than its supply causing
skill prices to increase and the wage gap between skilled and unskilled workers to widen. To arrive to this
conclusion they map quantiles of the distribution of the residuals in log wage equations to quantiles of the

distribution of ability. This is possible provided the following four conditions hold: 1) there is one, and
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only one, type of unobserved ability; 2) the distribution of this ability across individuals is invariant over
time; 3) there are no unantecipated shocks in earnings so that the economy is described by a deterministic
environment; 4) wages are measured without error.

Regarding the first condition, Heckman and Rubinstein (1997), Carneiro and Heckman (2003), and
Heckman, Stixrud, and Urzua (2005) have shown that abilities are multiple in nature. These abilities may
be combined in different quantities to produce the same outcome. For example, an individual with low
stocks of cognitive ability but a considerable amount of persistence can be more successful than a smart
person with no motivation. Hence, the one-to-one mapping from quantiles of the distribution of wage
residuals to quantiles of the distribution of abilities is not meaningful.

The evidence presented by Gottschalk and Moffitt (1994) challenges the view that the distribution of
ability has remained fixed over time. They show substantial increase in the variance of the distribution of
unobserved heterogeneity when they compare the period 1970-1978 to the period 1979-1987.

Finally, Gottschalk and Moffitt (1994) documented an increase in "earnings instability": the variance of
temporary shocks rose considerably from the period 1970-1978 to the period 1979-1987. Thus, their findings
is consistent with uncertainty playing an important role in the economic envrironment that generated the
increase in wage inequality.

All in all, any credible explanation for the rise in wage inequality has to consider the fact that individuals
possess an array of abilities, that the joint distribution of these abilities could be changing over time, and
that uncertainty is a major reality in the economic environment. In this paper, we build on the work of
Carneiro, Hansen and Heckman (2003) and Cunha, Heckman and Navarro (2005) to separate heterogeneity
from uncertainty in labor earnings and show how they have evolved over time. The essential idea is to
model schooling and earnings equations jointly to identify the information set of the agent at the time of
the schooling choices were made. Modelling schooling choices is not merely an econometric procedure to

correct for selection in observed earnings. It is the source of information that allow us to separate what is



known and acted on by individuals at the time the schooling choice is made (which we call heterogeneity)
from what is not known (which we call uncertainty). Our approach can be viewed as an extension of the
Granger-Sims causality test (in which future outcomes cause present decisions) to an economic setting
where estimation of counterfactual outcomes must be made.

The intuition of our approach can be made clear in a few paragraphs. We seek to decompose the
“returns” coefficient or the gross gains from schooling in an earnings-schooling model into components
that are known at the time schooling choices are made and components that are not known. For simplicity
assume that, for person 7, returns are the same at all levels of schooling. Write discounted lifetime earnings
of person i, F;, as

where p, is the person-specific ex post return, S; is years of schooling, and U, is a mean zero unobservable.
We need to separate p, into two components p, = 7, + v;, where 7, is a component known to the agent
when he/she makes schooling decisions and v; is revealed after the choice is made. Schooling choices are
assumed to depend on what is known to the agent at the time decisions are made, S; = A (n;, Z;, 7;), where
the Z; are other observed determinants of schooling and 7; represents additional factors unobserved by
the analyst but known to the agent. Both of these variables are in the agent’s information set at the time
schooling choices are made. We seek to determine what components of ex post lifetime earnings Y; enter
the schooling choice equation.

If n, is known to the agent and acted on, it enters the schooling choice equation. Otherwise it does not.
Component v; and any measurement errors in £; should not be determinants of schooling choices. Neither
should future skill prices that are unknown at the time agents make their decisions. If agents do not use 7,
in making their schooling choices, even if they know it, 7, would not enter the schooling choice equation.

Determining the correlation between realized Y; and schooling choices based on ex ante forecasts enables



economists to identify components known to agents and acted on in making their schooling decisions. Even
if we cannot identify p;,, n;, or v; for each person, under conditions specified in this chapter we can identify
their distributions. The question is how to pick the information set.

Suppose that the model for schooling can be written in linear in parameters form:

SZ' = )\0 + )\177Z + )\21/1' + )\321 + Ti, (2)

where 7; has mean zero and is assumed to be independent of Z;. The Z; and the 7; proxy costs and may
also be correlated with U; and 1, and v; in (1). In this framework, the goal of the analysis is to determine
the n, and v; components. By definition, Ay = 0 if v; is not known when agents make their schooling
choices.

The method developed by [?, 7, ?] exploits the covariance between S and the realized Y; to determine
which components of Y, are known at the time schooling decisions are made. It explicitly models selection
bias and allows for measurement error in earnings. It does not rely on linearity of the schooling model.
Their method recognizes the discrete nature of the schooling decision. It builds on the modern literature
on constructing counterfactual schooling models.

Use this paragraph to describe our main findings.

Use this paragraph to explain how the paper is organized.

2 The Economic Model

2.1 The Problem of the Agent

We describe an uncertain economy populated with [ individuals. Each individual lives for 7" periods.

Before any uncertainty is realized, agents choose their schooling level and how to allocate consumption



across states of nature and over time. Individuals supply labor inelastically, but their labor productivity
is subject to idiosyncratic uncertainty. The variance of labor productivity can vary across schooling levels
and over time, but agents can protect themselves against this uncertainty because they have access to a
complete set of Arrow-Debreu securities. In order to obtain the solution of the model we first compute the
solution to the consumption allocation problem for each possible schooling level of the agent. Next, we

solve the schooling choice problem taking as given the consumption allocation in each schooling level.

2.1.1 The Consumption Allocation Problem

In each period t there is a realization of a stochastic event w, € ). Let the histories of events up to and
until time ¢ be denoted w' = {wy,ws,...,w;}. We use m; (w') to denote the unconditional probability of
observing a particular sequence of events w’. This history w’ is publicly observable.

Agent i’s labor productivity is stochastic. We use Y, (w') to denote the labor productivity of an
individual ¢ who has schooling level s given history w’. We denote by S = {0,1} the set of possible
schooling levels that the agent can choose. In our empirical study, S = 0 indicates an individual who is a
high-school graduate while S = 1 indicates an individual who is a college graduate.

Let ¢; s+ (w') denote the consumption of an agent ¢ with schooling level s at period t given history w'.
Consumption goods can be produced according to a constant returns to scale technology that depends
only on aggregate labor. Consequently, the price of the consumption good is the same as the price of labor
at all periods t for all possible histories w'. In each period, at each state of nature, the feasibility condition

is such that:
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We assume that there is neither aggregate uncertainty nor deterministic trends in labor productivity so



that:

Z ZY;W (wt) =Y for all t and '

s€S i€s
Let ¢; (w') denote the price of an Arrow-Debreu security that delivers one unit of period-t consumption

good if the history w? is realized and zero otherwise. The consumption allocation problem of the agent is:

V (s) = Maz ZT: > <?1p>t e (W) u [eir (w)] (3)

t=1 i

subject to:

S ) e () = 305 () Vi () ”

t=1 ot t=1 t
Let \; s denote the Lagrange multiplier associated to the budget equation of an agent ¢ with schooling level

s. The first-order condition is:

1

e () = (1) ) e ()

Because there is no aggregate uncertainty, the equilibrium consumption allocation must be such that

Cist (') = ¢ s for all period t and possible history w’. Consequently:

Replacing (5) into (4) one obtains:

t
where Y, = E lzt <ﬁp> Yiot



2.1.2 The Schooling Decision Problem

Given the solution to the consumption allocation problem, we can compute the lifetime utility of an agent

that chooses s years of schooling by replacing (6) into (3):

Let C; denote the (unobservable) psychic costs associated with schooling choices. An agent chooses to go

to college, i.e., s = 1, if, and only if:

or

1
Ap,T)

E {u[A(p.T) Vi) — u[A(p.T) Yig] — G| T} > 0,

where C; = A(p,T) C;. At this point we should stress that given data on schooling choices and earnings,
we can’t separate the role of the utility function u from the role of unobservable heterogeneity in schooling
preferences (captured by the psychic costs) C;. To see this, suppose that we observed C;. Then, holding
C; fixed, we would be able to infer preferences for consumption by looking at their schooling choices and
earnings. However, because we do not observe C;, we cannot compare people by holding C; constant.
Consequently, we cannot hope to identify both utility function u and psychic costs C;. Because of this fact,

we normalize the utility function u () = z. Under this normalization, the schooling choice becomes:

I}ZO

1 \° 1\’
E { Z (m) Y;,l,t - Z (m) Yri,O,t - Cz

t t



3 The Econometric Model

3.1 Model Specification

Our work consists on estimating the components of the information set of the agents. In particular, we
are interested in pinning down unobservable components which are known and acted on by the agents.
We can recover these components by looking both at the choices and the outcomes associated with choices
made by the individuals.

3.1.1 Earnings Equations

To motivate our econometric procedures we start by describing the earnings equations. For ¢t = 1,2, ..., T
we assume that (Y;o.,Y; 1) have finite means and can be expressed in terms of conditioning variables X

in the following manner:

Yior = XiBos + Uiy, (7)

Yiie=XiB1s+ Uirg, (8)

The error terms U, ;, satisfy E (U; ;| X) = 0.

3.1.2 Choice Equations

Write the index I as a net utility,

A (9)

T t
1
Ii =F [ E (m) (Yi,l,t - Y;;O?t) - Ci

t=1



where C; is the utility costs of attending college. We denote by Z; and U¢; the observable and unobservable

determinants of psychic costs, respectively. We assume that psychic costs can be written as:
C; = Ziy + Ugy (10)

t t
If we define 1, (X1, Z;) = 37, (ﬁp) X (B, — Boy) — Zyand Up; = YT (Flp) (Uise — Usoa) — U,

and replace (7), (8), and (10) into (9) we obtain:
Ii = Ep (X4, Z;) + Ura| 1] (11)

More generally, we define U;; as the error in the choice equation and it may or may not include all future
Uit Uiog, or U, Similarly, 1;(X;, Z;) may only be based on expectations of future X; and Z; at the

time schooling decisions are made. The schooling decision of the agents is such that:
S; =1 if I, >0; S; =0 otherwise. (12)

3.1.3 Test Score Equations

Aside from earnings and choice equations we also estimate a set of cognitive test score equations. Let M, j,
k=1,2,.., K, denote the agent i’s score on the k' test. Assume that M, have finite means and can be

expressed in terms of conditioning variables X*. Write:
My = XMl +UN (13)

The test equations are introduced here because we expect both the decision to graduate from college and

realized earnings to depend on the stock of cognitive skills the agents has at the time of the schooling



choice.

3.1.4 The goal of the paper

Consider the random variable college earnings Y; ;. It is only observed for the agents who choose to graduate
from college. Consequently, from observational data, we can compute the the cross-sectional mean college

earnings conditional on explanatory variables X and S = 1:

ElY1 X, 8=1]=Xp,,+E(U,|X,8=1)

Assume that X, Z,Uc € Z. The event S = 1 corresponds to the event:

E[U\2] > —pu/(X, Z)

Consequently, because E [Y; | X, S =1] = E Y1, X, E[U;|Z] > —p;(X, Z)], we can establish that:

EVi | X, E[UT] =2 =p(X, Z)] = Xy, + E(Urd| X, E[U] Z] 2 —py (X, Z))

It is interesting to separate two components. The first component, F [U;|Z], is used by the agent to make
schooling choices. This expectation is determined by the elements in the information set of the agent
which, in the end, influences their schooling decision.

The second component, U;— E[U;|Z], does not affect selection into schooling. To see why, add and

subtract E [U;|Z] on the schooling choice equation:

I=Fp(X,Z)+Ur— E[UI]+ E[U|I]|I] =

10



— (X, Z) + B[U ) + B[(U; - E[U| I)|T) = 1, (X, Z) + E[U1] 7]

because F [(U; — E [U;|Z])|Z] = 0.

Under the assumption that Us € Z we can write:

T

t T t
- 1011 =3 (1) - BWAZ) + 3 (1 ) @ - Bt )
t=1

t=1

and it is easy to see that (Us; — E [Us¢|Z]) affects realized earnings. This can be seen by adding and

subtracting £ [Us,| Z] to the earnings equation at school level s and period ¢ :
Yoo = XP,p + EUse| I] 4+ (Usy — E[Usy| Z])

Consequently, we conclude that E [Us .| Z] affects both earnings and school choice equations while the term
(Ust — E [Us4| Z]) affects only earnings in period ¢ and school s equation. To determine the unobserv-
able components that are in the information set of the agent we need to determine which specification
of the information set 7 fits better the covariance between schooling choices and earnings. We can de-
termine the components that are not in the information set of the agent by varying the specification of
(Ui st — E[Us| Z]) while keeping fixed Z, so we can get the best possible fit of the cross-section distrib-
ution of Y;;. In the next section we describe how we use factor models to represent both E [Us:|Z] and

(Ust — E [Us4| 7)) in a convenient framework.

11



4 Factor Models

4.1 Test Score Equations

To demonstrate our approach to determining the elements in the information set of the agent, we start
by considering the test score equations. We break the error term UM in test score equations in two
components. The first component is a factor, 6;, that is common across all test score equations. The
second component is uniquely attached to test score equation k, €. Consequently, we rewrite equation
(13) as

My = XMBY 4+ at'0; + e’ (14)

Following the psychometric literature, the factor #; is a latent cognitive ability which potentially affects
all test scores. We assume that 6, is independent from X™ and ). The main advantage of modelling
test scores in this fashion consists in the fact that we are allowing test scores to be a noisy measure of the

cognitive skill.

4.2 Earnings and Choice Equations

We decompose the error terms in the earnings equations in three terms. The first term is the cognitive
factor #;. The second term is a “productivity” factor #; which affects earnings and schooling choices, but
not test scores. The third term is the idiosyncratic error term which affects only the period-t schooling-s

earnings equation, £,;. We rewrite equations (7) and (8) as:

Yior = Xifos + osbin + do4bi2 + €ioy (15)

and

Yire = Xif1y +arlin +0140i0 + i1y (16)

12



We assume that the factor 0, is independent from X, e,,, and 0, for [ # j, for all s,%.

The cost equation is decomposed as the earnings equations, so that (10) can be rewritten as:
Ci=Ziv+aclin +0cbi2+ecy (17)

Given the specifications with the factors in (15), (16), and (17) we can rewrite the school choice equation

as:

t t
Zthl (ﬁ) X, (ﬁu - 50,t) —Ziy + ‘91,1 lthzl (ﬁ) (Oél,t - Oéo,t) — Q¢

t t
+0i2 {21‘21 (ﬁp) (016 — o) — 50] +3 (ﬁp) (€ine — €iot) — Ecii

T (18)

5 The Estimation of the Components in the Information Set

We show how we can determine the unobservable components of the information set Z of the agent at the
time of the schooling choice by exploring the convenient structure provided by the factor models. Assume

that X, Z, and ¢ are in the information set Z. To save on notation, define:

T ¢
1
ar = Zl (m) (a1 — o) — ac (19)
t—

and

51 = ZTj (%ﬂ)t (61 — G0.) — b0 (20)

t=1
Suppose we propose that {61,602} T Z, but ¢; 5, ¢ Z. Given the definitions of oy, d; and p; (X, Z;), if

the null hypothesis is true, the school index [ is:
I'= p(X4,Z;) + by + 61052 + ecy (21)

Assume, for a moment, that we know both (X, Z;) and f3,, for all s and ¢. Given observations on X

13



and Z we can obtain from the data the covariance between the terms I— u;(X;,Z;) and Y11 — X 61’1.

Under the null, this covariance is equal to

Cov (I —p(X,2Z),Y11— X B1,)) = ayoni0p, + 0161105, (22)

We can test the null {#,60,} C Z against many different alternative ones. To fix ideas, consider the
alternative assumption that proposes 0; € Z, but 0, ¢ 7 and that E [0 Z] = 0. If the alternative is valid,
the school index (18) becomes:

I'= p(X5,Z;) + by +ecy (23)

In this case, the covariance between the terms /— p;(X;, Z;) and Y1, — X 1, satisty:

Cov ([ — ILLI(X, Z), le,l — Xﬁl,l)) = 04105171051, (24)

and the difference between the school index generated by the null and the alternative hypothesis is the
term 6701,107, that appears in (22) but not in (24). This insight allow us to redefine the test by generating

parameters Ay, and Ay, be such that:

COU (I — ,LLI(X, Z),Y171 — ul(X)) — AQIOé]OleO'gl — A92&151710'31 = O

It is easy to see how we can rewrite the test in terms of Ay, and Ay,. We conclude that agents know and
act on the information contained in factors 1 and 2, so that {6,,02} C Z, if we reject both Ay, = 0 and
Ag, = 0.

It remains to be shown that we can actually identify all of the parameters of the model, in particular,

the function p;(X;, Z;), the parameters § and « in the test and earnings equations, the parameters §

14



in the earnings equations, the distribution of the factors, Fy, as well as the distribution of idiosyncratic
components F. in test, earnings and cost equations. We show how to recover these objects from the data

in the next section.

6 Identification of the Model

We focus our discussion of identification on the normal case. See Carneiro, Hansen and Heckman (2003)

for proofs of nonparametric identification of the distributions of the factors # and uniquenesses ¢.

6.1 Test Scores

To motivate our identification analysis we start by considering the test score equations. It is convenient to
do so because the test scores are available for all agents and are taken by the agent before he makes the
schooling decision. Therefore, we do not have to worry about selection issues when discussing identification
from test score equations. Three assumptions are crucial in securing identification through factor models.
First, the explanatory variables X* are independent from both #; and eM for k =1,..., K. Second, the
factor 0, is independent from €/, for k = 1, ..., K. Third, the uniqueness £ is independent from & for
any k # [, for k,1 = 1,..., K. The first assumption allows us to conclude that 3;' can be consistently
estimated from a simple OLS regression of M), against X™ . Given knowledge of these parameters we can

construct differences M, — X3} and compute the covariances:

Cov (M1 — XMﬁi”, My — XMﬁéw) = O‘{Maéwagl (25)
COU (M1 - XM6]1\47 M3 - XMﬁgSV[) - Odwaéwagl (26)
Cov (Mz — XMy Mz — XMﬁQJ) = O‘éwai]%wggl (27)

15



The left-hand side of (25),(26), and (27) can be computed straight from the data. The right-hand side
of (25),(26), and (27) is implied by the factor model. As is common in the factor literature, we need to
normalize one of the factor loadings. Let a}f = 1. If we take the ratio of (27) to (25) we identify al’.
Analogously, the ratio of (27) to (26) allows us to recover ad!. Given the normalization of o = 1 and
identification of !, we rescue 031 from (25). Finally, we can identify the variance of € from the variance
of M, — X 32", Because the factor #; and uniquenesses ¢, are independently normally distributed random

variables, we have identified their distribution.

6.2 Earnings and Choice Equations

To establish the identification of the objects of interest in earnings equations requires a little more work
because of the selection problem. It is at this stage of the problem that fixing the discussion on the
normally distributed factors and uniquenesses becomes convenient, as we can use the closed-form solutions
to reduce the identification problem to the identification of a few parameters.

We rely on four important assumptions to secure identification. First, all of the observable explanatory
variables X and Z are independent of the unobservable factors, ¢; and 05, as well as uniquenesses ¢, for
all s,t. Second, 0, is independent of 5. Third, both ¢; and 0, are independent of ¢ and €, for all s, .
Fourth, €, is independent from ¢ and ey for any pairs s, s’ and ¢, ¢’ such that s # s’ or t # t. According
to the last three assumptions, all of the the dependence among Uy, U+, and Uc is captured through the
factors #; and 05, which, for simplicity, we assume that

0, 0 031 0
~ N ,

02 0 0 0'32

Because of the loadings o, 05, ¢, and d¢ the factors 0 can affect Uy, Uy +, and Uc differently. Therefore,

by aadopting the factor structure we are not imposing, for example, perfect ranking in the sense that the

16



best in the distribution of earnings in sector s at period ¢ is the best (or the worst) in the distribution of
earnings in sector s’ at period t'. When the schooling choice problem is analyzed under the factor model,
the joint distribution of the labor earnings Yy ,, Y7, conditional on X is:

2 2 2 2 2 2 2
}/E),t Xﬁo,t aO,tael + 60,250-92 + O-Eoyt a07ta11t0-91 + 501t517t0-92
X ~ N , )

2 2 2 2 2 9 2
Vi X (0140, + 00401409, 07,0y, + 07,05, + 0,

As a result, identification of the joint distribution F'(Yy, Y1 | X) reduces to the identification of the
parameters [, s, 05, 0c, ,, and agj for s =0,1;t=1,...,T and j = 1,2. From the observed data and

the factor structure it follows that:
E(Y14X,5=1)= X B3, + a1 E[01|X,S =1]+61,E[0:] X, S =1+ FE 14 X,5 = 1] (29)

The event S = 1 corresponds to the event I = E (ZtT_l (ﬁp)t (Yi:—Yor) — C” I) > 0. At this point
it is convenient to distinguish the role played by the factors 6 from the one played by the uniquenesses
€s¢. In tune with our intuitive discussion, we need to have terms that will affect the covariance between
schooling and earnings equations by changing the components of the information set Z, which is captured
by the term E (Us,|Z). We also need to have components that will affect earnings while holding constant
the information set Z and the covariance between earnings and schooling, which is captured by the term
Ust — E (Ust| Z). The former role will be played by the factors in the information set of the agent. The
latter will be played by the factors not in the information set of the agents as well as the uniquenesses € ;.
Consequently, we will construct e, so that they satisfy the requirement ¢,; ¢ Z. As a result, we conclude

that:

B (Z (ﬁp)tmt—m—c

t=1

I) = ,uI(X, Z) + by + 0105 — e

17



Let 1 be the linear combination of three independent normal random variables: n = a6, + ;05 — ec.

Then, n ~ N (0,02) , with 02 = ajoj, + 8703, + o2 and

S=len>—u(X,2Z) (30)

If we replace (30) in (29) and using the fact that €, is independent from X, Z, and 6, we can show that:

E(Y] X, 5=1) =X +an B[00 X,n> —p (X, Z)] + 01, E[0:] X, n > —p(X, Z)] (31)

Second, because 61,0, and 7 are normal random variables we can use the projection property:

o Cov (9]‘, 77)

= for j=1,2 2
$ = () TV =1 (32)

where v; is a mean zero, normal random variable independent from 7). Because Cov (61,1) = 05, a; and

Cov (02,m) = 03,07 it follows that:

02 ar
—=E[nln > (X, Z)]
n

E[91|X>77> _IUI(Xaz)] =

2
0-926[
2

J’?

E[92|X777> _:uI(X?Z)] =

Elnln>—p(X,Z))

For any standard normal random variable p, E' (u|p > —c) = % where ¢ (.) and ® (.) are the density and
i raro? . o2
distribution function of a standard normal random variable. Define, for j = 0,1, m;; = ( e 810:5J’t61 82) .These
facts together allow us to rewrite (29) as:
K (sz) )
E(Yin < —p(X,2Z)) = X By + w1y " (33)

D (m(x,Z))

18



It is easy to follow the same steps and derive a similar expression for mean observed earnings in sector “0”:

¢
E (Youln > _M](X7Z)):X60,t_7r0,tq) (34)

We can apply the two-step procedure proposed in Heckman (1976) to identify 3,,,3;;, 7o, and 7.
Given identification of S, for all s and ¢, we can construct the differences Y,; — X 3,, and compute the
covariances:

Cov (M, — XM vy, — X Boi) = o405, (35)
Cov (M; — XMBY Y1, — XBy,) = 1,05, (36)

The left-hand side of (??) is available from the data. The right-hand side is implied by the factor model
and its assumptions. We determined o} from the analysis of the test scores. So from equations (?7)

and (?7) we can recover g, and aq, for all ¢. Note that we can also identify the ‘;f by computing the

covariance:

oy, (37)

t
T 1
I — (X, Z > it i, (1 — o) —ac
Cov <M1 —Xﬁf{L) = ( P)

On Oy

The argument why 7¢ can be recovered is simple: Using (7?) and (??) we can identify oy, and o for

all £. The only remaining term to be indentified is the ratio ¢, which we can from the covariance equation

(07
In
(77).
Note that if 7" > 2 then we can also identify the parameters related to factor 0, such as d5, and 032.

To see this, first normalize dp; = 1 and compute the covariances:

Cov (}/071 — Xﬁo,la YO72 — XBO,Q) — Oé()71(10720'31 = (50720'22 (38)

I — (X, Z>) _ 00175, Ty (014 @0 = 0¢) _ 0% Fy Ore = 0e —0c) - o0

On

Cov (Y(Ll — X Boa;

On On
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I —
Cov <}/E)72 — X By2 ol

On

(X, Z)) 0203, 3o (010 — c0e — ac) _ b020%, 3y (Ore — doe — bc)

On On

(40)
On the left-hand side of (38), (39), and (40) are terms that we can compute from the data or have already
identified. If we compute the ratio of (40) to (39) we can recover dgo. From (38) we can recover oj . We

now add the covariances from the college earnings:

Cov (}/171 — Xﬁl,la }/172 — X61,2) — (1171041720'21 = (51715172032 (41)

I—pu(X,2Z Dy — gy — 01102, 30 (814 — oy — 0
Cow <Y171—X6171, p (X, ))_al,l%zt_l(@u Qs —ao) _ 01104, 3y (010 — dor — dc)

On On On
(42)
Cow <Y1,2 —XBa. I — (X, Z)) @10, 3 (e — a0 —ac) 61205, 5, (010 — doe — bc)
On On On
(43)

Now, by computing the ratios of (43) to (41) and (42) to (41) we obtain d; » and d; ; respectively. Finally, we
use the information in Var (Yy| X, S = 0) and Var (Vi X, S = 1) to compute 02  and 02 | respectively.

€0,t €1,t)

Note that we have identified all of the elements that characterize the joint distribution as specified in (28).

7 Empirical Results

7.1 The data, equations, and estimation

The first problem we have to overcome is that few data sets contain the full life cycle of earnings along
with the test scores and schooling choices needed to directly estimate our model and extract components
of uncertainty. We need to combine data sets. Otherwise, we can only obtain partial identification of
the model. In our empirical analysis, we use a sample of white males from the NLSY data pooled with

PSID data, as described in Appendix 3 (placed on our website), to produce life cycle data on earnings and
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schooling.

Following the preceding theoretical analysis, we consider only two schooling choices: high school and
college graduation. As above, we use s = 0 to denote high school and s = 1 to denote college.

Table 2.1 presents descriptive statistics of the data used to estimate the model. College graduates have
higher test scores, come from better family backgrounds, and are more likely to live in a location where
college tuition is lower.

To simplify the empirical analysis, we divide the lifetimes of individuals into 24 periods. The first
period covers ages 18 to 19, the second period covers from ages 20 to 21, and so forth until the twenty-
fourth period which covers ages 64 to 65. Aggregating ages in these periods serves two purposes. The
first is that they potentially reduce the problem of measurement error in earnings (assuming it is classical
measurement error). The second is it reduces the number of parameters to estimate. For each schooling
level s, s € {0,1}, and for each period ¢, we calculate the present value of earnings as of age 18, Y; ;. We
assume individuals have a constant intertemporal preference rate p = 0.03. We conduct robustness tests
regarding both the aggregation of ages in periods and by changing p. To simplify notation drop the ‘i’

subscript. If Y;; is generated by a three factor model, we would write:

Y;’t = X,B&t + 910[87t + 9258,7572 + Est for t = 1, 2, ceey 16, S € {O, 1} . (44)

It turns out that a two-factor model is fits the data. Since the scales of the factors are unknown, it is
necessary to normalize some loadings (the av). In this paper, we set d; ;1 = 1. The normalization for ability
(associated with the measurements M based on test scores) is presented in the next paragraph.

For the measurement system for cognitive ability (M in the notation of section ??7) we use five compo-
nents of the ASVAB test battery: arithmetic reasoning, word knowledge, paragraph comprehension, math

knowledge and coding speed. We dedicate the first factor (f;) to this test system, and exclude the other

21



from it. This justifies our interpretation of #; as ability. We include family background variables among
the covariates X j; in the ASVAB test equations. In Table 2.2 we list the elements of X j;. Formally, let
M; denote the test score j,

To set the scale of 01, we normalize o = 1.

The cost function C'is given by
C=2Z~v+0iac+ 03¢ + cc, (46)

where the Z are variables that affect the costs of going to college and include variables that do not affect
outcomes Y ;, such as local tuition. Table 2.2 shows the full set of covariates used, and the exclusions (the
variables in Z not in X.) We include tuition among the elements of Z but allow for a more general notion
of costs in our empirical work, including psychic costs.

The valuation or net utility function for schooling choice is

4
Yor — Yy
I=E ot ht
(Z (14 p)f

t=0

I> — E(C|T), (47)

where p is the intertemporal preference rate. Individuals go to college if I > 0. The individual decision
maker is assumed to be the child although parental resources can affect C'. Cost variable C' also includes
the effect of ability on reducing tuition costs. We test and do not reject the hypothesis that individuals,
at the time they make college going decisions, know their cost functions, the Z and the X, factors 61, 05,
and unobservables in cost ec. However, they do not know e4,, s € {c,h}, t € {1,2,,...,16}, at the time

they make their educational choices.
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We assume that each factor 6, is generated by a mixture of J; normal distributions,
Jk
O Zpk,ﬂ (O | 13> Thys) 5
j=1

where ¢ (77 | 1y, Tj) is a normal density for n with mean p; and variance 7; and ikjlp;w» =1, and p;; > 0.
j=

As shown in [?], mixtures of normals with a large number of components approximate any distribution

of 6y, arbitrarily well in the ¢! norm. The e, are also assumed to be generated by mixtures of normals.

We estimate the model using Markov Chain Monte Carlo methods as described in [?]. In Tables 2.3 — 2.5

we present estimated coefficients and factor loadings. For all factors, a three-component model (J; = 3,

k =1,2) is adequate.For all £, we use a four-component model.!

7.1.1 How the model fits the data
7.1.2 Returns to College

7.1.3 How well can agents predict future earnings?

7.1.4 Robustness Checks

8 Summary and Conclusion

9 References
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! Additional components do not improve the goodness of fit of the model to the data.
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Table

Descriptive Statistics for Explanatory Variables and Test Scores
NLS/1966 and PSID'
High School Sample

Variables
Mother's Education
Father's Education
Number of Siblings
Urban Residence at 14
Local Tuition®
Born between 1915 and 1919
Born between 1920 and 1924
Born between 1925 and 1929
Born between 1930 and 1934
Born between 1935 and 1939
Born between 1940 and 1944
Born between 1945 and 1949

Born between 1950 and 1954
IQ Test Score®

Obs
1454
1454
1454
1454
1454
1454
1454
1454
1454
1454
1454
1454
1454
506

Mean
3.2001
2.8975
3.2552
0.6623
0.1447
0.0268
0.0406
0.0495
0.0475
0.0399
0.2063
0.3287
0.2607
-0.5560

Std Error
1.2195
1.3006
2.2056
0.4731
0.0325
0.1616
0.1974
0.2170
0.2127
0.1958
0.4048
0.4699
0.4391
0.8758

Obs
1458
1458
1458
1458
1458
1458
1458
1458
1458
1458
1458
1458
1458
581

College Sample

Mean
4.3601
4.3491
2.3813
0.8169
0.1453
0.0062
0.0213
0.0391
0.0309
0.0357
0.2188
0.4444
0.2037
0.5036

Std Error
1.5910
1.9392
1.8320
0.3869
0.0295
0.0784
0.1443
0.1939
0.1730
0.1855
0.4136
0.4971
0.4029
0.8281

The sample constitutes of white males with a high school or college degree born in 1952 or before.
2Only available for the respondents of the NLS/1966.
%In ten thousand dollars, CPI deflated, base year 2000.



Table - Continued
Descriptive Statistics for Explanatory Variables and Test Scores
NLS/1979 and PSID'

High School Sample College Sample
Variables Obs Mean Std Error Obs Mean Std Error
Mother's Education 2054 3.6509 1.2431 1701 4.8236 1.6108
Father's Education 2054 3.4971 1.4738 1701 5.1329 2.0161
Number of Siblings 2054 3.2240 2.0913 1701 2.4774 1.6992
Urban Residence at 14 2054 0.7230 0.4476 1701 0.8430 0.3639
Local Tuition® 2054 0.1853 0.0716 1701 0.1786 0.0669
Born between 1915 and 1919 2054 0.0190 0.1365 1701 0.0053 0.0726
Born between 1920 and 1924 2054 0.0287 0.1671 1701 0.0182 0.1338
Born between 1925 and 1929 2054 0.0351 0.1840 1701 0.0335 0.1800
Born between 1930 and 1934 2054 0.0336 0.1802 1701 0.0265 0.1605
Born between 1935 and 1939 2054 0.0282 0.1657 1701 0.0306 0.1722
Born between 1940 and 1944 2054 0.0467 0.2111 1701 0.0682 0.2522
Born between 1945 and 1949 2054 0.0667 0.2496 1701 0.1405 0.3476
Born between 1950 and 1954 2054 0.1207 0.3259 1701 0.1146 0.3187
Born between 1955 and 1959 2054 0.2400 0.4272 1701 0.2187 0.4135
Born between 1960 and 1964 2054 0.3174 0.4656 1701 0.3133 0.4640
Born between 1965 and 1969 2054 0.0638 0.2444 1701 0.0306 0.1722
ASVAB - Arithmetic Reasoning? 640 -0.4696 0.9408 561 0.5731 0.7285
ASVAB - Word Knowledge® 640 -0.4334 1.0578 561 0.5277 0.5578
ASVARB - Paragraph Composition2 640 -0.4289 1.0770 561 0.5147 0.5363
ASVAB - Coding Speed® 640 -0.3195 0.9434 561 0.3948 0.8849
ASVAB - Math Knowledge® 640 -0.5993 0.7949 561 0.7190 0.6863

This sample is composed of white males with a high school or college degree including individuals born in
19609 or before.

2Only available for the respondents of the NLSY/1979.
*In ten thousand dollars, CPI deflated, base year 2000.



Table
Descriptive Statistics for Period* Earnings2

NLS/1966 and PSID® NLSY/1979 and PSID’
High School Sample College Sample High School Sample College Sample
Period* Obs Mean Std Error Obs Mean Std Error Obs Mean Std Error Obs Mean Std Error
1 337 2.1646 1.3041 286 1.1625 0.6503 239 1.6916 1.5715 197 1.1343 1.0315
2 264 4.0672 1.7317 323 1.5348 1.1102 593 3.3588 1.9616 352 1.4789 1.2424
3 296 4.4909 1.5981 287 2.4612 1.6511 942 41271 2.0627 501 1.9592 1.5957
4 439 4.5930 1.7946 416 4.2581 1.9477 1144 4.4228 2.2118 777 4.1343 2.3594
5 442 45072 1.6270 465 4.9543 2.0551 1233 4.6200 2.2706 977 5.3490 2.6021
6 362 4.2284 1.4760 452 5.3063 2.2915 1246 4.7645 2.3471 1084 6.1144 3.5069
7 326 3.8237 1.4249 439 5.3222 2.4097 1132 4.8102 3.5125 1096 6.7664 4.1518
8 339 3.6576 1.4890 474 5.2057 2.3136 947 4.7765 3.3080 950 7.0273 4.1659
9 299 3.4736 1.3392 466 5.0740 2.7304 767 4.7781 3.0637 811 7.1873 4.2407
10 283 3.2443 1.3001 444 4.9818 3.1373 573 45688 2.2295 688 7.2931 4.4655
11 302 2.8339 1.0813 446 4.8957 3.3196 461 45444 2.5835 576 7.4099 4.9780
12 281 2.6737 1.0140 417 45845 2.8893 401 4.3017 2.1373 516 7.1851 45491
13 307 2.4513 0.9056 431 4.2969 2.8265 360 3.9853 1.5783 484 6.9696 5.0493
14 319 2.2130 0.8999 437 3.8572 2.2055 319 3.6831 1.4977 437 6.4211 3.6746
15 284 1.9804 0.7774 392 3.6110 2.0889 284 3.4255 1.3443 392 6.2447 3.6087
16 271 1.8666 0.7883 346 3.1939 1.6448 271 3.3554 1.4180 346 5.7412 2.9573
17 253 1.6870 0.6947 272 2.9175 1.6778 253 3.1509 1.2981 272 5.4509 3.1405
18 237 1.5343 0.6150 222 2.7632 2.1200 237 2.9780 1.1942 222 5.3637 4.1206
19 226 1.3797 0.5884 196 2.4868 1.9836 226 2.7833 1.1885 196 5.0154 3.9992
20 184 1.2289 0.5586 154 2.1344 1.5364 184 2.5767 1.1719 154 4.4739 3.2211
21 163 1.1069 0.5363 132 1.9147 1.5534 163 2.4112 1.1681 132 4.1704 3.3826
22 135 0.9919 0.4935 104 1.7729 1.3125 135 2.2459 1.1191 104 4.0129 2.9691
23 96 0.8470 0.4610 77 1.6022 1.3454 96 1.9922 1.0843 77 3.7677 3.1644
24 59 0.6200 0.4084 52 1.3325 1.1089 59 1.5156 0.9988 52 3.2560 2.7078

"The first period goes from ages 18 and 19, the second period goes from ages 20 and 21, so on and so forth until the thwienty-fourth period which correspondes to ages 64
and 65.

?All earnings figures have been inflation adjusted using 2000 as base year.
*The sample constitutes of white males with a high school or college degree born in 1952 or before.
*“This sample is composed of white males with a high school or college degree including individuals born in 1969 or before.



Table

x> Goodness of Fit Test*
NLSY/1966 - White Males
High School College Overall
Period X2 statistic  Critical Value X2 statistic  Critical Value X2 statistic  Critical Value
1 35.1666 36.4150 30.9157 31.4104 86.8989 62.8296
2 16.2276 30.1435 35.9966 36.4150 62.2311 62.8296
3 23.2362 33.9244 33.7769 33.9244 55.1028 60.4809
4 28.4962 46.1943 41.7248 43.7730 82.2013 83.6753
5 38.5206 47.3999 25.7795 48.6024 79.0193 88.2502
6 27.2044 38.8851 37.7031 47.3999 68.8676 80.2321
7 30.0069 36.4150 32.3167 46.1943 72.6573 75.6237
8 30.8421 37.6525 44.8474 47.3999 75.5611 80.2321
9 25.4233 33.9244 37.9660 49.8018 69.4125 75.6237
10 22.4095 32.6706 34.9972 47.3999 70.0617 72.1532
11 32.4199 35.1725 37.1016 47.3999 945121 76.7778
12 36.3761 32.6706 38.7352 44,9853 102.0853 69.8322
13 30.5514 33.9244 43.0433 44,9853 93.0956 72.1532
14 36.3597 36.4150 38.7660 46.1943 124.8956 75.6237
15 27.3590 30.1435 46.8502 43.7730 117.4130 68.6693
16 25.3761 31.4104 31.2686 38.8851 51.9383 60.4809
17 25.7091 30.1435 18.1242 31.4104 44.8770 55.7585
18 14.6712 27.5871 24.0683 26.2962 27.5918 48.6024
19 12.0451 26.2962 28.2599 23.6848 56.2757 43.7730
20 14.3254 22.3620 14.1747 19.6751 35.3521 37.6525
21 18.4607 19.6751 15.6153 16.9190 48.4015 33.9244
22 15.9271 16.9190 6.3777 14.0671 24.2935 27.5871
23 16.9783 12.5916 10.4284 11.0705 33.5786 21.0261
24 7.7536 7.8147 2.6828 7.8147 12.1896 12.5916

* 95% Confidence, equiprobable bins with aprox. 13 people per bin. A XZ statistic lower than the critical
value indicates a "good" fit.



Table

x* Goodness of Fit Test*
NLSY/1979 - White Males

High School College Overall
Period x2 statistic  Critical Value x2 statistic  Critical Value x2 statistic  Critical Value
1 21.8279 26.2962 33.9550 23.6848 97.3125 44,9853
2 149.2872 59.3035 34.0150 37.6525 140.0304 91.6702
3 84.5345 88.2502 51.6067 52.1923 201.1130 133.2569
4 147.2893 104.1387 110.0342 80.2321 283.6263 181.7702
5 122.4765 119.8709 146.5578 98.4844 276.9388 201.4234
6 112.2404 118.7516 95.2815 101.8795 247.3886 212.3039
7 104.7030 108.6479 97.7348 106.3948 206.2928 206.8668
8 76.3445 92.8083 91.5059 88.2502 173.4034 179.5806
9 62.2386 76.7778 74.1022 80.2321 142.0921 150.9894
10 55.7005 59.3035 73.3813 73.3115 123.6666 124.3421
11 36.4969 46.1943 54.4203 60.4809 111.0111 101.8795
12 37.6774 42.5570 53.5602 54.5722 112.9666 89.3912
13 30.8201 38.8851 50.5857 52.1923 59.8648 84.8206
14 27.8652 36.4150 50.7021 48.6024 75.1764 75.6237
15 27.5540 30.1435 63.8219 41.3371 86.4812 70.9935
16 41.0335 31.4104 42.9749 40.1133 46.7377 62.8296
17 26.4536 28.8693 30.7332 31.4104 53.0589 54.5722
18 18.8084 27.5871 31.1921 24.9958 41.7653 48.6024
19 15.1549 26.2962 38.3292 23.6848 46.3320 43.7730
20 9.0556 22.3620 17.0141 19.6751 28.4916 37.6525
21 18.5147 21.0261 20.4213 18.3070 46.6824 32.6706
22 16.6020 16.9190 11.5794 14.0671 20.8732 27.5871
23 18.0791 12.5916 2.9422 11.0705 21.9580 21.0261
24 8.4491 7.8147 0.1916 7.8147 13.4519 14.0671

* 95% Confidence, equiprobable bins with aprox. 13 people per bin. A Xz statistic lower than the critical
value indicates a "good" fit.



Figure

Densities of present value of lifetime earnings for High School Graduates
Factual and Counterfactual NLS/1966 Sample
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Present Value of Lifetime Earnings from age 18 to 65 for high school graduates using

a discount rate of 3%. Let Yy denote present value of earnings in high school sector. Let
Y denote present value of earnings in college sector. In this graph we plot the factual
density function f(y | S=0) (the solid line), against the counterfactual density function
f(y; | S=0). We use kernel density estimation to smooth these functions.



Figure
Densities of present value of lifetime earnings for High School Graduates
Factual and Counterfactual NLSY/1979 Sample
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Present Value of Lifetime Earnings from age 18 to 65 for high school graduates using
a discount rate of 3%. Let Yy denote present value of earnings in high school sector. Let
Y denote present value of earnings in college sector. In this graph we plot the factual
density function f(y( | S=0) (the solid line), against the counterfactual density function
f(y; | S=0). We use kernel density estimation to smooth these functions.
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Densities of present value of earnings for College Graduates
Factual and Counterfactual NLS/1966 Sample
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Present Value of Lifetime Earnings from age 18 to 65 for high school graduates using

a discount rate of 3%. Let Y denote present value of earnings in high school sector. Let
Y denote present value of earnings in college sector. In this graph we plot the counterfactual

density function f(y | S=0) (the dashed line), against the factual density function
f(y; | S=0). We use kernel density estimation to smooth these functions.




Figure
Densities of present value of earnings for College Graduates
Factual and Counterfactual NLSY/1979 Sample
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Present Value of Lifetime Earnings from age 18 to 65 for high school graduates using

a discount rate of 3%. Let Y denote present value of earnings in high school sector. Let

Y denote present value of earnings in college sector. In this graph we plot the counterfactual
density function f(y; | S=0) (the dashed line), against the factual density function

f(y1 | S=0). We use kernel density estimation to smooth these functions.



Table: Conditional Distributions for the NLS/1966 (College Earnings Conditional on High School Earnings)
Pr(d;<Yc<d;+1 | d;<Yh<d;+1) where d; is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and d, is the jth decile
of the High School Ex-Ante Lifetime Earnings Distribution
Individual fixes known 0 at their means, so Information Set={0,=0,0,=0}

Corrrelation(Yc,Yy) = 0.9176

College
High School 1 2 3 4 5 6 7 8 9 10

1 0.5909 0.2479 0.0977 0.0353 0.0168 0.0072 0.0027 0.0008 0.0006 0.0000
0.2178 0.3016 0.2248 0.1376 0.0666 0.0318 0.0144 0.0030 0.0022 0.0002
0.0850 0.2020 0.2420 0.2072 0.1360 0.0752 0.0356 0.0124 0.0036 0.0008
0.0480 0.1242 0.1880 0.2108 0.1872 0.1256 0.0766 0.0268 0.0106 0.0022
0.0216 0.0674 0.1138 0.1700 0.2040 0.1910 0.1342 0.0696 0.0248 0.0034
6 0.0136 0.0346 0.0700 0.1186 0.1814 0.2088 0.1882 0.1348 0.0442 0.0058
0.0068 0.0166 0.0350 0.0708 0.1204 0.1824 0.2262 0.2222 0.1078 0.0118
0.0036 0.0094 0.0200 0.0338 0.0616 0.1186 0.2028 0.2752 0.2322 0.0428
9 0.0018 0.0022 0.0092 0.0144 0.0232 0.0526 0.1060 0.2120 0.3914 0.1872
10 0.0002 0.0002 0.0020 0.0024 0.0032 0.0070 0.0134 0.0432 0.1826 0.7458

AN
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Table: Ex-Ante Conditional Distributions for the NLSY/1979 (College Earnings Conditional on High School Earnings)
Pr(di<Yc<d;+1 | d;<Yh<d;+1) where d; is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and d; is the jth decile
of the High School Ex-Ante Lifetime Earnings Distribution
Individual fixes known 0 at their means, so Information Set={0,=0,0,=0}

Corrrelation(Y¢,Yy) = 0.4083

College
High School 1 2 3 4 5 6 7 8 9 10
1 0.1833 0.1631 0.1330 0.1066 0.0928 0.0758 0.0675 0.0630 0.0615 0.0535
2 0.1217 0.1525 0.1262 0.1139 0.1044 0.0979 0.0857 0.0796 0.0683 0.0498
3 0.1102 0.1263 0.1224 0.1198 0.1124 0.0970 0.0931 0.0907 0.0775 0.0506
4 0.0796 0.1083 0.1142 0.1168 0.1045 0.1034 0.1121 0.1006 0.0953 0.0652
5 0.0701 0.0993 0.1003 0.1027 0.1104 0.1165 0.1086 0.1112 0.1043 0.0768
6 0.0573 0.0932 0.1079 0.1023 0.1110 0.1166 0.1130 0.1102 0.1059 0.0825
7 0.0495 0.0810 0.0950 0.1021 0.1101 0.1162 0.1202 0.1174 0.1134 0.0950
8 0.0511 0.0754 0.0770 0.1006 0.1006 0.1053 0.1244 0.1212 0.1297 0.1147
9 0.0411 0.0651 0.0841 0.0914 0.1039 0.1117 0.1162 0.1216 0.1442 0.1206
10 0.0590 0.0599 0.0622 0.0645 0.0697 0.0782 0.0770 0.1028 0.1181 0.3087




Figure
Densities of Returns to College
NLS/1966 Sample
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Let Y denote present value of earnings in high school sector. Let Y| denote present value

of earnings in college sector. Let R = (Y - Y)/Y, denote the gross rate of return to college.
In this graph we plot the density function of the returns to college conditional on being a high
school graduate, f(r | S=0) (the solid line), against the density function of returns to college

conditional on being a college graduate, f(r | S=1). We use kernel density estimation to smooth
these functions.



Figure
Densities of Returns to College
NLSY/1979 Sample
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Let Y denote present value of earnings in high school sector. Let Y| denote present value

of earnings in college sector. Let R = (Y - Y,)/Y denote the gross rate of return to college.
In this graph we plot the density function of the returns to college conditional on being a high
school graduate, f(r|S=0) (the solid line), against the density function of returns to college
conditional on being a college graduate, f(r | S=1). We use kernel density estimation to smooth
these functions.



Table
Lifetime Returns to College Conditional on Schooling Choices

Choice NLSY/1966 NLSY/1979
Mean Standard Error Mean Standard Error
High School Graduates 0.2284 0.0081 0.2055 0.0113
College Graduates 0.3421 0.0098 0.3740 0.0280
Individuals at the Margin 0.2800 0.0182 0.2828 0.0457

Let Y, denote lifetime present value of earnigs in the high school sector. Let Y, denote lifetime present value
of earnigs in the college sector. Lifetime returns to college are R = (Y1-Y)/Y,. In this table we show the mean
and standard error of returns R conditional on schooling choices for both the NLSY/1966 and NLSY/1979
samples as estimated by the 2 factor model.
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Figure
densities of present value of high school earnings - NLS/1966
under different information sets for the agent calculated
for the entire population irregardless of schooling choice
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Let O denote the information set of the agent. Let Y () denote the present value of
earnings in the high school sector (discounted at a 3% interest rate). Let f(y(|®)
denote the density of Y () conditional on information set ®. The solid line plots

the density of Y() when ®=¢. The dashed line plots the density of Y when ®={01 }.
The dotted and dashed line plots the density of of Y() when ©®={61 67}. The X
variables are in the information set of the agent. The factors 6, when known, are
evaluated at their mean, which is zero.
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Figure
densities of present value of high school earnings - NLSY/1979
under different information sets for the agent calculated
for the entire population irregardless of schooling choice
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Let O denote the information set of the agent. Let Y () denote the present value of
earnings in the high school sector (discounted at a 3% interest rate). Let {(y(|®)
denote the density of Y( conditional on information set ®. The solid line plots

the density of Y when ®=¢. The dashed line plots the density of Y when ®={01}.
The dotted and dashed line plots the density of of Y() when ®={61 6,}. The X
variables are in the information set of the agent. The factors 6, when known, are
evaluated at their mean, which is zero.



Figure
densities of present value of college earnings - NLS/1966
under different information sets for the agent calculated

for the entire population irregardless of schooling choice
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Let O denote the information set of the agent. Let Y() denote the present value of
earnings in the college sector (discounted at a 3% interest rate). Let f(y(|®)

denote the density of Y() conditional on information set ®. The solid line plots

the density of Y() when ®=¢. The dashed line plots the density of Y when ®={01}.
The dotted and dashed line plots the density of of Y() when ©®={6] 65}. The X
variables are in the information set of the agent. The factors 6, when known, are
evaluated at their mean, which is zero.



Figure
densities of present value of college earnings - NLSY/1979
under different information sets for the agent calculated
for the entire population irregardless of schooling choice
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Let O denote the information set of the agent. Let Y() denote the present value of
earnings in the college sector (discounted at a 3% interest rate). Let f(y(|®)

denote the density of Y() conditional on information set ®. The solid line plots

the density of Y when ®=¢. The dashed line plots the density of Y when ®={01}.
The dotted and dashed line plots the density of of Y() when ©®={61 62}. The X
variables are in the information set of the agent. The factors 6, when known, are
evaluated at their mean, which is zero.



Figure
densities of present value of returns - NLS/1966
under different information sets for the agent calculated

for the entire population irregardless of schooling choice
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Let O denote the information set of the agent. Let Y () denote the present value of
returns (discounted at a 3% interest rate). Let f(y|®) denote the density of Yy
conditional on information set ®. The solid line plots the density of Y when O=¢.
The dashed line plots the density of Y when ®={0 }.The dotted and dashed line

plots the density of of Y when ®={61 62}. The X variables are in the information
set of the agent. The factors 0, when known, are evaluated at their mean, which is zero.



Figure
densities of present value of returns - NLSY/1979
under different information sets for the agent calculated

for the entire population irregardless of schooling choice
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Let O denote the information set of the agent. Let Y () denote the present value of
returns (discounted at a 3% interest rate). Let f(y(|®) denote the density of Yy
conditional on information set ®. The solid line plots the density of Y when ®=¢.
The dashed line plots the density of Yy when ®={0 }.The dotted and dashed line

plots the density of of Y when ®={67 03 }. The X variables are in the information
set of the agent. The factors 6, when known, are evaluated at their mean, which is zero.




Table

Agent’s Forecast Variance of Present Value of Earnings™
Under Different Information Sets - NLS /1966

(fraction of the variance explained by ©)**

Var(Y.,) Var (Y) Var(Y.-Yy)
For lifetime:™
Variance when © = & 259.46 96.84 221.54
© = {6} 16.83% 10.61% 34.90%
© = {61,0,} 66.99% 78.47% 51.93%

*We use an interest rate of 3% to calculate the present value of earnings.

*Variance of the unpredictable component of earnings between age 18 and 65

as predicted at age 18.

**So we would say that the variance of the unpredictable component of lifetime college
earnings when the information set is X ={f1, 02} is (1-0.6699)*259.46



Table

Agent’s Forecast Variance of Present Value of Earnings™
Under Different Information Sets - NLSY /1979

(fraction of the variance explained by ©)**

Var(Y.) Var (Yy) Var(Y.-Yy)
For lifetime:™
Variance when © = @ 290.84 103.13 334.02
O ={6:} 46.06% 30.81% 10.68%
© = {61,052} 65.13% 5594% 56.03%

*We use an interest rate of 3% to calculate the present value of earnings.

*Variance of the unpredictable component of earnings between age 18 and 65

as predicted at age 18.

**So we would say that the variance of the unpredictable component of lifetime college
earnings when the information set is X ={f1, 05} is (1-0.6513)*290.84



Table

Agent’s Forecast Variance of Present Value of Earnings™
Under Different Information Sets - NLS /1966

Var(Y,) Var (Yy) Var(Y.-Y)
For lifetime:

Total Residual Variance 259.46 96.84 221.54
Share of Total Variance due to Forecastable Components 66.99% 78.46% 51.92%
Share of Total Variance due to Unforecastable Components 34.01% 21.54% 48.08%

*We use a rate of intertemporal preference p of 3% to calculate the present value of earnings.



Table

Agent’s Forecast Variance of Present Value of Earnings™
Under Different Information Sets - NLSY /1979

Var(Y,) Var (Yy)
For lifetime:
Total Residual Variance 290.84 103.13
Share of Total Variance due to Forecastable Components 65.13% 55.94%
Share of Total Variance due to Unforecastable Components 34.87% 44.06%

Var(Y.-Y)

334.02
56.04%
43.94%

*We use a discount rate p of 3% to calculate the present value of earnings.



Table

Total Variance, Share of Total Variance due to Forecastable Component and Share of Total Variance due to
Unforecastable Component for Different Values of the Rate of Intertemporal Preference

White Males - NLS/1966

White Males - NLSY/1979

Total Variance

Total Variance

Schooling Group 2% 3% 4% 5% 2% 3% 4% 5%

College 4344680  259.4621  163.2094  107.0043  480.4024  290.8390  185.6628  120.8971
High School 149.1453 96.8433 67.6655 50.1924 158.1050  103.1273 71.7999 53.0408
Returns 342.4546 221.5384 151.7765 110.2629 481.3866 334.0230 239.6592 171.7202

Share of Total Variance due to Forecastable

Share of Total Variance due to Forecastable

Component Component
Schooling Group 2% 3% 4% 5% 2% 3% 4% 5%
College 0.6860 0.6513 0.6520 0.6310 0.6793 0.6513 0.6224 0.5842
High School 0.8069 0.5594 0.7622 0.7342 0.6169 0.5594 0.5079 0.4605
Returns 0.5176 0.5604 0.5198 0.5209 0.5541 0.5604 0.5600 0.5406

Share of Total Variance due to Unforecastable

Share of Total Variance due to Unforecastable

Component Component
Schooling Group 2% 3% 4% 5% 2% 3% 4% 5%
College 0.3140 0.3487 0.3480 0.3690 0.3207 0.3487 0.3776 0.4158
High School 0.1931 0.4406 0.2378 0.2658 0.3831 0.4406 0.4921 0.5395
Returns 0.4824 0.4396 0.4802 0.4791 0.4459 0.4396 0.4400 0.4594

Let Y;: denote the real earnings in schooling group s at period t. Let C' denote the psychic costs of attending
college. Let Z denote the information set of the agent at the time of the schooling choice. An agent decides to go

to college if, and only if:
24
Yi:— Y
I=E(Y ———L-0C|T] >0
(1+p)

t=1
where p is the intertemporal rate of preference. In this table we show total variance of Y+, and the share of the
total variance due to the variance of forecastable (but unobservable) components of Y, and the share of the
total variance of unforecastable components of Y; ; for different values of p.




Table

Total Variance, Share of Total VVariance due to Forecastable Component and Share of Total Variance due
to Unforecastable Component for Distinct Lower Bound on Observable Earnings*

White Males - NLS/1966

White Males - NLSY/1979

Schooling Group
College

High School
Returns

Schooling Group
College

High School
Returns

Total Variance

U$500.00 U$2,500.00 U$5,000.00
231.1051 259.4621 230.4558
89.4809 96.8433 83.8973
202.6363 221.5384 198.0082

Share of Total Variance due to
Forecastable Component

U$500.00 U$2500.00 U$5,000.00
0.6284 0.6699 0.6316
0.7574 0.7847 0.7540
0.4690 0.5193 0.4670

Share of Total Variance due to
Unforecastable Component

Total Variance

U$500.00 U$2500.00 U$5,000.00
293.6141 290.8390 290.5154
104.1163 103.1273 102.8044
340.0533 334.0230 331.0939

Share of Total Variance due to
Forecastable Component

U$500.00 U$2,500.00 U$5,000.00
0.6586 0.6513 0.6472
0.5637 0.5594 0.5572
0.5716 0.5604 0.5530

Share of Total Variance due to
Unforecastable Component

Schooling Group  U$500.00 U$2,5500.00 U$5,00000 U$500.00 U$2500.00 U$5,000.00
College 0.3716 0.3301 0.3684 0.3414 0.3487 0.3528
High School 0.2426 0.2153 0.2460 0.4363 0.4406 0.4428
Returns 0.5310 0.4807 0.5330 0.4284 0.4396 0.4470

Let 1757,1 denote the (cpi-adjusted, base year 2000) earnings of a person with schooling s and age a. The index s
takes on two values: s € {0,1} where s = 0 denotes a high-school graduate and s = 1 denotes a college graduate
agent. The index t takes on values in the set t € {1,2,...,24}. Let p denote the rate of intertemporal preference.
When ¢t =1 we define Y; ; as:

- Y 10
Y1 =Y 18+ T+ p)
When ¢ = 2 we define Y 5 as:
V., — Y/’3720 ?9,21
T (1+p)? (14p)

In general, we define Y ; as:

_ Y 18420—1) Y, 1042(t—1)

In our empirical work we drop observations for which Yj ; is less than the earnings of a person who works part time
for 50 weeks and receives a wage rate which corresponds to half minimum wage. This value is around U$2, 500.00
in dollars of 2000. In this table, we check the robustness of our results by considering two alternative values for
lower bound earnings: U$500.00 and U$5, 000.00.

s,t



Table

Share of Total Variance due to the Unforecastable Component According to Different
Methodologies

NLS/1966 NLSY/1979
College High School College High School
Two-Factor Model 0.3401 0.2154 0.3487 0.4406
Fixed Effect Model - Earnings 0.3326 0.3466 0.3951 0.4422
Random Effect - Earnings 0.3996 0.4513 0.4633 0.5183
Fixed Effect Model - Log Earnings 0.3349 0.3483 0.3845 0.3917
Random Effect - Log Earnings 0.4048 0.4402 0.4502 0.4701

Let Y, ; denote present value at age 18 of real earnings in schooling level s at period t. Let p,, (X) denote the mean of
Y, +. We model Y ; as:
}/s,t = ,Ufs7t (X) + as,tel + 6s,t92 + Es,t

Consequently, the total variance of present value of lifetime earnings in schooling level s, Vj, is:

24 24 2 24 2 o
Vo ar (v 00) = (o) o (S0 ) 4302,
t—1 t—1 t—1

t=1

Because we estimate that the agent knows both factors 6, and 05 at the time of the schooling choice, the share of the total
variance that is due to the unforecastable component is x5 where:

24 2
t=1 UEs,t

2 2
9 24 9 24 24 o
09, ( t=1 O‘s,t) + 0, ( =105t ) T2y Oz, :

In row one, column one, we report zo for college for the two-factor model that we estimate in this paper.
For the fixed effect models we assume that the fixed effect is known at the time of the schooling choice and that the rest
of the residuals are unknown by the agent at the time of the schooling choice. So we model earnings (or log earnings) as:

T =

Yii = i+ Brage + Baage® + Bzage® + Biage’ + vi + uq g

where p (age) is a polynomial of degree four in a. Let 02 denote the variance of the fixed effect, let Uit denote the variance

of the innovations in income, which we also assume is i.i.d over time and across agents. The total variance is, consequently,
Vig =02+ 012“. The share of total variance due to unforecastable component is, consequently,

2

Ir3 = —aut
42 2
01) + O—ut

We proceed in the same way for the random effects models.





