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The pricing kernel - the stochastic process that assigns value to state-contingent payoffs - has

been the object of an enormous amount of study, both empirically and theoretically. Associated

with the pricing kernel is the stochastic discount factor (SDF), which can be linked with the

intertemporal marginal rate of substitution of consumption (IMRS) in consumption-based asset

pricing models. Representative agent models, which are based on frictionless capital markets with

heterogeneous agents, have fared poorly in empirical testing and efforts to improve the empirical

results have moved in many directions. One direction is to introduce both consumer heterogeneity

and incomplete consumption insurance to see if the asset pricing implications are improved. So far,

the performance of the models have not improved significantly. Constantinides and Duffie [1996]

argue that the reason is the way in which idiosyncratic risk is introduced, namely that agents are

ex ante identical, which has important implications for opportunities to share idiosyncratic risk

even in restricted asset markets. In this paper, I construct a simple model in which agents face

endowment distribution risk which is not fully insurable because consumption insurance markets

are not actuarially fair.

The ability to insure against idiosyncratic risk depends on market conditions and the availability

of consumption insurance, which in turn depend on the risks faced by other types of agents. At

one extreme - pure autarky - there is no market in which consumption insurance can be purchased

and all risk is borne by the individual. When all agents are identical and face the same risk,
1Please send all correspondence to Pamela Labadie, Department of Economics, 1922 F Street, Room 208, George

Washington University, Washington, D.C. 20052. E-Mail address: labadie@gwu.edu.
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which is generally referred to as aggregate risk, there are no opportunities to diversify and no

consumption insurance is available. In an endowment economy with complete markets where all

agents are identical ex ante and there is a countable infinity of agents, full consumption insurance

is available because the cross sectional distribution of the endowment is identical to the endowment

distribution an individual faces over his lifetime. As a result, consumption insurance is actuarially

fair since all agents face the identical frequency of being in a particular state. This framework -

idiosyncratic risk and ex ante identical agents - has been studied extensively in the literature. If

markets are complete, then full consumption risk-sharing can be achieved and a representative agent

constructed. If markets are incomplete, then depending on the source of the incompleteness, full

consumption insurance typically can’t be achieved. Typical market frictions that have been studied

include borrowing constraints (Aiyagari, Hugget), endogenous borrowing constraints (Alvarez and

Jermann), one-sided commitment (Kocherlakota), liquidity constraints (Kehoe and Levine), and

private information. This research was motivated by the failure of the complete markets set-up

with heterogeneous agents to explain asset-pricing behavior, sensitivity of income to income shocks

over time, or many other features of economic time series has been well documented.

Constantinides and Duffie [1996] have criticized models in which agents are ex ante identical on

the grounds that the consumption insurance opportunities at each point in time (cross sectionally)

exactly match the kind of consumption insurance that agents require over their lifetime to achieve

full insurance. They develop a model with a countable infinity of ex ante heterogeneous agents and

study the asset pricing implications for a particular restriction on the types of securities that are

traded. While the results of the model are promising, the question arises whether the exogenously

imposed security market structure is the key determinant in the results or whether the ex ante

heterogeneity is the key factor.

In this paper I explore the asset pricing and consumption/income relationship in a simple model
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in which agents are ex ante heterogeneous because they face different income distribution risk.

This results in a very simple and plausible market friction: agents can purchase insurance against

endowment realizations but this consumption insurance is not actuarially fair because the market

is not indexed for endowment distribution risk. Markets fail to separate because agents cannot be

prevented from participating in a market in which they can fulfill all contracts they voluntarily

enter because of their risk class or individual-specific attributes. Essentially ex ante heterogeneous

agents can achieve full risk-sharing within a risk class if they participate in segregated markets,

where markets are segregated by risk class. But an individual agent may be better off to buy or

sell claims in another market. Since market participation cannot be limited only to agents from the

same risk class, the prices for a contingent claim conditional on a particular endowment realization

will be the same across risk classes. Agents are then able to insure against income shocks but not

against differences in the distribution of income by risk class.

1 Basic Model

Let θ ∈ Θ, where Θ ≡ {θ1, . . . , θM}, be a discrete random variable such that θ1 ≥ 0 and θM is

finite. Let η ∈ N ≡ {η1, . . . , ηN} be a discrete random variable and let f(η) denote the measure

over N . Assume there is a countable infinity of agents indexed by I = {1, 2, . . .}. At the beginning

of time, each agent draws an η, which is fixed for rest of his lifetime.

The distribution of θ is parameterized by η so that, for a particular η ∈ N , the distribution of

θ is g(θ | η). For example, if η2 > η1, g(θ | η2) may be a mean-preserving spread of g(θ | η1). More

generally, η should be thought of as a vector of attributes, such as race, gender, religion, inherent

abilities, and so on. The key idea is that the distribution over the endowment sample space Θ will

differ across agents, with a fraction f(η) facing distribution g(θ | η). Because the realization of η

determines the endowment distribution, an agent with ηi and an agent with ηj such that ηi 6= ηj
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are said to be in different income distribution risk categories.

Since there is a countable infinity of agents, the sample realization over the population is a pair

{θi, ηi} where i = 1, . . . ,∞. The frequency of observing the pair θi, ηj where θi ∈ Θ and ηj ∈ N is

g(θi | ηj)f(ηj).

Initially, there is no aggregate uncertainty. Total output is

y =
∑

η∈N

∑

θ∈Θ

f(η)θg(θ | η). (1)

The distribution of θ over all agents is a mixture

φ(θ) =
∑

η∈N

f(η)g(θ | η). (2)

Define the mean of the endowment for type η as

θm(η) =
∑

Θ

g(θ | η)θ.

2 One-Period Model

Before there is any trading, agents observe their realization of η and enter into contingent contracts.

A type-η agent has preferences
∑

θ∈Θ

U(c)g(θ | η). (3)

The function U is continuous and twice continuously differentiable, strictly increasing and strictly

concave. Also, as c→ 0, U ′(c) → ∞.

2.1 Full Insurance in Separated Markets

At time 0, agents observe their η realization and they enter into contingent claims contracts. Let

z(θ, η) be the amount of a contingent claim contract held by type η if θ occurs. Assume that
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contingent claims pricing is a nonzero pricing function defined on <M×N
+ , so that prices for a unit

of consumption in state θ ∈ Θ are allowed to differ across agent types ηi, i = 1, . . . , N ; let q(θ, η)

denote the price of one unit of consumption in state θ for type η. In this section, it is assumed

that agents participate only in the η market for claims. In particular, a type ηi is not allowed to

purchase claims issued in the ηj market where i 6= j. An agent’s type is public information so

that the assumption that agents enter into contingent contracts only with their own type is an

assumption about the enforceability of excluding different agents from the market.

At time 0, all agents of type η are identical. A particular agent, agent i ∈ I , has a random

endowment θ(i). Observe that after the endowment is realized, agents that are the same type are

different ex post. Consumption choices for a type η agent are made over the commodity space <M
+ .

A type-η has budget constraints

0 ≤
∑

Θ

q(θ, η)z(θ, η) (4)

0 ≤ θ + z(θ, η)− c (5)

Let µ̄(η) denote the Lagrange multiplier for the first constraint and let µ(η, θ) denote the multiplier

for the second; observe the second constraint must hold for each θ and η. The first-order conditions

with respect to c, z(θ, η) are

g(θ | η)U1(c) = µ(θ, η), (6)

µ(θ, η) = µ̄(η)q(θ, η). (7)

Eliminate µ(θ, η) and solve for the price,

q(θ, η) =
g(θ | η)U1(c)

µ̄(η)
. (8)

Full consumption insurance is achieved when c(θ, η) is invariant with respect to θ; let c̄(η) denote

such a solution. For constant consumption over θ to be optimal, it follows from (8), that q and g
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are proportional

g(θ | η) = Kq(θ, η),

where K is a positive constant. Solve (5) for z(θ, η) and substitute into (4) and then eliminate q

using (8) to obtain

0 =
∑

Θ

[
g(θ | η)U1(c̄(η))

µ̄(η)

]
[θ − c̄(η)] (9)

Since c̄(η), µ̄(η) are invariant with respect to θ, these terms can be moved out of the summation

and then eliminated since the left side is zero. It follows that θ̄(η) = c̄(η) is the solution.

Since there is only one time period and hence no borrowing or lending in the model, agents

are able to achieve full risk sharing within an income distribution risk class η by trading in the

N separate markets. In the example above, I assume that agents only consider trades in claims

indexed by income distribution risk. Agents are not allowed to purchase claims in other markets.

Whether or not this restricts the opportunity set of the agent is discussed in the section below.

Although well known, it worthwhile to mention two properties of the solution. First, the price

of the claim depends entirely on the frequency of being in a particular state and not on the size

of the endowment realization. Hence a high endowment state θM ≥ θ that occurs with a low

frequency has low value for securing consumption insurance and conversely for states that occur

with a higher probability. Second, complete risk sharing is achieved for each η type by trading only

with other agents of the same type. Observe that the market-clearing condition is satisfied, where

the market-clearing condition is

0 =
∑

N

∑

Θ

f(η)g(θ | η)[θ− c̄(η)]. (10)

In the standard set-up, with idiosyncratic risk and ex ante identical agents, g(θ | ηi) = g(θ | ηj)

for all i, j. In that case the frequency of being in a specific state g(θ) just equals the price of a

contingent claim for consumption insurance.
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The central planning problem is

max





N∑

i=1

ψ(ηi)
M∑

j=1

g(θj, ηi)U(c(θj, ηi))





subject to the resource constraint, where ψ(η) is the Pareto-weight attached to type η agents. Let

λp denote the Lagrange multiplier for the resource constraint. The first-order condition is

ψ(ηi)
f(ηi)

g(θj , ηi)U1(c(θj , ηi)) = λpg(θj, ηi)

Observe that g(θ, η) cancels out so the optimal consumption is invariant with respect to θ. In the

competitive equilibrium described above, where c(η) = θm(η), the Pareto weights satisfy

ψ(ηi)
ψ(ηj)

=
f(ηi)
f(ηj)

U1(θm(ηj))
U1(θm(ηi))

.

2.2 Arbitrage

In the discussion above, agents of type η are assumed to trade contingent claims with agents of the

same type. This restriction results in full risk-sharing for each η-type. Suppose now that agents

are allowed to buy and sell contingent claims in all other markets. Recall that at time 0, all agents

of the same type are identical and will enter into identical contracts. Agents now have the option

of selling the contingent claims in other markets. Let z(θj , ηi, ηh) denote the claims issued by a

type ηh contingent on θj , that are sold in market ηi. As before, if z(θj , ηi, ηh) > 0, the holder of

the claim (which was purchased in market i) will pay agent ηh in the event θj occurs.

Agents continue to maximize (3) subject to the budget constraints, which are now modified,

0 =
N∑

i=1

M∑

j=1

q(θj , ηi)z(θj , ηi, ηh) (11)

0 = θ +
N∑

i=1

z(θ, ηi, ηh) − c(θ, ηh) (12)
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Let µ̄(ηh) denote the multiplier for the first constraint and µ(ηh, θ) denote the multiplier for the

second. The first-order conditions are

µ̄(ηh)q(θ, ηi) ≥ µ(ηh, θ) (13)

g(θ, ηh)U1(c(θ, ηh)) = µ(ηh, θ) (14)

Rewrite (13) to show that for each i ∈ N

q(θ, ηi) ≥
µ(ηh, θ)
µ̄(ηh)

.

Hence if agents are to hold contingent claims issued by all agent types, then the price must be equal

for each type or q(θ, ηi) = q(θ, ηj); otherwise agents will sell claims in only one market for each θ.

The intuition is that the agent will seek the contingent claims price that maximizes the value of his

portfolio. To see this, let θ− c(θ, ηh) be given for each θ ∈ Θ. The portfolio maximization problem

is

max
∑

N

∑

Θ

q(θ, η)z(θ, η, ηh)

subject to

θ − c(θ, ηh) ≥
∑

N

z(θ, η, ηh)

Let λ(θ) denote the multiplier for the constraint. The first-order condition is

q(θ, η) ≥ λ(θ).

There will be only one market η such that this holds with equality. The implication of integrated

contingent claims markets is explored in the next section.

2.3 Integrated Markets

The dimensionality of the contingent claims price function, which is <M×N
+ in the separated markets

economy, is now restricted to <M
+ . Essentially, all agents participate in the same contingent claims
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market trading contracts that are short or long in the endowment realization θ. When markets

are integrated, agents can still enter into state contingent contracts, but the contract is contingent

only on the endowment realization and not on the parameter η, which indexes the frequency of a

particular type of agent being in a particular state. A type-η agent maximizes (3) subject to

0 ≤
∑

Θ

q(θ)[θ(η)− c]. (15)

Let µ(η) denote the Lagrange multiplier. The first-order condition is

g(θ | η)U1(c) = µ(η)q(θ). (16)

In general, g(θ | η) is not proportional to q(θ). Solve for µ and show, for θi, θj ∈ Θ,

µ(η) =
g(θi | η)U1(ci)

q(θi)
=
g(θj | η)U1(cj)

q(θj)
. (17)

Based on the intuition from the separated markets example, conjecture that the contingent claims

price for θ takes the form

q?(θ) =
∑

N

f(η)g(θ | η), (18)

which is the (unconditional) probability of θ in the general population. If this is the price, observe

that (17) can be rewritten as

1 =

(
Λ(θi, η)
Λ(θj, η)

)[
U1(c(θi, η))
U1(c(θj , η))

]
(19)

where

Λ(θ, η) ≡
[

g(θ | η)f(η)∑
N f(η)g(θ | η)

]
.

This states that the weighted marginal rate of substitution across states is equal to unity, where

the weights equal the ratio of the conditional probability Λ(θ, η) that an agent is a type η given he

has endowment θ.
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Let µ be given and use the price q? to define a function ĉ as

ĉ(θ, µ, η) = (U1)
−1
(
µ
∑

N f(η)g(θ | η)
g(θ, η)

)
. (20)

Observe that the function ĉ is strictly decreasing in µ. Substitute the function ĉ into the budget

constraint using q?(θ),

0 =
∑

Θ

∑

N

f(η)g(θ | η)[θ− ĉ(θ, µ, η)] (21)

Since ĉ is decreasing in µ, the right side is strictly increasing in µ; Let µ(η) denote the unique

solution, conditional on the price taking the form in (18). Define

c?(θ, η) = ĉ(θ, µ(η), η).

The function c? is the optimal consumption for a type η agent with endowment θ, conditional on

the conjectured price. The next main issue is whether the conjectured price clears the market.

2.3.1 Equilibrium Conditions

The market-clearing condition is

∑

η∈N

∑

θ∈Θ

f(η)g(θ | η)[θ− c(θ, η)] (22)

To determine if this holds with the conjectured price so that consumption is c?(θ, η), first observe

that the unconditional probability that any agent has endowment θ is
∑

N f(η)
∑

Θ g(θ | η). The

conditional probability that an agent with endowment θ is a type η is Λ(θ, η), defined earlier, which

is also the frequency that an agent with endowment θ is a type η. Summing over the agents’ budget

constraints, observe the proportion of agents with endowment θ that are type η with excess demand

q(θ)[θ − c(θ − η)] is

Λ(θ, η)q(θ)[θ− c?(θ, η)]. (23)
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Summing this across all η ∈ N results in

∑

η∈N

Λ(θ, η)q(θ)[θ− c?(θ, η)] (24)

which is the net excess supply or demand for claims conditional on θ. Summing this over all θ, and

substituting in the conjectured price used in deriving the function c?,

0 =
∑

η∈N

∑

θ∈Θ

{Λ(θ, η)q?(θ)[θ − c?(θ, η)]} (25)

0 =
∑

η∈N

∑

θ∈Θ

{g(θ | η)f(η)[θ− c?(θ, η)]} (26)

where the last equation is the market-clearing condition. Hence the conjectured price used in

deriving the policy function c? is the price at which the market clearing condition holds.

A key property of the solution is that full consumption insurance is not achieved. In particular,

given the price q?(θ), we know in general q?(θ)
g(θ|η) will vary with η and θ. Hence, the solution c?(θ, η)

varies with θ. The marginal rate of substitution is not equalized across states, although the weighted

marginal rate of substitution is equal to unity, where the weights equal the conditional probability

of η, conditional on θ. This is a natural outcome of the main feature of the model that consumption

insurance is not actuarially fair.

To see the sense in which the consumption insurance is actuarially unfair, consider the following

two-state example. Let θ2 > θ1, so that agents wish to insure against an endowment of θ1. Define

h as the amount of insurance an agent purchases at price ρ, so that the agent’s consumption if

θ = θ2 is

θ2 − ρh = c2

and his consumption if θ1 is realized is

c1 = θ1 + h.
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The agent solves

max
h
g1U(θ1 + h) + g2U(θ2 − ρh)

The first order condition is

g1U1(θ1 + h) = g2(θ2 − ρh)ρ.

Obviously, if
g1
g2

= ρ

then the agent buys full insurance otherwise achieves only partial insurance. In the application

here, notice that the first order condition can be rewritten as

g1
g2
U ′(θ1 + h) =

q(θ1)
q(θ2)

U ′(θ2 −
q(θ1)
q(θ2)

h). (27)

The amount of insurance h equals the consumption that the agent would like to shift to the low

endowment state from the high endowment state. The premium per unit of consumption paid out

of income in state 2 is ρ while the expected benefit in state 1 is g(θ1)
g(θ2) . If, as assumed, insurance

is not actuarially fair, the premium doesn’t equal the expected claim, so the agent doesn’t fully

insure. A wedge is created in the sense that the personal tradeoff between marginal utilities in

states one and two, which is g1,i

g2,i
, differs from the terms of trade over states offered in the market.

The agent’s budget constraint is

θ1 +
θ2
ρ

= c1 +
c2
ρ
.

2.3.2 A Simple Example

Suppose that there are only two types of agents η1, η2 with probabilities f1, f2 and only two states

θ1, θ2. Let gi,j = g(θi, ηj). Assume that θ1 < θ2 and g11 > g12, g22 > g21, so that agent 1 has a

higher probability of the low state and agent 2 has a higher probability of realizing the high state.

12



The MRS condition for agent ηi is

1 =
Λ1,i

Λ2,i

U1(c1,i)
U1(c2,i)

(28)

Notice if the conditional probabilities where the same across agents, so that Λ(j, 1) = Λ(j, 2), then

consumption for agent i would be constant across states. Suppose that f1 = f2. Then, under the

assumptions on g11, g21, observe that Λ1,1

Λ2,1
> 1 from which it follows that c11 > c21 because U is

strictly concave. Hence a type-1 agent overinsures against a low shock θ1 and underinsures against

θ2. The converse is true for the type-2 agent for whom Λ1,2

Λ2,2
< 1. This outcome is the result of

consumption insurance that is not actuarially fair.

Assume that preferences are logarithmic, so that a closed-form solution can be derived. The

first-order condition for a type 1 is
g11

c11q1
=

g21

c21q2
(29)

so that

c21 =
g21

g11

q1
q2
c11

The type 1 has a budget constraint

0 = q1[θ1 − c11] + q2[θ2 − c21]

= q1[θ1 − c11] + q2[θ2 −
g21

g11

q1
q2
c11]

= q1θ1 + q2θ2 −
q1c11

g11
[g11 + g21]

Solving for c11 and c21,

c11 =
g11

q1
[q1θ1 + q2θ2]

c21 =
g21

q2
[q1θ1 + q2θ2]
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The steps above can be repeated for a type 2 agent, yielding

c12 =
g12

q1
[q1θ1 + q2θ2]

c22 =
g22

q2
[q1θ1 + q2θ2]

Using the intuition from the complete contingent claims market, suppose that the contingent

claims prices are

q1 = f1g11 + f2g12, (30)

q2 = f1g21 + f2g22. (31)

Total endowment is

y ≡ [f1g11 + f2g12]θ1 + [f1g12 + f2g22]θ2.

For each agent, observe that

q1c11 + q2c21 = q1θ1 + q2θ2

Sum the budget constraints across agents using the conjectured prices to show that

[f1g11 + f2g12]θ1 + [f1g12 + f2g22]θ2 = f1g11c11 + f2g12c12 + f1g21c21 + f2g22c22 (32)

Suppose that θ2 > θ1 and g11 > g12 (so that g21 < g22). Assume that f1 = f2. Then (28) is

1 =
Λ1,i

Λ2,i

c2,1

c1,1

for a type η1 agent.

The implication for consumption-income correlations is this: for two agents from different risk

categories and identical realizations θ, it is clear that

g(θ | η)U ′(c(θ, η))
g(θ | η̂)U ′(c(θ, η̂))

=
µη

µη̂
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for each θ ∈ Θ and η, η̂ ∈ N . As long as g(θ | η) 6= g(θ | η̂) and assuming that g(θ) is not

uniformly distributed and constant over the states, the marginal rate of substitution will vary over

states. This occurs because individual agents have an incentive to trade outside of their income

risk category, even though, as a group, agents are better off in expected utility terms by staying in

the appropriate market for their income risk.

Next, given the ratio µη

µη̂
, if θ is a low probability state for type η, compared to η̂, so that

g(θ | η) < g(θ | η̂) then U ′(c(θ, η)) > U ′(c(θ, η̂)) so that c(θ, η) < c(θ, η̂)). Remember that this

is a one-period model and that complete risk sharing is feasible by income category. Complete

risk sharing means that the agent’s consumption doesn’t fluctuate with respect to the endowment

realization (high or low) or with the probability of a particular state.

3 Infinite-Horizon Markets

Assume now that an agent has an infinite time horizon. As before, at time 0, an agent observes

the realization of a random variable η that affects the distribution of his endowment for all future

periods. Let θt(i) = {θ1(i), . . . , θt(i)} denote the history of endowment realizations for a particular

agent i ∈ I . Let gt(θt(i) | η) denote the probability of the history θt(i) under the assumption that

agent i is a type η agent. For the first period, the allocations across different η agents with different

endowments θ lie in N ×M . The history of allocations for agents from periods 1 to t is an element

of (N ×M)t. There is no aggregate uncertainty and the history of the system is the entire space

(N×M)t at time t and hence is deterministic. Initially prices are allowed to be functions of history

θt, since the history of endowments is observable for any agent and, moreover, it is possible for θt

to be identical for two agents of different types ηi 6= ηj .

A stationary solution is an allocation in N ×M . Under the assumption that only stationary

solutions are considered, the history of the system does not affect the price of a contingent claim in
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market θ. As before, there is no aggregate uncertainty. The distribution of the endowment remains

unchanged so that the probability that a random agent has realization θ is

∑

N

f(η)g(θ | η).

3.1 Separated Markets

I start with separated markets. At time 0, the type η agent solves

max
∞∑

t=0

∑

θt

gt(θt | η)βtU(ct(θt, η)) (33)

subject to

0 ≤
∞∑

t=0

∑

θt

pt(θt | η)[θt − ct(θt, η)] (34)

Let µ̂η denote the Lagrange multiplier. The first-order condition is

∑

θt−1

gt(θt | η)βtU ′(ct(θt, η)) = µ̂η

∑

θt−1

pt(θt | η) (35)

Notice that the summation over θt−1 is assumed because it is assumed that, regardless of history

θt−1 or agent type η, agents can enter any θ ∈ Θ market. If prices depended on θt−1, so an agent’s

specific history mattered, it would imply that two agents of the same type η but different histories

would be unable to enter into contingent contracts.

Solve this for the price and substitute into the budget constraint

0 ≤
∞∑

t=0

∑

θt

[∑
θt−1 gt(θt | η)βtU ′(ct(θt, η))

µ̂η

]
[θt − ct(θt, η)] (36)

Notice that since µ̂η is constant it can be eliminated from the equation above. Under full consump-

tion insurance, consumption is a constant across realizations, so that (39) can be written

0 = U1(c̄(η))

{∞∑

t=0

βt

[∑

θ

g(θt, η)θt −
∞∑

t=0

βtc̄(η)

]}
(37)
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or
1

1 − β
c̄(η) = θm(η)[

1
1− β

].

Observe that, as in the one-period model, preferences don’t matter nor does the wealth distribution

over time. Since there is no aggregate uncertainty, total endowment of type η agents is

f(η)

[∑

Θ

θg(θ | η)
]
.

Hence the infinite-horizon model is just a repetition of the solution in the one-period model. Agents

maintain a constant consumption over their lifetime, although this consumption varies by type

(realization of η). Also notice that the price

∑

θt−1

pt(θt | η) = βtq(θ, η)

where q was defined above.

3.2 Integrated Markets in the Infinite Horizon

As before, under the assumption that prices are stationary, agents will have an incentive to borrow

and lend in other η-agent markets. In that case, where markets cannot be segregated, agents solve

max
∞∑

t=0

∑

θt

gt(θt | η)βtU(ct(θt, η)) (38)

subject to

0 ≤
∞∑

t=0

∑

θt

pt(θt)[θt − ct(θt, η)] (39)

Let µ̂η denote the Lagrange multiplier. The first-order condition is

∑

θt−1

gt(θt | η)βtU ′(ct(θt, η)) = µ̂η

∑

θt−1

pt(θt) = µ̂ηpt(θt) (40)
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Consider only stationary solutions. Let

q(θt) =
pt(θt)
βt

Observe that, if we assume only stationary solutions are to be considered so c(θ, η) = ct(θt, η), then

∑

θt−1

gt(θt | η) = g(θt | η)

The first-order condition becomes

U1(c(θ, η))g(θ | η)
µ̂(η)

= q(θ) (41)

Let

q(θ) =
∑

η

f(η)g(θ | η)

and let

ĉ(θ, µ̂(η), η)

be the solution to (41). Substitute ĉ into the budget constraint

0 ≤
∞∑

t=0

βt

[∑

η

f(η)g(θ | η)
]
[θt − ĉ(θ, µ̂(η), η)] (42)

and solve for µ̂(η). The market-clearing condition is identical to (10) above, so that this is an

equilibrium. Just as in the separated market, the integrated market solution has the property that

the stationary consumption allocation in the intertemporal model is identical with the allocation in

the one-period model. Since the endowment is nonstorable and there are no capital market frictions

such as borrowing constraints, this is not surprising. The main friction in this model is the ability

to shift consumption over states at a point in time, but as will be demonstrated, this has strong

implications for the stochastic discount factor which is central to asset pricing.

The infinite horizon problem can also be expressed as a sequential dynamic programming prob-

lem and doing so provides some valuable insight into how the integration of markets affects agents
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facing uninsurable income distribution risk. The key is to note that the conditional probability

of moving to a state θ′ ∈ Θ for agent η with endowment θ differs across different η-types. As

mentioned earlier, the property that consumption insurance isn’t actuarially fair creates a wedge

between the trade-off over states offered by the market and the marginal rate of transformation of

marginal utility across states for the agent. Let q̂(θt+1, θt, η) denote the effective price of a unit of

consumption in state θt+1 for a type η agent with current endowment θt. The Bellman equation is

V (z, θt; η) = max

[
U(c) + β

∑

Θ

g(θt+1 | η)V (z(θt+1, θt+1; η)

]
(43)

subject to

θ + z ≥ c+
∑

Θ

q̂(θt+1, θt, η)z(θt+1, θt, η) (44)

Let λ(θ, η) denote the Lagrange multiplier. The first-order conditions and envelope condition are

U ′(c) = λ(θ, η) (45)

q̂(θt+1, θt, η)λ(θ, η) = βg(θt+1, η)Vz (46)

Vz = λ(θ, η) (47)

These conditions can be simplified as

U ′(c)q̂(θt+1, θt, η) = βg(θt+1, η)U ′(ct+1) (48)

Recall that θ′, θ are related according to (17) so that

U ′(c(θt, η)) =
µ(η)q(θt)
g(θt, η)

(49)

Update the time subscript in (49) by one and substitute into (48) to obtain

0 =
[
µ(η)q(θt)
g(θt, η)

]
q̂(θt+1, θt, η)− βg(θt+1, η)

[
µ(η)q(θt+1)
g(θt+1, η)

]
(50)
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so that

q̂(θt+1, θt, η) = β

[
q(θt+1)g(θt, η)

q(θt)

]
(51)

The price q̂ measures the intertemporal terms of trade for a type η agent with current endowment

θt. Notice that (50) also implies

U ′(c(θt, η)
g(θt, η)
q(θt)

= U ′(c(θt+1, η)
g(θt+1, η)
q(θt+1)

.

Notice the similarity between this equation and (27); the price q̂ takes into account the wedge

created by the property that consumption insurance is actuarially unfair.

Observe that by averaging over the different agent types

∑

η

q̂(θt+1, θt, η) = β
∑

η

[
q(θt+1)g(θt, η)

q(θt)

]
(52)

= β

[
q(θt+1)
q(θt)

]
(53)

As a result, the intertemporal marginal rate of substitution for an individual type η agent is

m(θt+1, θt, η) ≡ β
U ′(c(θt+1, η))
U ′(c(θt, η))

= β
Λ(θt, η)

Λ(θt+1, η)
(54)

For any θ′, θ pair in Θ, observe that there is a distribution of IMRS m(θ′, θ, η).

To understand the implications for the agent’s budget constraint, solve (44) for z(θt, η),

z(θt, η) = c(θt, η)− θt +
∑

Θ

q̂(θt+1, θt, η)z(θt+1, η)

Define

qc(θt+1, θt) ≡
q(θt+1)
q(θt)

.

Make the substitution for q̂ and solve recursively forward to obtain

z(θt, η) = c(θt, η)− θt + β
∑

θt+1


qc(θt+1, θt)g(θt, η)[c(θt+1, η)− θt+1 +

∑

θt+2

q̂(θt+2, θt+1, η)z(θt+2, η)



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= c(θt, η)− θt +
∞∑

j=1

βj


 ∑

θt+j∈Θ




j−1∏

i=0

qc(θt+1, θt)g(θt+i, η)


 [c(θt+j, η)− θt+j ]




4 Aggregate Risk

The model so far has deterministic output; there is idiosyncratic risk for an individual agent, and

because the idiosyncratic endowment distribution risk is not insurable at a actuarially fair price,

agents experience consumption fluctuations that average out in the aggregate. The next step is to

introduce aggregate uncertainty in a tractable way.

Let S = {s1, . . . , sS} be a discrete random variable forming a Markov chain with

π(st+1, st)

denoting the one-step ahead probability of the state next period equaling st+1 conditional on

starting in state st. Now assume that the individual agent’s probability of an endowment realization

θ conditional on the aggregate state s and type η is

g(θ | η, s)

For example, there may be some type η agents that have an endowment distribution that is un-

affected by an aggregate shock while other type η agents have endowment distributions that are

affected by the aggregate shock. If s2 > s1 then an example would be g(θ | η, s2) is a mean-

preserving spread of g(θ | η, s1). Let s0, s1, . . . , st be a history of realizations of the aggregate

shock. Denote the probability of the history as

πt(st)

The type η agent solves

max

[ ∞∑

t=0

∑

st

∑

θt

βtπt(st)gt(θt | st, η)U(ct(θt, st, η)

]
(55)
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subject to

0 =
∑

t

∑

st

∑

θt

pt(θ, st)[θt − ct(θt, st, η)] (56)

The first-order condition is

βtπt(st)
∑

θt−1

gt(θt | st, η)U ′(ct(θt, st, η) = µ(η)
∑

θt−1

pt(θt, st) (57)

Only stationary equilibria will be examined. Let c(θt, st, η) be a solution. Define

p(st, θt) ≡
∑

θt−1 pt(θt, st)
βtπt(st)

so that the first-order condition can be expressed as

π(st)g(θt | st, η)U ′(c(θt, st, η)) = µ(η)p(st, θt) (58)

For any two aggregate states ŝ, s̄, observe that

µ(η) =
π(ŝ)g(θ | ŝ, η)U ′(c(θ, ŝ, η))

p(ŝ, θ)
=
π(s̄)g(θ | s̄, η)U ′(c(θ, s̄, η))

p(s̄, θ)

The marginal rate of substitution across aggregate states, given θ,

U ′(c(θ, ŝ, η))
U ′(c(θ, s̄, η))

is not equalized across states since the marginal utility is weighted by the individual’s conditional

probability of θ, s.

Consider a price function of the form

p(s, θ) = π(s)
∑

η

f(η)g(θ | s, η) (59)

so that the price equals the probability that a random agent has endowment θ, conditional on the

aggregate state s. Then given an aggregate state s, the consumption allocation across Θ satisfies

p(s, θ̂)
p(s, θ̄)

=
g(θ̂ | s, η)U ′(c(θ̂, s, η))
g(θ̄ | s, η)U ′(c(θ̄, s, η))

(60)
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The agent’s intertemporal marginal rate of substitution is

m(θt+1, θt, st+1, st, eta) ≡ β
g(θt+1 | st+1, η)U ′(c(θt+1, st+1, η))

U ′(c(θt, st, η))
(61)

Observe that given θt+1, θt, st+1, st, the IMRS is a distribution over N .

5 Conclusion

Under full consumption insurance, heterogeneous agents are able to equalize their marginal rate

of substitution (MRS) state by state. Hence the associated pricing kernel and stochastic discount

factor for the heterogeneous agent model are identical with the representative agent model. Since

the representative agent model has performed poorly in empirical testing, there have been many

efforts to enrich the model by introducing uninsurable idiosyncratic risk. In many instances, agents

are modeled as being identical ex ante and become differentiated only over sample paths. If there

is a countable infinity of agents, the model has the property that the cross sectional distribution

of idiosyncratic risk is identical to the endowment risk an agent faces over his lifetime. In the ab-

sence of capital market frictions, this means that the consumption insurance offered by a standard

Arrow-Debreu contingent claims market allows complete smoothing of idiosyncratic risk. Restric-

tions on the asset market structure, such as simple borrowing constraints, have not substantially

improved the empirical performance of the model. By introducing ex ante heterogeneous income

distribution risk that is only partially insurable because the insurance is actuarially unfair, the

asset market implications of the model are significantly altered. The stochastic discount factor is

now a distribution over different categories of income distribution risk and the pricing kernel is a

weighted average of the individuals’ pricing kernels.

23



References

Aiyagari and Peled [1991]. “Dominant Root Characterization of Pareto Optimality and the Ex-

istence of Optimal Equilibria in Stochastic Overlapping Generations Models,” Journal of Eco-

nomic Theory, 54, 69–83.

Aiyagari, S.R. [1994]. ”Uninsured Idiosyncratic Risk and Aggregate Saving,” Quarterly Journal of

Economics, 109, no. 3, 659–684.

Alvarez F. and U. Jermann [2000]. ”Efficiency, Equilibrium, and Asset Pricing with Risk of De-

fault,” Econometrica, 68, 775–797.

Alvarez F. and U. Jermann [2005]. ”Using Asset Prices to Measure the Persistence of the Marginal

Utility of Wealth,” Econometrica, 73, no. 6, 1977–2016.

Constantinides and Duffie [1994] Journal of Political Economy

Huggett, M. [1993]. ”The Risk Free Rate in Heterogeneous-Agents Incomplete-Insurance Economies,”

Journal of Economic Dynamics and Control, 17, 953–969.

Hansen, L. and R. Jagannathan [1991]. ”Implications of Security Market Date for Models of

Dynamic Economies,” Journal of Political Economy, 99, 225-262.

Kehoe, T. and D. Levine [1993]. ”Debt-Constrained Asset Markets,” Review of Economic Studies,

60, no. 4, 865–888.

Kehoe, T. and D. Levine [2001]. ”Liquidity-Constrained versus Debt Constrained Markets,” Econo-

metrica, 69, no. 3, 575–598.

Kocherlakota, N. [1996]. ”Implications of Efficient Risk Sharing without Commitment,” Review of

Economic Studies, 63, 595–609.

24


