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Abstract

This paper analyzes the equilibrium trading strategies of informed traders in
the presence of market closures defined as periodic predictable stops of trading.
We construct a dynamic auction model based on rational strategic behavior with
asymmetric information across the agents. Empirical evidence indicates that market
closures have important impact on the information structure of financial markets,
in particular the private information flow. In our model, the insiders repeatedly
increase their informational advantage over other agents by receiving private signals
about fundamentals when the market is closed. In a continuous-time setting, we
solve a dynamic programming problem and derive closed-form solutions for optimal
intertemporal strategies of both insiders and the market maker. The key feature of
insiders’ optimal strategy is that they act strategically by anticipating future market
closures. Because of this, even though market closures are periodic, the intertemporal
pattern of optimal trading strategies is not periodic. This aperiodicity of trading is
quite important since while it is a definitive feature of the data, it has been missing
from the existing theoretical literature on market closures. In agreement with broad
empirical evidence, we obtain a U-shaped pattern of trading volume during the periods
when the market is open, superimposed on a U-shaped pattern during the lifetime of
the economy, before all information about the asset is revealed.
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1 Introduction

There exists strong empirical evidence that market closures have an important impact on

the information flow in financial markets (see e.g. French and Roll (1986), and Ito, Lyons

and Melvin (1998)). In particular, private information obtained when the market is closed

plays an important role in the trading process. This paper analyzes the consequences of the

information structure imposed by market closures on several characteristics of the market,

such as the aggregate trading intensity, trading volume, and market uncertainty.

Specifically, we construct a dynamic auction model based on rational strategic behavior

with asymmetric information across different informed agents. There are three agent types

in our model: the risk-neutral market maker (MM), insiders (informed traders), and liquidity

(noise) traders. The market maker observes aggregate demand and sets price in a regret-

free way. The informed traders strategically compete with each other to maximize their

total profits. They do not know the fundamentals exactly, but learn about them through

private signals. Price conveys information about the fundamentals, complementary to each

of the informed traders’ private information. For this reason, the informed traders’ optimal

strategies are conditioned on both private signals and the price.

We assume that when the market is closed, insiders keep receiving information about the

fundamentals via their private signals, while the information set of the MM does not change.

This allows informed traders to repeatedly increase their informational advantage over the

MM. The effect of increasing information asymmetry during market closures is consistent

with empirical evidence.1 To emphasize this effect, we further assume that the insiders

receive their private signals only during the periods when the market is closed.

To fully characterize the information and trading dynamics in such a setting, one must

have a suitable technical understanding of how the informed traders compete when they are

differentially endowed with private information which they repetitively upgrade over time.

They must learn from past and current prices, fully recognizing that those prices reflected

1The evidence comes from the introduction of trading in Tokyo over the lunch hour. Ito, Lyons and
Melvine (1998) find that lunch-return variance doubles with the introduction of trading, which cannot be
due to public information since the flow of the public information did not change with the trading rules.
They try to discriminate between the two alternatives: mispricing and private information and show that
their evidence is broadly in favor of the private information inflow.
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both the information of other traders and their attempts to learn from others. The informed

traders must literally learn how to ‘forecast the forecasts of others’. As the history grows,

the nature of this forecast problem becomes overwhelming, seemingly requiring an infinite

dimensional belief space. This problem alone has long proven a major roadblock in solving

intertemporal trading models with differential information. On top of that, informed traders

in our model receive multiple private signals and we must further determine how intensively

they should trade on each private signal and the price. In this paper we develop a method

to solve the above problem in our setting. Our method is quite effective, and allows to

characterize the problem of optimal private information aggregation analytically. It also

leads to a very intuitive solution for equilibrium, with full analytical solution available in the

case of two informed traders.

The new information arrival and the strategic competition among informed traders are

most crucial components of our model. When combined together, they give rise to several

important results. First, the anticipated arrival of new information causes the strategic

informed traders to use the old information more freely and, therefore, to compete more

fiercely against each other than in the case of no market closures (see Back, Cao and

Willard (2000), henceforth BCW, for comparison). For example, in contrast to the results

of BCW, we find that in an economy with closures, two informed traders with uncorrelated

signals typically trade more intensively than a monopolist trader with the same aggregate

information.

Second, by increasing the competition among insiders, the dynamic injection of new

information facilitates more efficient information transmission into prices. As a result, the

model predicts a reduction in return volatility as compared to when market closures are

absent. This is consistent with the empirical observations of French and Roll (1986) and Ito,

Lyons and Melvin (1998).

Finally, our model predicts a rich aperiodic temporal U-shaped pattern in trading volume

between each opening and closure.2 This is one of the empirical stylized facts associated with

market closures.3 This aperiodicity of trading is quite important since while it is a definitive

2Our model is flexible enough to allow for combined daily and weekly closure intervals.
3See, for example, Chan et. al. (1996) and Jain and Joh (1988).
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feature of the data, it has been missing from the existing theoretical literature on market

closures. It arises quite naturally in our model due to the fact that informed traders act

strategically by anticipating the future information inflows in their strategies. The intuition

is quite transparent. Every time the market reopens, it briefly enters the so-called “rat

race” phase.4 During this phase, imperfectly informed insiders, who have not yet learned

much from the price process about other insiders’ information, compete and trade very

aggressively, trying to quickly make use of their new private information. At later times,

the price reflects more of the informed traders’ private information. Each informed trader

can make a better inference of the other private signals. At this stage, the informed traders

have an incentive to trade less, in order not to reveal their own information. Therefore,

trading intensity subsides during this phase. However, as the market approaches the time of

closure, insiders once more have an incentive to increase their trading intensity to make use

of their current private information. Altogether these leads to the U-shaped trading volume

and since informed traders act strategically, the actual shape of this U-shape varies across

openings.

Our paper essentially contributes to two areas of the market microstructure literature:

trading in the presence of market closures and imperfect competition among informed

traders.5 There exists a rich theoretical literature that uses both strategic6 and competitive

settings to study the effect of market closures on trading and prices. Foster and Viswanathan

(1990) examine a variation of a Kyle (1985) model with market closures. In their model, a

closure allows private information to accumulate, altering the amount of adverse selection in

the market and, thus, the equilibrium price process. While our model shares this feature with

Foster and Viswanathan (1990), the crucial difference in our model is that we have multiple

informed traders competing for profits, while Foster and Viswanathan consider a monopolist

informed trader. In order to generate a time-varying trade pattern, they assume that there is

a noisy public signal at the end of each trading period that reduces the information advantage

4See Foster and Viswanathan (1996) and BCW.
5The dynamic arrival of the new private information is what separates our paper from the work Holden

and Subrahmanyam (1992), Foster and Viswanathan (1996), and BCW on the imperfect competition among
insiders.

6This literature has been pioneered by Admati and Pfleiderer (1988, 1989) who, while not directly
addressing market closures, analyze how investors’ discretion in timing their liquidity trade can lead to
the endogenous concentration of trades and price changes.
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of the informed trader and makes him trade more aggressively than in Kyle (1985). The

downside of such a setting is that while private information is long-lived, it gets attenuated

quickly. In fact, an informed trader uses only the next day when choosing how much of her

private information to carry forward in maximizing profits. Monday trades have no impact

on Thursday trades, for instance. In our model, the private information is long-lived, in that

each informed trader maximizes her expected profits over all trading periods until the public

announcement date. Therefore, trading activity around market openings and closings is

related in our model to both past and future openings and closings of the market. Moreover,

our model allows for a closed form solution, while in Foster and Viswanathan (1990) only a

numerical solution is possible.

Hong and Wang (2000) study trading patterns implied by periodic market closures in the

economy with heterogeneously informed agents. In their model the better informed investors

also receive additional information during market closures. Consequently, investors optimally

adjust their trading strategies during the trading period in anticipation of the following

market closures, which gives rise to time variation in equilibrium returns. However, Hong

and Wong (2000) and others7 consider competitive market setting. That is, informed agents

are individually small price takers who ignore the price impact of their trades. Assuming that

agents are informationally small circumvents individual strategic behavior, as agents do not

have to trade off profit-taking against information release. This is the key difference between

these models and ours, as we focus on the effect of the strategic competition among informed

traders in the presence of market closures. The strategic behavior plays a crucial role in our

model in generating aperiodic trading patterns, even for periodic market closures. That is,

while the optimal trading strategies remain U-shaped in every period when the market is

open, the quantitative structure of this U-shape changes systematically across periods. This

finding is, for instance, in sharp contrast with Hong and Wang (2000) who obtain strictly

periodic solution when market closures are periodic.

Methodologically, our paper is related to Taub, Bernhardt, and Seiler (2005), henceforth

TBS. They also develop a method for analyzing informed trading when agents possess

7In the partial equilibrium model Brock and Kleidon (1992) point out the link between time-variation in
market activity and closures. Slezak (1994) examines the impact of closure on equilibrium returns using a
noisy rational expectation equilibrium setting.
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long-lived private information about a firm’s value and have repeated access to new

information over time. In their model, every time period insiders receive heterogeneous

private information through infinite sums of AR(1) processes. The firm may be liquidated

at any time with a given probability, but the firm is liquidated at the prevailing market price

and, therefore, the true value of the firm is never revealed. Such a stationary structure of

the economy allows TBS to map informed agents optimization problems into the frequency

domain. In the frequency domain they can use standard variational methods to find the

optimal policy function. Essentially, they convert their problem, that has to be solved using

conditional information, into an unconditional optimization problem. The whole problem

then reduces to an Euler equation which takes the form of a Wiener-Hopf equation, which

TBS solve to obtain optimal trading strategies.

There are several key differences between our model and that of TBS. First, we consider

market closures and their effect on strategies of informed traders and TBS do not. Second, in

the model of TBS informed traders both receive new information and trade every period. In

our model, informed traders can trade continuously between signals which allows for much

more of the informed traders’ private information to be incorporated in the price between

signals. As a result, our model features the “waiting game” phase of the market, when

informed trading temporarily subsides.8 This feature of the informed trading is missing

from the model of TBS. Third, in our model, the value of the asset is fully revealed at some

pre-specified future date, thus rendering all past private information useless. As a result,

we have to solve the non-stationary optimization problem. As a consequence, the solution

method developed in TBS is not applicable in our case since the Wiener-Hopf equation

can be derived only for stationary problems. Thus, we develop an alternative approach for

analyzing informed trade with dynamic information acquisition. We formulate the problem

of insiders recursively. We then show that the optimal trading strategy for each informed

trader should involve the linear combination of the current and past signals up until the

current time period. In equilibrium, the weights of this linear combination are chosen by the

informed traders in order to optimize their expected payoffs and can be defined explicitly.

The rest of the paper is organized as follows. The set-up of the model and the derivation

8See Foster and Viswanathan (1996) for more details.
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of optimal trading strategies are presented in Section 2. The optimization problem of

informed traders with market closures is formulated and solved in Section 3. The comparative

dynamics and the implications of the model on the intensity of trading and on the distribution

of payoffs across the informed traders are considered in Section 4. We conclude in Section 5.

2 The model

We consider an economy in which a single risky asset is traded in the financial market

over the time period [0, T ). There are three types of risk-neutral agents in the economy:

N ≥ 1 informed traders, the market maker (MM), and a number of uninformed liquidity

(“noise”) traders. Informed traders trade continuously when the market is open. MM

observes the aggregate order of informed and liquidity traders and sets the asset price, P (t).

The cumulative order of the liquidity traders per one insider is equal to u(t) = σuZ(t), where

Z(t) is a standard Wiener process. The risk-free rate is set to zero.

We assume the financial market is closed periodically, and that there are a total of K-1

closures and K openings before the true value of the asset is revealed at t = T . We will

use tok with k = 0, ..., K − 1 to indicate the time of k-th opening and let O =
K−1∪
k=0

Ok, where

Ok = {t : t ∈ [tok, t
c
k)}, denote the set of all times when market is open. Analogously, we will

use tck with k = 0, ..., K − 2 to indicate the time of k-th closure and let C =
K−2∪
k=0

Ck, where

Ck =
{
t : t ∈ [tck, t

o
k+1)

}
, denote the set of all times when market is closed. We will also use

a subscript k throughout the paper to indicate that a parameter has a value specific to the

k-th opening and closure. Note that our model is not limited to this “equidistant” choice

of trading and non-trading intervals. Since we are focusing on the trading process, we will

consider all quantities as a function of the “event time” when the non-trading periods are

omitted. However, we will take into account the changes of the informed traders’ information

sets during the non-trading periods. This does not lead to any loss of generality and is merely

a convenient notation.

We construct the private information acquisition of informed traders as follows. At t = 0

as well as during each period when the market is closed, t ∈ Ck, each informed trader i

receives a private signal, Sk
i . Informed traders receive no private signals when the market

is open. The true value of the asset is revealed at T. By using this structure, we capture the
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important fact that there exists a potentially large inflow of information independent of the

organizational structure of the financial market: investors keep receiving private information

about assets when the market is closed and all trading activity is suspended. This complete

separation of periods of private information acquisition from trading periods enables us to

investigate the essential effect of market closures on trading activity while allowing for closed-

form analytic solutions of the optimal strategies.9 Moreover, these assumptions together with

the fact that the liquidation value of the asset is fully revealed at T imply that, contrary to

the case considered by TBS, we are dealing with a non-stationary problem.

The next set of assumptions highlights the informational structure of our model. At

initial moment t = 0, there is a random draw of the fundamental value V of the asset from

the normal distribution with mean zero and variance σ2
s. We assume that the private signals

at time tk (k = 0, ..., K − 1) are given by

Sk
i = V + σs

(
εk

i −
1

N

N∑
j=1

εk
j

)
, (1)

with εk
i ∼ N (0, 1) being uncorrelated for different time periods, and correlated in the cross-

section

corr(εk
i , ε

k
j ) = ρ, (∀k = 0, ..., K − 1, i 6= j) , (2)

corr(εk
i , ε

k′
j ) = 0, (∀i, j, ∀k = 0, ..., K − 1, k′ = 0, ..., K − 1, k 6= k′) .

Assumption (1) implies, in the spirit of Kyle (1985) and analogous to BCW, that the

arithmetic mean of the signals obtained by all insiders during every closure period, does

not change with time and equals the fundamental value

V =
1

N

N∑
j=1

Sk
j , k = 0, ..., K − 1, (3)

and that the relation (3) is satisfied for each closure period. To make the information

structure analogous to BCW, we also assume that the informed traders’ as well as the

market maker’s valuations before the private signals at t = 0 are observed is given by

V ∼ N (
0, φσ2

s

)
, (4)

9When this assumption is relaxed, the model can still be solved numerically. However, this would not
change the main conclusions.
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where

φ =
1 + (N − 1) ρ

N
. (5)

From the definition (1), it follows that the conditional marginal distribution of the private

signals obtained at the period k is given by

Sk
i |V ∼ N (

V, (1− φ) σ2
s

)
, k = 0, ..., K − 1, (6)

with

cov(Sk
i 6=j, S

k
j |V ) = (ρ− φ) σ2

s, (7)

var(Sk
i |V ) = (1− φ) σ2

s,

as well as that, conditioned on V , private signals are i.i.d. across time. Combining (4) and

(7), we obtain for the unconditional correlations of the private signals

corr(Sk
i6=j, S

k
j ) = ρ, (8)

which is also analogous to the BCW setting. The details of the calculation are provided in

Appendix A.

The prior distribution (4) is a common knowledge, and it is, therefore, known to the

MM. Distributions (6) and (4) determine the dynamics of the Bayesian updating process of

informed traders in our model. Appendix A provides full details of this Bayesian updating

process.

At each trading period, the MM sets P (t) to be regret-free based on her current beliefs

and the observation of the total order flow which is a function of the aggregate private

signal. As a result, informed traders may learn about the aggregate private signal from the

price while not being able to observe it directly. Therefore, in contrast to BCW, informed

traders in our model update their information set over time using two independent but

complementary sources: by learning about the aggregate signal from the price P (t) during

periods when the market is open, and also by learning from their own private signals during

the market closure periods.10 This is an important feature of our model since it makes the

10The first feature is essentially present in the standard Kyle (1985) model. However, in Kyle (1985) and
further work based on it, (e.g. Holden and Subrahmanyam (1992) and BCW), the combined impact of both
sources of learning has not been addressed.
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learning process of insiders more efficient than that of the MM, who can only update her

beliefs at times when informed trade occurs. The more efficient information updating by

insiders causes their superior informativeness relative to that of the MM to be comparatively

long-lived in our model, which, in turn, has important pricing implications.

2.1 Equilibrium Strategies

To fully capture the effect of competition among informed traders on trading as well as to

obtain the results in a compact and parsimonious form, we cast the problem in a continuous

time setting. According to the above discussion, we look for the dynamic equilibrium

strategies when the i-th informed trader’s incremental demand, dxi (t), during the time

interval dt depends on her signal and the instantaneous price, P (t). As it is analyzed in

Foster and Viswanathan (1996) , such a specification allows us to avoid the problem of

“forecasting of the forecasts” which occurs when the informed traders’ strategies are based

on their valuations. On the other hand, the optimal informed traders’ strategies are expressed

in terms of the instantaneous valuations and the price at equilibrium.

Following Foster and Viswanathan (1996) and BCW, the dynamic trading strategy of

the i-th informed trader when her incremental demand dxi(t) is linear in her private signal

as well as the instantaneous price, P (t), and is given by

dxi (t) = β (t)
[
Ŝi (t)− P (t)

]
dt, (9)

where the effective private signal, Ŝi(t), is a noisy estimate of the fundamental, based on

the private signals available at the time t. In contrast to Foster and Viswanathan (1996)

and BCW, informed traders in our model receive multiple private signals at times when

the market is closed. Since taking into account both past and current signals increases

the precision of the effective signal, the optimal trading strategy for each informed trader

should involve an optimally weighted combination of the current and past signals. By

assumption, the arrival of the private signals is completely separated from the trading

process. For this reason, each insider constructs his effective signal independently of the

trading process. Therefore, the effective signals change during the market closure periods,

and remain constant when the market is open. Note that this is in a sharp contrast with
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the results of TBS, where the fundamentals receive shocks every period, leading to constant

updating of the informed traders’ information sets.

For that reason, the effective signal at period t ∈ Ok, is given by

Ŝi (t) =
k∑

l=0

al,kS
l
i, (10)

where the weights {al,k, l = 0, ...k}, are chosen by informed traders to maximize the precision

of their effective signals and will be derived in equilibrium in the next section. It will also be

shown that these weights satisfy the normalization condition
∑k

l=0 al,k = 1. Note that at each

closure period k = 0, ..., K, the informed traders update all the weights {al,k, l = 0, ...k}.
Therefore, the weights are different during different periods when the market is open.

The MM observes the total incremental demand per one informed trader

dy (t) =
1

N

N∑
i=1

dxi (t) + du = β (t) [V − P (t)] dt + σudZ, (11)

where we have used that
1

N

N∑
i=1

Ŝi (t) = V

k∑

l=0

al,k = V. (12)

Let F ≡{F(t) : t ∈ O} denote the filtration generated by y(t) and set P (t) = E[V | F(t)].

We interpret F as the MM’s information structure. Analogous to BCW, the market maker’s

uncertainty ΣM (t) and the price are revised according to

d

(
1

ΣM (t)

)
=

β (t)2

σ2
u

dt, (13)

and

dP (t) = λ (t) dy (t) , (14)

where the inverse market depth parameter is given by

λ (t) =
β (t)

σ2
u

ΣM (t) . (15)

At time t = 0, the market maker starts with

ΣM (0) = φσ2
s,

P (0) = 0.
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Next we need to make a similar analysis of the information structure of informed traders.

Let P (t) denote the solution (assumed to exist) of equation (14). The informed trader i

observes P (t) and her effective signal Ŝi(t). Let Fi≡{Fi(t) : t ∈ O ∪C} denote the filtration

generated by P (t) and Ŝi(t), and set Vi(t) = E[V | Fi(t)]. This is the informed trader’s

information structure. Analogous to BCW, we obtain that each insider’s residual uncertainty

Σi(t) and valuation Vi(t) are described by the processes

d

(
1

Σi (t)

)
=

β (t)2

σ2
u

dt, (16)

and

dVi =
β (t) Σi

[
1

λ(t)
dP (t) + β (t) (P (t)− Vi (t)) dt

]

σ2
u

. (17)

At time t = 0 informed trader i starts with

Σi (0) = (1− φ) φσ2
s = (1− φ) ΣM (0) , (18)

Vi (0) = φS0
i .

The revision processes for both MM’s and the insiders’ information sets follow immediately

from an application of the Kalman-Bucy filter (see Lipster and Shiryaev (2000)).

Note that (18) describes the i-th informed trader’s best estimate of the aggregate signal,

as has been pointed out by Foster and Viswanathan (1996) and BCW. If the informed

trader is perfectly informed, i.e. φ = 1, then Σi(0) = 0. The factor φ measures, therefore,

the initial informativeness of the informed trader relative to the MM. Making use of the

characterizations for the informed trader’s strategy and the price process given above, we

obtain

dP (t) = λ (t) {β (t) [V − P (t)] dt + σudZ (t)} , (19)

and

dVi(t) = [1− δ (t)] λ (t) {β(t) [V − Vi(t)] dt + σudZ (t)} , (20)

where the information spread parameter δ (t) = 1 − Σi(t)
ΣM (t)

characterizes the information

asymmetry between the MM and the informed traders. From (18), we obtain

δ (0) = φ, (21)
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analogous to BCW. It follows from (13) and (16) that both price and the informed trader’s

valuation approach the true value V as time increases. This reflects the fact that the informed

traders and the MM learn about the fundamentals over time. As we will see below, the

individual rates of learning may depend on time in a complex way.

2.2 The Effective Signals

Comparing equations (13) and (16), one can see that the MM’s and the informed trader’s

learning processes are equally efficient when the market is open and the informed traders do

not receive any private signals. However, the MM’s beliefs have less precision at the market

re-opening periods, since the MM observes the aggregate demand but does not receive a

private signal. The MM’s information set depends on the liquidity parameter β(t), which has

to be defined in a self-consistent way by optimizing the informed trader’s expected payoffs.

Since, by assumption, the MM does not learn during the closure periods, the market maker’s

uncertainty ΣM (t) is continuous across the closures

ΣM (tck) = ΣM

(
tok+1

)
, k = 0, ..., K − 2. (22)

Since the informed trader is learning from both the price process and the private signals, one

should expect that her valuation can be expressed in terms of these two quantities. These

relations are formalized in Proposition 1 below.

Proposition 1 The proposition consists of three main results.

1. If we define the relative valuation of the i-th informed trader as

V̂i(t) ≡ Vi(t)− (1− δ) P (t), (23)

then

dV̂i(t) = −k (t) V̂i(t)dt, (24)

with k (t) = [1− δ (t)] λ (t) β (t).

2. The informed trader’s valuation Vi (t) after the market reopens at t = tok is related to

the price and the effective private signal by

Vi (t) = [1− δ (t)] P (t) + δ (t) Ŝi (t
o
k) , t ∈ Ok, (25)
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where the effective signal is defined recursively by

Ŝi

(
tok+1

)
= µk+1Ŝi (t

o
k) +

(
1− µk+1

)
Sk+1

i , (26)

with

µk+1 =
1− δ

(
tok+1

)

1− δ (tck)

δ (tck)

δ
(
tok+1

) , (27)

and the initial condition

µ0 = 0. (28)

3. The dynamics of δ (t) are described by the ODEs

d

dt
δ (t) = −δ (t) [1− δ (t)] λ (t) β (t) , t ∈ Ok, ∀k, (29)

1

1− δ
(
tok+1

) =
1

1− δ (tck)
+

ΣM (tck)

(1− φ) σ2
s

, ∀k.

Proof: See Appendix B.

Note that the second equation in (29) describes the dynamics of δ(t) due to the private

learning process. If the private learning is absent, the dynamics of δ(t) are fully described by

the first ODE in (29), and the information asymmetry is a monotonically decreasing function

of time. In the presence of private learning, δ(t) increases during the market closure periods

due to the private learning and thus is no longer a monotonically decreasing function of

time. This makes the temporal pattern of δ(t) non-monotonic in our model. Therefore,

the information asymmetry decreases when the market is opened and increases during the

market closure periods. This result has a simple intuition. Namely, the informed trader’s

valuation is based on both the price process and her private signal. From equation (25), it

is clear that the information asymmetry parameter δ(t) characterizes the relative weights of

each of these two factors. During the periods when the market is open, the price process

acquires more weight in the informed traders’ information sets and therefore the asymmetry

δ(t) should decrease. By the same argument, δ(t) should increase during the market closure

periods, when the informed traders only learn from the private signals. As we will see below,

this is the key reason for the increasing trading activity after the market re-openings.

After the market reopens at tok, the trading strategies for the period Ok are characterized

by
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Corollary 1 The trading strategy of the i-th informed trader during the k-th market

opening is

θi (t) = β (t)
[
Ŝi (t

o
k)− P (t)

]
=

β (t)

δ (t)
[Vi (t)− P (t)] . (30)

Proof. Immediately follows from (25).

The dynamics of the asymmetry parameter δ(t) are characterized by the following

proposition.

Proposition 2 The information asymmetry δ (t) satisfies

1

δ (t)
= 1 +

(1− φ) σ2
s

(k + 1) ΣM (t)
, t ∈ Ok, k = 0, ..., K − 1. (31)

Proof: See Appendix B.

With the help of Proposition 2 we can now fully characterize the weights of the effective

signal, al,k.

Proposition 3 The weights of the effective signal are given by

al,k =
1

k + 1
, l = 0, ...k. (32)

Proof: See Appendix B.

Equation (32) implies that all optimal weights for the signals obtained at different times

enter with equal weights into the effective signal. This is a consequence of the fact that

all private signals obtained by each insider are drawn from the same distribution, and is

consistent with the result that the equally-weighted average is the optimal linear unbiased

estimator of the fundamental. At the same time, as it follows from (25), the insider’s

valuation also involves the factor related to the information asymmetry which exhibits non-

monotonic and non-periodic dynamics over the different market closure periods. This is in

sharp contrast to the model of TBS, where a stationary time structure of the information

inflow has been assumed.

Now, we are in a position to formulate and solve the dynamic optimization problem for

the informed traders.

14



3 Dynamic Optimization and Equilibrium

We start by defining the set of feasible trading strategies for informed traders. We define

a trading strategy θi to be feasible for trader i if there exists a unique solution P (t) to the

stochastic differential equation (19) for the given λ and for the given β that characterize the

other traders’ strategies and if

lim
t→T

P (t) exists a.s., (33)

T∫

0

θi(t)dt exists a.s., (34)

and

E




T∫

0

P 2(t)dt|V

 < ∞. (35)

These limits define, respectively, the price and number of shares held by trader i just before

the announcement. Condition (35) is the “no doubling strategies” condition introduced in

Back (1992).

Making use of Propositions 1 and 2, we can analyze the optimal trading intensity for the

informed traders which characterize their optimal strategies. Proposition 4 below summarizes

these results.

Proposition 4 The Bellman equation for the informed trader’s value function

π (P, t) = max
θ(t)

{
Et

[∫ T

t

dt′θ (t′) [Vi (t
′)− P (t′)]

]}
, (36)

is given by

max
θ

{(
∂

∂t
+ Lθ

D

)
π (P, t) + θ [Vi − P ]

}
= 0, (37)

where the optimization is over the set of feasible strategies and the Dynkin operator is defined

by

Lθ
D =

[
λβ

(
V − 1

N
Ŝi − N − 1

N
P

)
+

1

N
λθ

]
∂

∂P
+

1

2
λ2σ2

u

∂2

∂P 2
.

Proof: See Appendix B.

Analogous to BCW, the equilibrium solution exists if

1

N

∂π

∂P
=

[P − Vi]

λ (t)
. (38)
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Making use of (38) and partially differentiating (37) with respect to P yields

(P − Vi) η + β

(
Vi − 1

N
Ŝi − N − 1

N
P

)
− β

(
N − 1

N

)
(P − Vi) = 0, (39)

where η (t) = d
dt

(
1

λ(t)

)
. Combining (39) and (25), we finally obtain the dynamics of the

inverse market depth parameter λ (t) summarized by Proposition 5 below.

Proposition 5 When the optimal strategies are exercised, the dynamics of the market

depth parameter are described by the ODE

d

dt

(
1

λ (t)

)
=

(
2N − 1− 1

δ (t)

)
β (t)

N
, (40)

and

lim
t→T

ΣM(t) = 0. (41)

Proof: See Appendix B.

An equilibrium with market closures is defined as follows.

Definition 1 An equilibrium with market closures is a set of {βk(t), λk(t)}K−1
k=0 that are

continuous on t ∈ [0, T ) and continuously differentiable on t ∈ O, with βk and λk positive

∀k, and which satisfy (i) P (t) = VM(t) for all t, and (ii) the trading strategy (30) is feasible

and maximizes the expected profits of the informed trader given by (36) over the set of feasible

strategies.

We would like to note that the continuity of {βk(t)}K−1
k=0 and consequently the inverse

market depth {λk(t)}K−1
k=0 across the closures is the dominating strategy for the informed

traders.11 The intuition behind this is simple. According to (47) the inverse depth of

the market depends on the amount of information in the order flow, which depends on the

amount of information outstanding measured by ΣM and the trading intensity of the informed

traders measured by β. Suppose that the informed traders increase their trading intensity

βk after they receive new signals over the market closure period Ck, βk(t
o
k) > βk(t

c
k−1).

This would increase λk and, consequently, the informed traders’ expected payoffs in a short

run. However, the greater intensity of trading would lead to greater learning by the market

and faster declining ΣM . Consequently, the expected profits of the informed traders would

decline more in a long run than in the case of continuous βk. Overall, the extra long-run

11The proof is available from the authors upon request.
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expected profit losses from increasing βk during the market closure outweigh the short-run

expected profit gains from this strategy. Therefore, the informed traders are better off by

not “tipping” their hands early and keeping βk continuous over the market closures.

We put some extra structure on market closures by denoting the durations of the periods

when the market is open or closed as τ and ∆τ , respectively (see Figure 1), so that

tok = k(τ + ∆τ), (42)

tck = tok + τ = k(τ + ∆τ) + τ .

As we have discussed above, we use the event time, which formally leads to ∆τ = 0. Our

solution is obtained by solving the ODE (40) with the help of Propositions 1, 2, and 4.

Theorem 1 If there are multiple informed traders (N > 1), there is a unique linear

equilibrium. Set ΣM (0) = φσ2
s and define the constants {Ck}K−1

k=0 as follows

Ck =
1

τ

∫ rk+1

rk

x2(N−2)/N exp

[
− 2x(1− φ)

Nφ (k + 1)

]
dx, k = 1, ..., K − 2, (43)

with

C0 =
1

τ

∫ r1

1

x2(N−2)/N exp

[
−2x(1− φ)

Nφ

]
dx, (44)

and

CK−1 =
1

τ

∫ ∞

rK−1

x2(N−2)/N exp

[
−2x(1− φ)

NφK

]
dx, (45)

where rk = ΣM(0)/ΣM(tok). The constants {Ck}K−1
k=1 and {rk}K−1

k=0 are defined by the recursion

relations

Ck = Ck−1 exp

[
2rk(1− φ)

Nφ

(
1

k
− 1

k + 1

)]
.

For each t ∈ Ok, k = 0, ..., K − 1, define ΣM (t) as

∫ r(t)

rk

x2(N−2)/N exp

[
− 2x(1− φ)

Nφ (k + 1)

]
dx = (t− tok)Ck, (46)

with r (t) ≡ ΣM (0) /ΣM (t), and define ΣM (t) = ΣM (tck) for each t ∈ Ck, k = 0, ..., K − 1.

The equilibrium is {βk(t), λk(t)}K−1
k=0 , where

βk(t) = σu (Ck)
1/2

(
ΣM (t)

ΣM (0)

)(N−2)/N

exp

[
(1− φ)

Nφ (k + 1)

ΣM (0)

ΣM (t)

]
, (47)

λk(t) = βk(t)
ΣM (t)

σ2
u

,
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for t ∈ Ok. Finally, {Ck, ΣM (tck)}K−1
k=0 is fully determined by the Proposition 5, system (46),

and the continuity of ΣM (t) across market closures

ΣM

(
tok+1

)
= ΣM (tck) , k = 0, ..., K − 2. (48)

Proof: See Appendix B.

In the case of a monopolist insider, we recover the results of Kyle (1985). The intuition

is that, in the monopolist case, the insider has the exact information of the fundamentals at

the very beginning of the trading process when t = 0, and therefore the additional signals

obtained during the closure periods are irrelevant. Therefore, the problem becomes identical

to the one considered in BCW with N = 1, which reduces to the case of Kyle (1985). This

is summarized in the corollary below.

Corollary 2 (Monopolist informed trader) Consider N = 1 and K − 1 closures.

The unique equilibrium for the monopolist is given by {βk(t), λk(t)}K−1
k=0 , where

βk(t) =
σu

σs

1√
T

1

1− t
T

, (49)

λk(t) =
σs

σu

1√
T

, ∀k = 0, ..., K − 1.

The market maker’s variance for each k = 0, ..., K, is

ΣM (t) = ΣM (0)

(
1− t

T

)
, (50)

where T = Kτ .

Proof: See Appendix B.

Analogous to BCW, the case of two informed traders in our model allows for an explicit

analytical solution. The main reason for this is that for N = 2, the integrals (46) can be

evaluated explicitly. The results for the duopoly case are presented in the corollary below.

Corollary 3 Consider N = 2. Define constants {Ak}K
k=0 and {rk}K

k=0 as follows

AK = +∞, (51)

Ak =

(
K∑

n=k+1

1

n

)−1

, k = 0, ..., K − 1,
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and

r0 = 1, rK = +∞, (52)

rk = 1 +
k∑

n=1

nφ

1− φ
ln

(
1 +

An

n

)
, k = 0, ..., K − 1.

The unique equilibrium is given by {βk(t), λk(t)}K−1
k=0 , where, in each of the intervals t ∈ Ok,

the coefficients {βk(t), λk(t)}K−1
k=0 are defined by (47), and the market maker’s variance for

each k = 0, ..., K − 1, is

ΣM (t) = ΣM (0)

{
rk +

(k + 1) φ

1− φ
ln

[(
1− (t− tok) Ak

k + 1

)−1
]}−1

, t ∈ Ok. (53)

Proof: See Appendix B.

4 Comparative Dynamics

The result (40) looks similar to the one from BCW. As we have discussed above, the key

difference is that in our case the dynamics of the asymmetry parameter δ(t) are different due

to the private signals received during market closures. In particular, δ(t) undergoes jumps

after the market re-openings due to the informed traders’ private learning over the market

closure periods. These jumps cause jumps in the aggregate trading volume.

The contribution to the trading volume of the i-th informed trader can be measured by

unconditional variance

TVi (t) = var

[
dxi (t)

dt

]
= β2 (t) var

[
Ŝi(t)− P (t)

]
, (54)

where dxi(t) is the incremental demand during the time interval dt. Since the price

increments in (19) depend on the aggregate signal 1
N

∑N
j=1 Ŝj(t) = V , and the liquidity

trades, they are unconditionally correlated with all individual signals
{

Ŝj(t)
}

. Therefore,

(54) yields

TVi(t) = β2 (t)
(
var

[
Ŝi(t)

]
+ var [P (t)]− 2cov

[
Ŝi(t), P (t)

])
. (55)

In order to evaluate (55), we will prove the following result analogous to the one obtained

by BCW.
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Corollary 4 At each time t ∈ [0, T ), the price process (19) takes the form

P (t) = ΣM (t)

t∫

0

{
1

N

N∑
j=1

Ŝj(t
′)d

(
1

ΣM (t′)

)
+

λ (t′)
ΣM (t′)

σudZ (t′)

}
. (56)

Proof: See Appendix B.

Note that (56) describes how the price accumulates the aggregate private signals of the

informed traders and the liquidity trades over time. Clearly, the private signals enter the price

linearly, but with the time-dependent weights, and the price movements are unconditionally

correlated. Since the valuation of each informed trader is based on both the effective private

signal and on the current price by (25), the current valuations can also be represented as a

linear functional of all the available private signals with the time-dependent weights.

Define an integer function

n (t) =

[
t

τ

]
+ 1, (57)

where [·] stands for the integer part of the argument. Clearly, n (t) corresponds to the number

of private signals obtained by each informed trader up until the time t. With this definition

and making use of the above corollary, we obtain the following

Corollary 5 The trading volume defined by (54) is given by

TVi (t) = T1 (t) + T2 (t) + T3 (t) , (58)

T1 (t) = β2 (t) σ2
s

φk + 1

k + 1
,

T2 (t) = −2φσ2
s

β2 (t)

n (t)

(
1− ΣM (t)

ΣM (0)

)
,

with

T3 (t) = 2φσ2
sβ

2 (t) Σ2
M (t) Π (t) ,

Π (t) =
1

n (t)

(
1

ΣM (t)
− 1

ΣM ((n (t)− 1) τ)

)
× (59)

[
1

2

(
1

ΣM (t)
+

1

ΣM ((n (t)− 1) τ)

)
− 1

ΣM (0)

]

+

n(t)∑

k=1

1

k

(
1

ΣM (kτ)
− 1

ΣM ((k − 1) τ)

)
×

[
1

2

(
1

ΣM (kτ)
+

1

ΣM ((k − 1) τ)

)
− 1

ΣM (0)

]
.
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Proof: See Appendix B.

The trading volume (58) has three different contributions. The first term in the brackets

on the right hand side of (58) reflects the amount of the trading activity when the informed

traders take opposite sides of the market. By analogy with Evans and Lyons (2002), it may be

referred to as the “inter-informed” trading volume component. Clearly, the “inter-informed”

component originates from the heterogeneity of signals across the informed traders. The

second and the third terms in the brackets on the right-hand side of (55) correspond to

the amount of trading when informed traders are mostly on the same side of the market

(“market-informed” component) and are proportional to the market uncertainty. In order

to construct a measure of the total informed trading volume using (55), one should take

into account that the “market-informed” contribution to the total trading volume from (55)

has to be multiplied by the number of informed traders N , whereas the “inter-informed”

component should not have such a factor. This is because the “market-informed” component

corresponds to the case when most the informed traders stay on the same side of the market,

as opposed to the “inter-informed” one. Therefore, the total informed trading volume is

given by

TV (t) = N

(
1

N
T1 (t) + T2 (t) + T3 (t)

)
. (60)

The measure of the trading volume (60) is consistent with the results of Evans and Lyons

(2002), where the signed order flow (the sign reflects the direction of the trade) can be

considered an appropriate measure of trading activity. This implies that the aggregate order

flow may be low just because different agents take opposite sides of the market, whereas the

trading activity may be quite substantial (due to the heterogeneous information across the

agents). Therefore, the sum of the variances of the incremental demands provides a better

measure of trading activity. Analogous to (55), the total informed trading volume (60) has

the “inter-informed” and the “market-informed” components.

To analyze the time profiles of all market parameters, we have to simultaneously solve

the ODEs (29), (31), (13) and (40) taking into account the boundary condition (41). In

particular, we obtain a closed-form analytical characterization of the equilibrium. The results

of the numerical solution are presented in Figures 2 through 9.

Figure 2 presents the dynamics of the information asymmetry parameter δ(t) as a function

21



of time for the case of five informed traders N = 5 and a correlation coefficient between the

private signals ρ equal to 0.5. We assume that there are four trading periods and, therefore,

three market closures in the economy. Clearly, the information asymmetry increases at the

beginning of each trading period, since the informed traders learn from their private signals

over the market closure periods. However, the magnitude of the change for the asymmetry

parameter is different across the closure periods and tends to decrease towards the last

trading period. The intuition is simple: the role of private learning decreases as the price

becomes more informative towards the announcement date T .

In Figure 3, we plot the dynamics of the optimal informed trading parameters β(t) for the

case of the three closures described above as a function of time and compare to the optimal

β(t) in the absence of market closures. Note that the time profile of the trading parameter

in the presence of market closures has a typical U -shape over the trading period which

is consistent with the results of BCW. As it was pointed out by Foster and Viswanathan

(1996), in the oligopolistic economy with heterogeneous signals across informed traders, the

time profiles of the optimal trading strategies can be characterized by two different phases.

For sufficiently small time intervals, the informed traders do not learn much from the price

process and are therefore trading very aggressively in an attempt to quickly make use of their

initial private information. This is called the “rat race” phase. At later times, the informed

traders learn more from the price and can make better inferences of the others’ private signals,

and therefore have less incentive to trade in order not to reveal their information. The second

stage is called the “waiting phase.” In contrast to Foster and Viswanathan (1996) and BCW,

the information inflow in our model happens at each market closure and is therefore periodic.

For this reason, one should expect that such a “two-stage” pattern occurs during each of

the trading periods. However, one should also take into account that the informed traders

strategically anticipate the future information inflows in their strategies and therefore the

U -shaped pattern described above may have significant non-periodic distortions. This is

what can be seen in Figure 3.

In Figure 4, we plot the dynamics of the trading volume defined by (60) as a function of

time for the case of five informed traders with the initial correlation coefficient between the

private signals ρ = 0.5, and compare to the optimal trading volume in the absence of market
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closures. From (60), it follows that the dynamics of the trading volume are directly related

to the dynamics of the informed trading parameter β(t). The trading volume in the presence

of the market closures exceeds the volume obtained in the case of no closures for the whole

time interval presented in Figure 4. Analogous to the dynamics of β(t), the time profile of

the trading volume in the presence of market closures has a typical U -shape over the trading

period, following the “rat race” and the “waiting” phases of the optimal trading strategies

described above. Also, the U -shape of the time profile of the trading volume has significant

distortions since the informed traders strategically anticipate the future information inflows

in their strategies.

In Figure 5, we plot the dynamics of relative trading intensity as a function of time for

the case of five informed traders and three closures described above and compare to the

relative trading intensity with no closures. Following BCW, the relative trading intensity is

defined as the ratio of the oligopolistic trading intensity defined in Corollary 1 as β(t)/δ (t),

to the optimal trading intensity of the monopolist from Kyle (1985). As one can see from

Figure 5, the relative trading intensity in presence of market closures exceeds the one with

no closures. Note that the trading intensity drops at the beginning of each trading period,

which is consistent with the results of Foster and Viswanathan (1996). The trading intensity

follows monotonically increasing patterns during each trading period, but aperiodic across

the different trading periods. Analogous to the above discussion, this non-periodicity arises

due to the strategic nature of trading combined with the decreasing role of the private signals

during the trading periods.

In Figure 6, we compare the market’s residual uncertainty, showing the ratio of ΣM(t) for

the oligopolistic and monopolistic cases, as a function of time, for the case of five informed

traders and three closures described above, and comparing to the otherwise identical case

with no closures. The relative residual uncertainty has a typical U -shape during the whole

time interval consistent with the results of BCW. As one can see from Figure 6, the relative

residual uncertainty in the absence of market closures exceeds the one with closures. This

implies that the periodic inflow of information in the heterogenous oligopolistic economy is

informationally more efficient than the “one-shot” information inflow considered in BCW.

Figure 7 presents the dynamics of the relative market depth parameter 1/λ(t) as a
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function of time, for the same case of five informed traders and three market closures,

compared to the case with no closures. As before, the relative market depth is defined as

a ratio of the oligopolistic and the monopolistic market depth parameters. The relative

market depth increases at the beginning of each trading period and decreases towards the

time horizon T . The reason for the relative market depth increasing is exactly analogous

to the one described in BCW. From Figure 7, one can see that the inverse market depth

only slightly increases during the last trading period, implying that the liquidity problems in

our model are less severe than in the case when the information inflow is non-periodic. The

intuition is simple: since the informed traders strategically anticipate the future information

inflows and have less incentive to wait, the adverse selection problem is less important.

In Figure 8, we plot the dynamics of the trading intensity as a function of time for the

case of two informed traders and different initial correlations between the private signals and

compare to the optimal trading intensity of a monopolist (Kyle (1985)). The oligopolistic

trading intensity in our model exceeds that of a monopolist over the whole range of the

initial correlations presented in Figure 8. For sufficiently short time intervals (around the

first trading period), the trading intensity is quite sensitive to the correlations, but it becomes

less sensitive after several closure periods. The intuition is that the role of initial correlations

diminishes since the informed traders learn more from the price process after several trading

periods.

Figure 9 presents the dynamics of the market depth parameter 1/λ(t) as a function of

time for the same case of two informed traders and different signal correlations. One should

note that the market depth decreases in signal correlations for short times and increases for

sufficiently long time intervals, which corresponds to the “rat race” and the “waiting” phases

of the optimal strategies, respectively.

As we discussed early, an important result of our model is that contrary to the results of

BCW, the trading intensity with oligopolistic heterogeneously informed traders is typically

higher than the one of the monopolist. This situation is illustrated in Figure 8, where we

present the ratio of the trading intensities of the two informed traders and the monopolist.

The reason for this is the same mechanism of the “adverse selection problem suppression”

due to the strategic anticipation of the future signals described above (see Figure 6).
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Finally, we study the distribution of payoffs across all agents which is important from

the perspective of welfare analysis. As usual for Kyle (1985) type models, the informed

traders are winning at the expense of the uninformed ones. The payoff distribution across

the informed traders can be analyzed analogous to BCW. For the informed trader i, the

payoff follows the process

dπi (t) = [V − P (t)] dxi, (61)

where the incremental demand dxi(t) during the time interval dt is given by (9). Making

use of equation (25) and equation (9), we obtain

E [dπi (t)] = β (t) var [V − P (t)|V ] dt = λ (t) σ2
udt. (62)

In order to analyze the dependence of the expected payoffs on the number of informed

traders, we have to re-scale β(t) → β(t)/N , according to (11). Taking this into account, we

obtain from (62) the following result.

Corollary 4 In equilibrium, the expected profit of each informed trader is

σ2
u

N

K∑

k=0

∫ tck

tok

λk(t)dt =
σ2

u

N

T∫

0

λ(t)dt. (63)

Proof: Follows immediately from (62).

The result (63) has the same form as the one of BCW, because the inverse depth λ(t)

is continuous across the market closures. One should note that the total expected gain of

informed traders is the sum of the expected profits earned during the periods when the

market is open.

5 Conclusions

This paper constructs a dynamic auction model based on rational strategic trading with

asymmetric information across agents and dynamic information acquisition. The key feature

of the model is that informed traders do not know the fundamentals exactly but repeatedly

receive imperfect private signals about the fundamentals. Learning from prices also enables

each informed trader to improve her estimation of fundamentals. Therefore, to solve for

equilibrium outcomes in such setting, one must first determine how informed traders combine
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current and past signals together with the information in current and past prices, then

determine how much they trade at each time, and finally put this all together and solve for

the associated equilibrium pricing. This is a very challenging problem which we successfully

solve in this paper.

In our model agents trade continuously and informed traders receive private information

during times when the market is closed. We characterize analytically how information

received during one market closure interacts with information from other closures. We

show that it is optimal for informed traders to use a linear combination of all of their private

signals obtained at different times as an effective signal in their optimal trading strategy. We

demonstrate that optimal weights for the signals obtained at different times enter with equal

weights into the effective signal. This is a consequence of the fact that in our model all private

signals obtained by each insider are drawn from the same distribution, and is consistent with

the result that the equally-weighted average is the optimal linear unbiased estimator of the

fundamental. At the same time, we show that the informed traders’ valuations also involve

the factor related to the information asymmetry which exhibits non-monotonic and non-

periodic dynamics over the different market closure periods. Our results indicate that the

use of private information and its revelation through price never ends: each new realization

of private information leads agents to re-interpret the history of private information as well

as prices.

While the model only analyzes the role of market closures from a purely information

perspective, it is consistent with a wealth of empirical evidence. It predicts a U -shaped

patterns for trading activity, during the periods when the market is open. We also obtain

rich aperiodic patterns for the trading volume over the whole time period, which is changing

across different periods when the market is open. This aperiodicity property of trading

activity is quite important and arises because the informed traders strategically trade during

different periods when the market is open anticipating the final announcement about the

fundamentals.
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Appendix A: Bayesian Updating

First, lets derive the distribution in (6). By assumption, the private signals are given by

(1) from which it immediately follows that
{
Sk

i

}
are normally distributed, with

E
[
Sk

i |V
]

= V, (∀k = 0, ..., K − 1) . (A1)

The conditional variance for ∀k = 0, ..., K − 1 is given by

V ar
[
Sk

i |V
]

= σ2
sE




(
εk

i −
1

N

N∑
j=1

εk
j

)2

 (A2)

= σ2
s

(
1− 2

N
[1 + (N − 1) ρ] +

1

N2
[N + N (N − 1) ρ]

)

= σ2
s (1− φ) ,

and (6) follows immediately. Analogously, we obtain for the covariances

Cov
[
Sk

i , Sk
j 6=i|V

]
= σ2

sE

[(
εk

i −
1

N

N∑
j=1

εk
j

)(
εk

j −
1

N

N∑

l=1

εk
l

)]
(A3)

= σ2
s

(
ρ− 2

N
[1 + (N − 1) ρ] +

1

N2
[N + N (N − 1) ρ]

)

= σ2
s (ρ− φ) .

Analogously, the unconditional variances and covariances are

V ar
[
Sk

i

]
= E




(
V + σs

(
εk

i −
1

N

N∑
j=1

εk
j

))2

 (A4)

= V ar [V ] + σ2
s

(
1− 2

N
[1 + (N − 1) ρ] +

1

N2
[N + N (N − 1) ρ]

)

= σ2
sφ + σ2

s (1− φ) = σ2
s,

and

Cov
[
Sk

i , Sk
j 6=i

]
= E

[(
V + σs

(
εk

i −
1

N

N∑
j=1

εk
j

))(
V + σs

(
εk

j −
1

N

N∑

l=1

εk
l

))]
(A5)

= V ar [V ] + σ2
s

(
ρ− 2

N
[1 + (N − 1) ρ] +

1

N2
[N + N (N − 1) ρ]

)

= σ2
sφ + σ2

s (ρ− φ) = σ2
sρ,
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respectively. Combining (A4) and (A5), we obtain (8).

Next, we derive the Bayesian updating procedure for our model. Making use of the Bayes

rule, the conditional p.d.f. of V , pk+1

(
V |Fi(t

o
k+1)

)
, is given by recursion

pk+1

(
V |Fi(t

o
k+1)

)
=

pk (V |Fi(t
c
k)) exp

[
−(Sk+1

i −V )
2

2(1−φ)σ2
s

]

∫ +∞
−∞ dxpk (x|Fi(tck)) exp

[
−(Sk+1

i −x)
2

2(1−φ)σ2
s

] , (A6)

where Sk+1
i is the private signal received by the informed trader i during the k-th closure

period. Taking into account the prior distribution (4) and her own signal (6), the informed

trader i’s posterior p.d.f. of V at t = 0 after she observes her private signal S0
i becomes

p0

(
V |S0

i

)
=

exp
[
− V 2

2φσ2
s

]
exp

[
−(S0

i−V )
2

2(1−φ)σ2
s

]

∫ +∞
−∞ dx exp

[
− x2

2φσ2
s

]
exp

[
− (S0

i−x)
2

2(1−φ)σ2
s

] (A7)

=
1√

2πφ (1− φ) σ2
s

exp

[
− (V − φS0

i )
2

2φ (1− φ) σ2
s

]
.

Equation (A7) can be used as an initial condition for the recursion (A6). Now, we apply

the updating rule (A6) to obtain (A12) and (A13). Since all the conditional distributions

{pk (V |Fi(t
o
k)) , k = 0, ...K − 1} are normal, we have

pk (V |Fi(t
c
k)) =

1√
2πΣi (tck)

exp

[
−(Vi (t

c
k)− V )2

2Σi (tck)

]
. (A8)

Note that all informed traders receive private signals drawn from the same distribution,

and therefore have the same updating rules. The substitution of (A8) into (A6) yields the

updating rule (A12) and (A13). To see that we first calculate the integral in the denominator

of (A6) ∫ +∞

−∞
dxpk (x|Fi(t

c
k)) exp

[
−

(
Sk+1

i − x
)2

2 (1− φ) σ2
s

]
= (A9)

=

√
Σ̂i (tck)

Σi (tck)
exp

{
−

(
Vi (t

c
k)

2

2Σi (tck)
+

(
Sk+1

i

)2

2 (1− φ) σ2
s

)
+

Σ̂i (t
c
k)

2

(
Vi (t

c
k)

Σi (tck)
+

Sk+1
i

(1− φ) σ2
s

)2
}

,

where

Σ̂i (t
c
k) ≡

1
1

Σi(tck)
+ 1

(1−φ)σ2
s

. (A10)
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Substituting (A9) and (A8) into (A6) yields

pk+1

(
V |Fi(t

o
k+1)

)
=

1√
2πΣ̂i (tck)

exp




−

[
Σ̂i (t

c
k)

(
Vi(tck)
Σi(tck)

+
Sk+1

i

(1−φ)σ2
s

)
− V

]2

2Σ̂i (tck)





=(A11)

=
1√

2πΣi

(
tok+1

) exp

[
−

(
Vi

(
tok+1

)− V
)2

2Σi

(
tok+1

)
]

.

Comparing two distributions in (A11) gives the necessary updating rules for the informed

trader’s precision Σi (t)
1

Σi

(
tok+1

) =
1

Σi (tck)
+

1

(1− φ) σ2
s

, (A12)

and valuation Vi (t)
Vi

(
tok+1

)

Σi

(
tok+1

) =
Vi (t

c
k)

Σi (tck)
+

Sk+1
i

(1− φ) σ2
s

. (A13)
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Appendix B: Proofs

Proof of Proposition 1

1. Making use of (13), (16) and the definition δ (t) = 1− Σi (t) /ΣM (t), we immediately

obtain
d

dt
δ = −δ (1− δ) λβ. (B1)

Combining (B1) and (23) yields (24) with k (t) = [1− δ (t)] λ (t) β (t). Taking into account

(B1), we obtain that k (t) = − d
dt

[ln δ (t)].

2 and 3. Let us prove equation (25) first. After market reopens at t = tok informed

trader i starts with the valuation Vi (t
o
k). We now have to solve an ODE for V̂i(t) ≡

Vi (t)− (1− δ (t)) P (t) that directly follows from (24)

dV̂i(t)

dt
= −k (t) V̂i(t),

with initial condition V̂i(t
o
k) which will be determined later. The solution is given by

V̂i(t) = V̂i (t
o
k) exp

[
−

∫ t

tok

k(s)ds

]
= V̂i (t

o
k)

δ (t)

δ (tok)
, (B2)

where we made use of the relation k (t) = − d
dt

[ln δ (t)], and (25) follows after we introduce

the effective private signal

Ŝi(t
o
k) =

1

δ (tok)
V̂i(t

o
k). (B3)

Now we can prove (26). It is shown in Appendix A that after each of the market re-openings,

the informed trader’s precision Σi (t) and valuation Vi (t) are given by the updating rule (A12)

and (A13) respectively. Combining (A12) and (A13), we immediately obtain

Vi

(
tok+1

)

Σi

(
tok+1

) =
Vi (t

c
k)

Σi (tck)
+

[
1

Σi

(
tok+1

) − 1

Σi (tck)

]
Sk+1

i . (B4)

Using the definition of δ (t) and (22), we can rewrite (B4) as

V̂i

(
tok+1

)

1− δ
(
tok+1

) =
V̂i (t

c
k)

1− δ (tck)
+

[
1

1− δ
(
tok+1

) − 1

1− δ (tck)

]
Sk+1

i . (B5)

In deriving the relation (B5) we have also used the definition of V̂i(t), namely

Vi

(
tok+1

)

1− δ
(
tok+1

) =
V̂i

(
tok+1

)

1− δ
(
tok+1

) + P
(
tok+1

)
, (B6)
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and the fact that the price does not change during closure periods, P
(
tok+1

)
= P (tck).

Next, we multiply both sides of (B5) by 1 − δ
(
tok+1

)
and use the identity V̂i (t

c
k) =

V̂i (t
o
k) [δ (tck) /δ (tok)] to obtain

Ŝi

(
tok+1

)
= µk+1Ŝi (t

c
k) +

1

δ
(
tok+1

)
[
1− 1− δ

(
tok+1

)

1− δ (tck)

]
Sk+1

i , (B7)

with

µk+1 =
1− δ

(
tok+1

)

1− δ (tck)

δ (tck)

δ
(
tok+1

) . (B8)

Finally, in order to establish (26) we need to show that the coefficient in front of the second

term in (B7) is equal to 1− µk+1. A simple algebra exercise shows that

1− µk+1 = 1− 1− δ
(
tok+1

)

1− δ (tck)

δ (tck)− 1 + 1

δ
(
tok+1

) = (B9)

= 1 +
1− δ

(
tok+1

)

δ
(
tok+1

) − 1

δ
(
tok+1

) 1− δ
(
tok+1

)

1− δ (tck)
=

=
1

δ
(
tok+1

)
[
1− 1− δ

(
tok+1

)

1− δ (tck)

]
.

The recursion (B7) has initial condition

Ŝi (t
o
0) = Ŝi (0) =

V̂i (0)

δ (0)
=

Vi (0)

δ (0)
= S0

i , (B10)

and can be solved forward. This is equivalent to the condition

µ0 = 0. (B11)

Using the definition of δ (t) and (22), we can rewrite (A12) as

1

1− δ
(
tok+1

) =
1

1− δ (tck)
+

ΣM

(
tok+1

)

(1− φ) σ2
s

, (B12)

which is the second of (29). Finally, the ODEs for the information asymmetry parameter

follow immediately from (B1). Q.E.D.

Proof of Proposition 2

Combining the results of the Proposition 1, we obtain

dδ (t)

δ (t) (1− δ (t))
= −ΣM (t) d

(
1

ΣM (t)

)
. (B13)
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Integration on the interval t ∈ Ok with the initial conditions at t = tok yields

δ (t) =
δ (tok) Σ−1

M (tok)

(1− δ(tok)) Σ−1
M (t) + δ (tok) Σ−1

M (tok)
, (B14)

and therefore
1

1− δ (tck)
=

1

1− δ (tok)

(
ΣM (tck)

ΣM (tok)

)
+

(
1− ΣM (tck)

ΣM (tok)

)
. (B15)

Substituting (B15) into the second equation of (29) and taking into account that ΣM (tck) =

ΣM

(
tok+1

)
, we obtain

1

1− δ
(
tok+1

) =
1

1− δ (tok)

(
ΣM (tck)

ΣM (tok)

)
+

(
1− ΣM

(
tok+1

)

ΣM (tok)
+

ΣM

(
tok+1

)

(1− φ) σ2
s

)
. (B16)

Iterating the recursion (B16) with the initial conditions δ (0) = φ , we finally have

1

1− δ
(
tok+1

) = 1 +
(k + 1) ΣM

(
tok+1

)

(1− φ) σ2
s

, (B17)

with k = 0, ...K − 1. Combining (B14) and (B17), we observe that

1

δ (t)
= 1 +

(1− φ) σ2
s

(k + 1) ΣM (t)
, (B18)

where t ∈ Ok, ∀k, which is the result of Proposition 2. The result (B18) will be useful for

the solution of the dynamic optimization considered below. Q.E.D.

Proof of Proposition 3

Combining (26) and the definition of the effective signal (10), we obtain the recursion

relation for the weights of the effective signal

ak,k = 1− µk, (B19)

al,k+1 = µk+1al,k, l = 0, ..., k.

Solving the recursion (B19) with the initial condition a0,0 = 1 yields

al,k = (1− µl)
k∏

m=l+1

µm. (B20)

From (B20), it follows that
∑k

l=0 al,k = 1 −
k∏

m=0

µm. Taking into account (28), we observe

that the weights satisfy the normalization condition
∑k

l=0 al,k = 1. According to the above
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discussion, the effective signal (10) reflects the informed traders’ updating of the new signals.

From Proposition 2 we have

1

δ (tok)
= 1 +

(1− φ) σ2
s

(k + 1) ΣM (tok)
, (B21)

1

δ (tck)
= 1 +

(1− φ) σ2
s

(k + 1) ΣM (tck)
, k = 0, ..., K − 1.

Making use of (B21) and that the MM’s residual uncertainty is continuous over the closure

periods, we immediately obtain

1− δ
(
tok+1

)

δ
(
tok+1

) (k + 2) =
1− δ (tok)

δ (tok)
(k + 1), k = 0, ..., K − 1, (B22)

and therefore

µk+1 =
1− δ

(
tok+1

)

1− δ (tck)

δ (tck)

δ
(
tok+1

) =
k + 1

k + 2
, (B23)

µk =
k

k + 1
,

which also satisfies the initial condition (28) for k = 0. Combining (B23) and (B20) yields

(32). Q.E.D.

Proof of Proposition 4

According to (19), we have that

dP (t) = λ (t)

[
N∑

i=1

θi (t) dt + σudZ (t)

]
. (B24)

Assuming that all informed traders except for the i-th informed trader are following the

linear strategies and taking expectations, we have

dP = λ (t)

[
θ (t) + β (t) N

(
V − 1

N
Ŝi − N − 1

N
P

)]
dt + λ (t) σudZ (t) , (B25)

Making use of (B25), we immediately obtain the result of Proposition 3. Q.E.D.

Proof of Proposition 5

Follows directly from (39) and (25). Q.E.D.

Proof of Theorem 1
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From (13), and (16), it follows that the equilibrium is given by βk and λk satisfying the

following conditions

βk (t) = σu

(
d

(
Σ−1

M (t)
)

dt

)1/2

,

λk (t) =
βk (t) ΣM (t)

σ2
u

,

during the kth period when market is open.

In order to derive the equilibrium, one has to derive a solution of the PDE (40) with

the limit condition (41), with continuity of market maker beliefs across market closures, and

which is such that the informed trader’s strategy (9) is feasible for each informed trader.

Ignoring the feasibility condition, βk and λk are uniquely defined by ΣM (t), which is known

at t = 0 and satisfies the limit condition (41). Therefore, if we solve for ΣM (t) for all time

periods, we would be able to completely characterize the solution for the whole problem.

Define R(t) ≡ ΣM (t)−1, and R′(t) ≡ d
dt

R(t). The necessary and sufficient conditions for the

equilibrium can be written as

βk (t) = σu

√
R′(t), (B26)

λk (t) =
1

σu

√
R′(t)

R(t)
, (B27)

R′′(t) +

[
2N − 4

N

]
R′(t)2

R(t)
− 2(1− φ)

Nφ (k + 1)

R′(t)2

R(0)
= 0, t ∈ Ok, ∀k, (B28)

R(t) = R(tck), t ∈ Ck, ∀k, (B29)

and

lim
t→T

R(t) = +∞. (B30)

In order to obtain equation (B28) note that δ(t) satisfies (B14) for t ∈ Ok, from which it

follows that

δ (t)−1 = 1 +
(1− δ(tok))

δ (tok)

R (t)

R (tok)
= 1 +

(1− φ)

(k + 1) φ

R (t)

R (0)
,

where the last equality is obtained from (B17). We can use the expression (B27) to compute

d

dt

(
1

λk (t)

)
=

σu√
R′(t)

[
R′(t)− R(t)R′′(t)

2R′(t)

]
= (B31)

=

(
2N − 2

N
− (1− φ)

N (k + 1) φ

R (t)

R (0)

)
σu

√
R′(t).
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A simple rearrangement of terms in (B31) immediately yields (B28). Equation (B28) is fully

integrable. To see that divide it by R′(t) to obtain

d

dt

[
R′(t)R(t)

2N−4
N exp

(
− 2 (1− φ)

N (k + 1) φ

R (t)

R (0)

)]
= 0, t ∈ Ok, ∀k, (B32)

We can now integrate (B32) twice to get

∫ t

tok

R′(s)R(s)
2N−4

N exp

(
− 2 (1− φ)

N (k + 1) φ

R (t)

R (0)

)
ds = (t− tok)Ck, t ∈ Ok, ∀k,

and, finally, the change of variables x = R(s)/R(0) yields expression (46) with

rk = ΣM(0)/ΣM(tok). (B33)

Since R(T ) = ∞ and R(0) = (ΣM (0))−1 we have

rK = ∞, (B34)

r0 = 1.

From (46), it immediately follows that

Ck =
1

τ

∫ rk+1

rk

x2(N−2)/N exp

(
− 2 (1− φ)

N (k + 1) φ
x

)
dx, k = 1, ..., K − 2,

C0 =
1

τ

∫ r1

1

x2(N−2)/N exp

(
−2 (1− φ)

Nφ
x

)
dx, (B35)

CK−1 =
1

τ

∫ ∞

rK−1

x2(N−2)/N exp

(
−2 (1− φ)

NKφ
x

)
dx.

To complete the solution for R(t) we have to evaluate the constants {Ck}K−1
k=0 and {rk}K

k=0. To

accomplish that, consider a kth closure at t = tck with a corresponding opening at t = tok+1.

We have the following continuity conditions

R′(tok+1) = R′(tck), (B36)

R(tok+1) = R(tck),

which follow from the continuity of the market uncertainty ΣM (t) and the inverse market

depth λ (t) over the closure periods. Making use of (B36) yields

Ck = Ck−1 exp

[
2rk(1− φ)

Nφ

(
1

k
− 1

k + 1

)]
, (B37)
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which is a recursion condition for the constants {Ck}. The conditions (B36) combined with

(B36), form a complete set of equations defining the constants {Ck}K−1
k=0 and {rk}K

k=0.

Define the constant

ψ =
2

N

(
1− φ

φ

)
. (B38)

For the practical calculations, it is convenient to introduce the new variables

Bk = Ck
1

τ
[ψΣM(0)](4−3N)/N , (B39)

and

xk = ψrk, (B40)

which is simply a change of scale. In terms of the new variables, the recursion takes the form

Bk =

∫ xk+1

xk

x2(N−2)/N exp

(
− x

k + 1

)
dx,

(B41)

Bk = Bk−1 exp

[
xk

(
1

k
− 1

k + 1

)]
,

for k = 1, ..., K − 1, with the boundary conditions

B0 =

∫ x1

ψ

x2(N−2)/N exp (−x) dx, (B42)

BK−1 =

∫ ∞

xK−1

x2(N−2)/N exp
(
− x

K

)
dx.

Finally, we have to prove the feasibility of the equation (9). It is feasible for all time intervals

when market is open by the same argument as in BCW, and, since price does not change

during the market closures, it is feasible at any t ∈ [0, T ]. Q.E.D.

Proof of Corollary 2

Consider N = 1 and K − 1 closures. In this case, φ = 1, and (B28) yields

R′′(t)− 2
R′(t)2

R(t)
=

d

dt

(
R′(t)
R2(t)

)
= 0, (B43)

and therefore

−R′(t)
R2(t)

=
d

dt
ΣM (t) = −γ ≡ const, (B44)
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during each period when the market is open, t ∈ Ok, ∀k. Making use of (B44), the boundary

conditions

ΣM (0) = φσ2
s, ΣM (T ) = 0, (B45)

and the continuity condition (48), we obtain the unique solution for the residual market

uncertainty in the form

ΣM (t) = φσ2
s

(
1− t

T

)
, (B46)

and therefore the unique equilibrium for the monopolist case is given by {βk(t), λk(t)}K−1
k=0 ,

where

βk(t) =
σu

σs

1√
T

1

1− t
T

, (B47)

λk(t) =
σs

σu

1√
T

, ∀k = 0, ..., K.

The market maker’s variance for each k = 0, ..., K, is

ΣM (t) = ΣM (0)

(
1− t

T

)
, (B48)

where T = Kτ . Q.E.D.

Proof of Corollary 3

Setting N = 2 in (B41), and (B42) immediately leads to

Bk = (k + 1)

{
exp

(
− xk

k + 1

)
− exp

(
− xk+1

k + 1

)}
,

(B49)

Bk−1 = Bk exp

[
−xk

(
1

k
− 1

k + 1

)]
,

for k = 1, ..., K − 1, with the boundary conditions

B0 = exp (−ψ)− exp (−x1) , (B50)

BK−1 = K exp
(
−xK−1

K

)
.

Now introduce the new variables Ak’s

Bk = Ak exp

(
− xk

k + 1

)
, (B51)
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for k = 0, ..., K. A substitution of (B51) into (B49) yields a recursion for the Ak’s, in the

form

Ak−1 = Ak
k

k + Ak

, (B52)

AK−1 = K.

Inverting both sides of (B52), we obtain

(Ak−1)
−1 = (Ak)

−1 +
1

k
, k = 0, ...K − 1, (B53)

AK−1 = K.

The recursion (B52) has the following solution

(Ak)
−1 =

K∑

n=k+1

1

n
, (B54)

or

Ak =

(
K∑

n=k+1

1

n

)−1

. (B55)

Making use of (B55), we obtain from (B51) and (B49)

xk = ψ +
k∑

n=1

n ln

(
1 +

An

n

)
, (B56)

for k = 0, ..., K − 1. Substituting into (B40), and taking into account that for N = 2,

ψ =
(

1−φ
φ

)
, we obtain from (B56)

rk = 1 +

(
φ

1− φ

) k∑
n=1

n ln

(
1 +

An

n

)
, k = 0, ..., K − 1. (B57)

We can also define AK = +∞, to make it consistent with the condition rK = +∞. Setting

N = 2 in (46), we obtain

r(t) = − (k + 1) ln

[
exp

(
− rk

k + 1

)
−Bk

t− tok
k + 1

]
,

or, making use of (B51)

r(t) = rk +
(k + 1) φ

1− φ
ln

[(
1− Ak

t− tok
k + 1

)−1
]

,
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which is equivalent to

ΣM (t) = ΣM (0)

{
rk +

(k + 1) φ

1− φ
ln

[(
1− (t− tok) Ak

k + 1

)−1
]}−1

, t ∈ Ok. (B58)

Q.E.D.

Proof of Corollary 4

From (19), it follows that

P (t) =

t∫

0

exp


−

t∫

t′

dτλ (τ) β (τ)


× (B59)

{
λ (t′) β (t′)

1

N

N∑
j=1

Ŝj(t
′)dt′ + λ (t′) σudZ (t′)

}
.

Taking into account (13) and (15), we observe that

λ (t) β (t) = ΣM (t)
d

dt

(
1

ΣM (t)

)
=

d

dt

(
log

[
1

ΣM (t)

])
. (B60)

Combining (B59) and (B60), we obtain (56). Q.E.D.

Proof of Corollary 5

From the distributions (6), (4) and (32), it follows that the unconditional distribution of

the effective private signals is given by

Ŝk
i ∼ N

(
0,

φk + 1

k + 1
σ2

s

)
, k = 0, ..., K − 1. (B61)

Making use of (56), we obtain from (55)

TVi (t) = T1 (t) + T2 (t) + T3 (t) , (B62)

T1 (t) = β2 (t) var
[
Ŝi(t)

]
= β2 (t) σ2

s

φk + 1

k + 1
,

T2 (t) = −2β2 (t) cov
[
Ŝi(t), P (t)

]
,

T3 (t) = β2 (t) var [P (t)] ,

with

T2 (t) = −2β2 (t) ΣM (t)

t∫

0

d

(
1

ΣM (t′)

)
1

N

N∑
j=1

E
[
Ŝi(t), Ŝj(t

′)
]
, (B63)
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and

T3 (t) = β2 (t) Σ2
M (t)

t∫

0

d

(
1

ΣM (t′)

) t∫

0

d

(
1

ΣM (t′′)

)
× (B64)

1

N2

N∑
j=1

N∑
i=1

E
[
Ŝi(t

′), Ŝj(t
′′)

]
.

The definition of the effective signal and (32) yield

1

N

N∑
j=1

E
[
Ŝi(t), Ŝj(t

′)
]

= φσ2
s

min {n (t) , n (t′)}
n (t) n (t′)

, (B65)

with

n (t) =

[
t

τ

]
+ 1, n (t′) =

[
t′

τ

]
+ 1. (B66)

Substituting (B65) into (B63) and (B64), we obtain

T2 (t) = −2φσ2
sβ

2 (t)
ΣM (t)

n (t)

t∫

0

d

(
1

ΣM (t′)

)
(B67)

= −2φσ2
s

β2 (t)

n (t)

(
1− ΣM (t)

ΣM (0)

)
,

and

T3 (t) = φσ2
sβ

2 (t) Σ2
M (t)

t∫

0

d

(
1

ΣM (t′)

) t∫

0

d

(
1

ΣM (t′′)

)
min {n (t) , n (t′)}

n (t) n (t′)
(B68)

= 2φσ2
sβ

2 (t) Σ2
M (t)

t∫

0

d

(
1

ΣM (t′)

)
1

n (t′)

(
1

ΣM (t′)
− 1

ΣM (0)

)
.

Evaluating (B68), we obtain

T3 (t) = 2φσ2
sβ

2 (t) Σ2
M (t) Π (t) ,

Π (t) =
1

n (t)

(
1

ΣM (t)
− 1

ΣM ((n (t)− 1) τ)

)
× (B69)

[
1

2

(
1

ΣM (t)
+

1

ΣM ((n (t)− 1) τ)

)
− 1

ΣM (0)

]

+

n(t)∑

k=1

1

k

(
1

ΣM (kτ)
− 1

ΣM ((k − 1) τ)

)
×

[
1

2

(
1

ΣM (kτ)
+

1

ΣM ((k − 1) τ)

)
− 1

ΣM (0)

]
.

Combining (B62), (B67) and (B69) yields (58). Q.E.D.
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trading and stock returns: Lessons from dually listed securities, Journal of Banking
and Finance 20, 1161-1187.

Evans, Martin D., and Richard K. Lyons, 2002, Order flow and exchange rate dynamics,
Journal of Political Economy110, 170-180.

Foster, Douglas F., and S. Viswanathan, 1990, A theory of interday variations in volume,
variance, and trading costs in securities markets, Review of Financial Studies 3, 593-
624.

Foster, Douglas F., and S. Viswanathan, 1996, Strategic trading when agents forecast the
forecasts of others, Journal of Finance 51, 1437-1478.

French, Kenneth, and Richard Roll, 1986, Stock return variance: The arrival of information
and the reaction of traders, Journal of Financial Economics 17, 99-117.

Holden, Craig W., and Avanidhar Subrahmanyam, 1992, Long-lived private information
and imperfect competition”, Journal of Finance 47, 247-270.

Hong, Harrison, and Jiang Wang, 2000, Trading and returns under periodic market closures,
Journal of Finance 55, 1437-1478.

Ito, Takatoshi, Richard K. Lyons, and Michael Melvin, 1998, Is There Private Information
in the FX Market? The Tokyo Experiment, Journal of Finance 53, 1111-1130.

Jain, Prem, and Gun-Ho Joh, 1988, The dependence between hourly prices under
transactions and return uncertainty, Journal of Financial and Quantitative Analysis
23, 269-283.

Kyle, Albert S., 1985, Continuous auctions and informed trader trading”, Econometrica 53,
1315-1335.

Lipster, R. S, and A. N. Shiryaev, Statistics of Random Processes, 2nd Edition, Springer,
2000.

41



Slezak, Steve L., 1994, A theory of the dynamics of security returns around market closures,
Journal of Finance 49, 1163-1212.

Taub, Bart, Dan Bernhardt, and Peter Seiler, Speculative Dynamics, Unpublished
manuscript, University of Illinois.

42



Figure 1: Timing of Events

This Figure illustrates the timing of events. Market closures are periodic so that the durations each trading
and non-trading periods are equal to τ and ∆τ respectively.

t
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tok = k(τ + ∆τ)

6
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tck = tok + τ
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Market closes

tok+1 = (k + 1)(τ + ∆τ)

6
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Figure 2: Dynamics of δ(t)

The dynamics of the information asymmetry parameter δ(t) is shown as a function of time for the case of
three market closures. There are five informed traders (N = 5) in the economy and the initial correlation
coefficient between the private signals, ρ, equal to 0.5.
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Figure 3: Dynamics of β(t)

The dynamics of the optimal informed trading parameter β(t) is shown as a function of time for the case
of the three market closures. It is compared to the intertemporal profile of the optimal β(t) in the absence
of market closures. There are five informed traders (N = 5) in the economy and the initial correlation
coefficients between the private signals, ρ, equal to 0.5.
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Figure 4: Dynamics of Informed Trading Volume

The dynamics of the informed trading volume, TV (t), is shown as a function of time. It is compared to the
optimal informed trading volume in the absence of market closures. There are five informed traders (N = 5)
in the economy and the initial correlation coefficients between the private signals, ρ, equal to 0.5.
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Figure 5: Dynamics of Relative Trading Intensity

The dynamics of the relative trading intensity is shown as a function of time for the case of the three market
closures. It is compared the relative trading intensity in the absence of market closures. Following BCW,
the relative trading intensity is defined as the ratio of the oligopolistic trading intensity defined in Corollary
1 as β(t)/δ, to the optimal trading intensity of the monopolist informed trader from Kyle (1985). There
are five informed traders (N = 5) in the economy and the initial correlation coefficients between the private
signals, ρ, equal to 0.5.
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Figure 6: Dynamics of Relative Market’s Residual Uncertainty

The relative market’s residual uncertainty defined as the ratio of ΣM (t) for the oligopolistic and monopolistic
cases is shown as a function of time for the case of three market closures. It is compared to the relative
market’s residual uncertainty in the absence of market closures. There are five informed traders (N = 5) in
the economy and the initial correlation coefficients between the private signals, ρ, equal to 0.5.
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Figure 7: Dynamics of Relative Market Depth

The dynamics of the relative market depth parameter 1/λ(t) is shown as a function of time for the case of
three market closures. It is compared to the relative market depth in the absence of market closures. The
relative market depth is defined as a ratio of the oligopolistic and the monopolistic market depth parameters.
There are five informed traders (N = 5) in the economy and the initial correlation coefficients between the
private signals, ρ, equal to 0.5.
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Figure 8: Dynamics of Relative Trading Intensity for Different Values of ρ

The dynamics of the relative trading intensity is shown as a function of time for several different values of
the initial correlations between the private signals, ρ. There are three market closures and two informed
traders (N = 2) in the economy.
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Figure 9: Dynamics of Relative Market Depth for Different Values of ρ

The dynamics of the relative market depth is shown as a function of time for several different values of the
initial correlations between the private signals, ρ. There are three market closures and two informed traders
(N = 2) in the economy.
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