
February 10, 2005

Precautionary Balances and the Velocity of Circulation of Money

Miquel Faig∗ and Belén Jerez∗∗

Abstract

The observed low velocity of circulation of money implies that households hold more

money than they normally spend. A natural explanation for this behavior is that households

face uncertain expenditure needs, so they have a precautionary motive for holding money.

We investigate the precautionary demand for money in a search model where households

are subject to preference shocks. The model predicts that the velocity of circulation of

money is not only low but also interest elastic. The model closely fits United States data

on the velocity of circulation of money and interest rates that span the period 1892-2003.

The empirical analysis reveals a dramatic reduction in precautionary balances towards the

end of our sample, probably linked to innovations in the information technology. This drop

in precautionary balances is crucial for important issues of monetary economics such as the

elasticity of the demand for money and the welfare cost of inflation.
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1 Introduction

From 1892 to 2003, checkable deposits plus the currency in circulation inside the United

States (M1*) was worth on average the GDP produced in 3 months.1 Since during this

period almost all households received income at least once a month and quite often once

in a fortnight or once a week, a large fraction of M1* must have remained unspent in the

course of a pay period. Recently, the worth of M1* has fallen to be around 1 month of

GDP. Therefore, the fraction of unspent M1* during a pay period, although probably still

positive, must have dropped dramatically relative to historical levels. These observations

raise the following two questions.

Why do households hold more money than they normally spend if other assets

bear higher interest? A natural answer to this question is that households hold

precautionary money balances in order to accommodate uncertain expenditure needs.

For example, one never knows if the car will suddenly break down, or one will have

to travel unexpectedly. Households typically hold precautionary balances in order to

face these contingencies, even if holding money is costly.

Why have unspent money balances fallen so dramatically in recent years? A natural

answer is that improvements in the information technology have made possible credit

cards, telephone banking, internet banking, and low fees for rebalancing portfolios.

Consequently, individuals are now able to face unexpected expenses without holding

large precautionary balances.

Our paper shows how a simple search model with precautionary balances explains the

evolution of the observed data on the demand for money in the United States and draws

conclusions for substantive issues of monetary economics.

In this paper, we investigate the precautionary demand for money in a disaggregated

1 M1* differs from the standard M1 by subtracting the currency in circulation outside the United

States. See Section 2 for data sources.
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model where households are subject to preference shocks. In earlier work, the precautionary

demand for money was analyzed by Svensson (1985) in a representative agent model with a

cash-in-advance constraint. As in our model, the agent experienced a preference shock after

deciding the demand for money. In an influential paper, Hodrick, Kocherlakota, and Lucas

(1991) dismissed the quantitative importance of this precautionary demand in the context

of an aggregated model. In their numerical analysis, they found that once the purchases

of the representative agent are calibrated to match the smooth aggregate consumption

expenditures in the United States, the timing of the preference shock is quantitatively

irrelevant. Yet, they acknowledged that “it is possible that a similar model that seriously

treated the aggregation problem could produce reasonable velocity predictions.” We address

this issue by building a tractable yet fully disaggregated search model. This model, even in

a steady state with constant aggregate consumption, generates large precautionary balances

due to individual preference shocks.

We estimate our model using United States data from 1892-2003. Our model closely fits

the velocity of circulation of M1* and its elasticity with respect to interest rates. Moreover,

this empirical implementation reveals that the demand for precautionary balances has

dramatically declined in recent years. This decline has profound consequences for most

substantive issues of monetary economics. For example, it has reduced the elasticity of the

demand for money, the seigniorage the Fed collects at a given rate of inflation, and the

welfare cost of inflation. This last change is dramatic. For most of the past century, raising

the nominal interest rate from 0 to 10 percent used to induce an equivalent reduction of

consumption of around 1 percent. (This figure is similar to the estimates of Lucas, 2000).

In contrast, the same increase today induces an equivalent reduction of consumption of only

0.15 percent.

Since the seminal work of Kiyotaki and Wright (1989), search models have become a

common paradigm in the micro-foundations of money. In the earlier versions of these

models, money was assumed indivisible to simplify the endogenous distribution of money

holdings. Recent contributions built highly tractable models with divisible money by

3



introducing devices which render the distribution of money holdings degenerate across

individuals. Shi (1997) assumed that individuals belong to large symmetric households.

More recently, Lagos and Wright (2005) assumed that individuals sometimes trade

bilaterally and sometimes in a centralized market, and that the goods in the centralized

market yield constant marginal utility. Our paper uses a framework related to these earlier

contributions,2 which proves useful to focus on precautionary money balances.

We assume that individuals belong to a large number of villages. Money is essential in

facilitating trade across villages because the trading process is anonymous, enforcement is

limited, and there is a double coincidence of wants problem. However, within a village,

financial contracts (credit and insurance) are viable because fellow villagers know each

other. With this village construct we capture that individuals in modern societies sometimes

deal with well know parties with whom financial contracts are viable, while other times

they deal with relative strangers with whom future promises are impractical to enforce.

The financial markets inside a village, by allowing individuals to rebalance their portfolios,

render the distribution of money holdings tractable.3

Our model is in many ways different from previous search models of monetary exchange.

One key difference is that we allow for preference shocks since, as we explain above, these

shocks are the foundation for our precautionary demand for money. In addition, we abstract

from the uncertainty of meeting a trading partner by assuming that matching is efficient

(the short-side of the market is always served). Finally, we assume that the terms of trade

are determined as a result of a competitive search process while most of the literature

assumes Nash bargaining (see, however, Rocheteau and Wright (2005)).

The concept of competitive search has been widely used in labor economics since the

work of Moen (1997) and Shimer (1996), and it is an attractive equilibrium concept for

2 See Faig (2004) for a comparison of the three frameworks.

3 The role of financial markets inside a village replaces the role of the large household assumption

in Shi (1997) and dispenses with the assumption that some goods yielding constant marginal utility

are traded in a centralized market in Lagos and Wright (2005).
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several reasons. First, competitive search is more tractable than Nash bargaining. Second,

under competitive search the split of the trading surplus between a buyer and a seller is

determined endogenously as a result of competition instead of being determined by an

arbitrary bargaining weight. Finally, as shown by Rocheteau and Wright (2005), competitive

search leads to efficiency under the Friedman rule, while in a search environment this is not

generically true neither with Nash bargaining nor with Walrasian pricing.

The paper is organized as follows. Section 2 reviews historical data on the velocity

of circulation of money in the United States and documents the facts the paper seeks to

explain. Section 3 presents the theoretical model. Section 4 estimates the model using

United States data. Section 5 concludes.

2 The Data

Figure 1 displays the annual time series of a short term nominal interest rate and the

velocity of circulation of money (ratio of nominal GDP over the quantity of money) in the

United States from 1892 to 2003.4 We plot the velocity for two measures of money: M1 and

M1*. M1 is the standard aggregate reported by the Federal Reserve that includes currency

and checkable deposits. M1* is M1 minus the currency reported by the Federal Reserve

as being abroad. Measures of currency abroad are first reported for December 1964, when

its importance was minimal. However, since that date currency abroad has grown to be

25 percent of M1 in 2003. Our analysis concentrates on the velocity of M1* because it is

the most meaningful of our two measures, but we plot the velocity of M1 to facilitate the

comparison with prior studies.

4 The data plotted in this figure are similar to those analyzed by Lucas (2000) extended backward

from 1900 to 1892 and forward from 1994 to 2003. See the Appendix for the sources.
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Figure 1

Velocity of M1 and Interest Rates in the United States
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From 1892 to 2003, the velocity of circulation of money was on average low: M1*

circulated on average 4.8 times each year. Over time velocity has changed widely. Until

1946, velocity seldom reached 4, but since then it has experienced a marked upward trend.

This upward trend has accelerated in recent years, which is very informative about the

factors that may have driven the change. From 1946 to 1982, the upward trend in velocity

seems to be due to increases in the nominal rate of interest experienced during that period.

However, velocity has increased dramatically after 1982, at a time when nominal interest

rates have collapsed. Therefore, other elements must have played an important role in

the dynamics of velocity. In principle, an upward trend in velocity could be driven by

GDP growth if the transactions elasticity of the demand for money were lower than one.

However, this hypothesis does not fit the data well. GDP experienced long term growth
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for the whole period of analysis, and actually it slowed down since the early seventies. In

contrast, we observe in Figure 1 that the upward trend on velocity accelerated precisely at

the time GDP growth experienced the slowdown. A much better explanation is that the

upward trend in velocity is due to the revolution in the information technology, which in

the last three decades has radically reduced the costs of communication and record keeping.

Besides an upward trend in velocity, Figure 1 also shows a positive correlation between

velocity and interest rates. Since Lucas and Stokey (1987), a common interpretation of

this correlation is that cash must be held for a while prior to the purchase of certain goods

(cash goods), while this cash-in-advance constraint does not apply for other goods (credit

goods). Variations in nominal interest rates affect the relative cost of these two kinds

of goods, thus affecting their demands and the demand for money. While this approach

allows to successfully fit the demand for M1 in the United States (see Lagos and Wright,

2005, for an empirical implementation in a search-theoretic context), it unfortunately

implies counterfactual predictions such as an excessively long pay period, very infrequent

consumption purchases, or a drastic reduction on the demand for cash goods due to

inflation. Our model, without relying on the distinction between cash and credit goods,

explains the low velocity of money and its correlation with interest rates with a reasonable

pay period during which consumers always make purchases.

3 The Model

The economy consists of a measure one of individuals. Individuals live in a large number of

symmetric villages. The members of each village are ex ante identical. They all produce a

perishable good specific to their own village and consume the goods produced in all other

villages. Consequently, individuals must trade outside their village to consume.

Time is a discrete, infinite sequence of days. Each morning an individual must choose to

be either a buyer or a seller in the goods market that convenes later in the day. Within a

village some individuals will be buyers and others will be sellers each day. However, over
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time individuals will alternate between these two roles.

Individuals seek to maximize their expected lifetime utility:

E
∞X
t=0

βtU ¡ε, qbt , qst ¢ , (1)

where

U(ε, qb, qs) = εU(qb)− C(qs) (2)

is the one-period utility function and β ∈ (0, 1) is the discount factor. The one-period
utility depends on the quantity consumed qb if the individual chooses to be a buyer during

the period, and on the quantity produced qs if the choice is to be a seller. It also depends

on an idiosyncratic preference shock ε which affects the utility of consumption εU(qb), but

does not affect the disutility of production C(qs). The preference shock is distributed in the

interval [1, ε̄] with a cumulative distribution F (ε), and drawn in such a way that the Law

of Large Numbers holds across individuals. Both U and C are continuously differentiable

and increasing. Also, U is strictly concave and C is convex, with U(0) = C(0) = 0, and

U 0(0) =∞. Finally, there is a maximum quantity qmax that the individual can produce each

day which satisfies ε̄U(qmax) ≤ C(qmax).

Money is an intrinsically useless, perfectly divisible, and storable asset. Units of money

are called dollars. The supply of money grows at a constant factor γ > β, so

M+1 = γM, (3)

where M is the quantity of money per individual.5 Each day new money is injected via

a lump-sum transfer τ common to all individuals. For money to grow at the rate γ, this

transfer must satisfy:

τ = (γ − 1)M. (4)

Each day, goods are traded in a decentralized market where buyers and sellers from

different villages meet bilaterally. In this market, buyers and sellers search for trading

5 The subscript t is omitted in most expressions, i.e. M stands for Mt and M+1 stands for Mt+1.
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opportunities and the terms of trade are determined by a competitive search process (as in

Moen (1997) and Shimer (1996)). Before the market opens, each seller simultaneously posts

a trading offer, which is a contract detailing the terms at which the seller commits to trade.

Once the market opens, buyers direct their search towards the sellers posting the most

attractive offer for them (possibly randomizing over offers for which they are indifferent).

The set of sellers posting the same offer and the set of buyers directing their search towards

them form a submarket. In each submarket, buyers and sellers from different villages are

then matched in bilateral pairs.

We specialize the matching process to focus on the precautionary demand for money as

follows. We assume that individuals experience only one match with an individual from

another village and the short-side of the market is always served. That is, the probability

that a buyer meets a trading partner in a submarket is

πb (α) = min (1, α) , (5)

where α is the ratio of sellers over buyers in that submarket. Similarly, the probability that

a seller meets a trading partner is

πs (α) = min
¡
1, α−1

¢
. (6)

As we shall show, this matching technology implies that in equilibrium α = πb = πs = 1 in

all active submarkets. Therefore, individuals know that they will find a trading partner each

day. However, they do not know who this trading partner is going to be. When a buyer

and a seller meet in a submarket they trade according to the posted offer that characterizes

the submarket.

Outside their village, individuals are anonymous. This anonymity combined with the

absence a double coincidence of wants (implied by the ex-ante choice of trading roles)

makes money essential in the goods market. In other words, financial contracts engaging

individuals from different villages are not enforceable. However, inside a village financial

contracts are enforceable. In particular, in each village there is a centralized credit market
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where a one-period risk-free bond is traded. There is also a centralized insurance market

where individuals can buy insurance against their idiosyncratic risks. As it will become

apparent, these two centralized markets exhaust the gains from trade inside a village.

A typical day proceeds as follows (see Table 1). In the morning, centralized financial

markets are open in each village. During this time, financial contracts from the previous

day are settled. The government hands our monetary transfers that increase the money

supply. Individuals decide whether to be buyers or sellers. Sellers post their trading offers.

Then, all individuals adjust their holdings of bonds and money, and purchase insurance if

they wish. At noon, once financial markets have closed, buyers experience an idiosyncratic

preference shock that determines their willingness to pay for goods and is publicly observed.

In the afternoon, the goods market is open. Buyers direct their search to the sellers posting

the most attractive offer for them. This organizes traders in submarkets where the short

side of the market is always served. When a buyer and a seller meet in a submarket they

trade according to the specified offer. As a result of trade, sellers produce, buyers consume,

and money changes hands from buyers to sellers.

Table 1

MORNING NOON AFTERNOON

Financial markets are open Goods market is open

Financial Choice Choice Realization Buyers Buyers- Trade

claims buyer-seller. of bonds, preference pick among sellers takes

are Post trading money, shocks. trading are place.

settled. offers. insurance. offers. matched.

Our equilibrium concept combines perfect competition in all centralized financial markets

with competitive search in the decentralized goods market. In equilibrium, individuals

make optimal choices in the environment where they live. This environment includes a

sequence of nominal interest rates and insurance premia, and a sequence of conditions in the

goods market to be detailed below (essentially the reservation surpluses of other traders).
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Individuals have rational expectations about the future conditions of this environment. We

focus on symmetric and stationary equilibria where all individuals follow identical strategies

and real allocations are constant over time.

To characterize an equilibrium, we adopt the following strategy. First, we describe

the buyer-seller choice and the financial decisions of a representative individual given the

equilibrium nominal interest rates and insurance premia, as well as some conjectures about

the conditions in the afternoon goods market. Then, we characterize the conditions in the

goods market in a competitive search equilibrium. Finally, we show that these conditions

satisfy our former conjecture, and we provide a formal definition of an equilibrium.

3.1 The Buyer-Seller Choice and the Financial Decisions

Consider an individual facing the following environment:

In the credit market, the equilibrium nominal interest rate is:

i =
γ − β

β
, (7)

where γ is the growth factor of the money supply and β is the subjective discount factor.

Since good prices are proportional to M, which grows at the factor γ, the real interest rate

is then equal to the subjective discount rate: β−1 − 1.
In the insurance market, the equilibrium insurance premia are actuarially fair. More

specifically, an individual that decides to be a buyer can purchase an insurance contract

which delivers µbε dollars next day contingent on experiencing a shock ε at noon. The

premium µ̃b of such a contract is µ̃b =
R ε
1
µbεdF (ε). In our environment, there is no need

for insuring risks on trading opportunities because such risks vanish in equilibrium (all

individuals that search find a trading partner with probability one).

The afternoon goods market consists of a continuum of submarkets, one for each buyer

type ε. In each submarket, the terms of trade are identical in all bilateral meetings. The

submarket of type ε is characterized by a triple (qε, dε, αε) where qε is the quantity traded,

dε is the buyer’s total payment in dollars, and αε is the ratio of buyers over sellers. This
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description allows for the possibility that some submarkets are inactive with qε = dε = 0,

so the corresponding buyer types do not trade. Since the payments dε change over time

as the money supply grows, it is convenient to also characterize the submarket by a triple

(qε, zε, αε) where zε obeys:

zε =
βdε
M+1

. (8)

In a stationary equilibrium the triples (qε, zε, αε) are time invariant. The variable zε can

be interpreted as real payments in utils. The money supply is used to deflate nominal

quantities. This deflator is appropriate in the environment the individual faces because

goods prices increase proportionately with M (see (3) and (4)). The discount factor β and

M+1 appears in (8) because the payment dε cannot be spent until next period.

Prior to all financial choices, each morning the individual chooses the trading role that

yields maximal utility. The value function V of the individual at the beginning of a day

then obeys:

V

µ
A

M

¶
= max

½
V b

µ
A

M

¶
, V s

µ
A

M

¶¾
; (9)

where A is the initial wealth in dollars, and V b and V s are the value functions conditional

on being a buyer or a seller during the day, respectively. The ratio A/M can be interpreted

as initial real wealth and is denoted by a.

While financial markets are open, the individual reallocates wealth and may also

purchase insurance. Conditional on being a buyer the individual chooses the demands for

money, mb, bonds, bb, and the insurance coverages,
©
µbε
ª
ε∈[1,ε̄] , to solve:

V b (a) = max

Z ε̄

1

©
πb (αε)

£
εU (qε) + βV

¡
abε+1
¢¤
+
£
1− πb (αε)

¤
βV

¡
ab0+1
¢ª

dF (ε) (10)
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subject to

abε+1 =
mb + bb (1 + i) + µbε − µ̃b + τ − dε

M+1
, (11)

ab0+1 =
mb + bb (1 + i)− µ̃b + τ

M+1
(12)

a =
mb + bb

M
, and (13)

mb ≥ dε for all ε ∈ [1, ε̄] . (14)

Contingent on the realization of the shock ε, the buyer either meets a seller and buys qε for

dε dollars or does not meet a seller and purchases nothing. The probabilities of these two

events are πb (αε) and 1−πb (αε), respectively. If the buyer meets a seller, next period’s real

wealth abε+1 is given by (11). If the buyer does not meet a seller, next period’s real wealth

ab0+1 is given by (12). The choice of how to allocate wealth between money m
b and bonds bb

must satisfy the budget constraint (13). The buyer must also carry enough money to make

each possible contingent payment, so mb must satisfy (14).

Analogously, conditional on being a seller the individual chooses the demands for money

ms and bonds bs to solve:

V s (a) = maxπs (αε)
£
βV

¡
asε+1
¢− C (qε)

¤
+ [1− πs (αε)]βV

¡
as0+1
¢

(15)

subject to

asε+1 =
ms + bs (1 + i) + τ + dε

M+1
, (16)

as0+1 =
ms + bs (1 + i) + τ

M+1
, (17)

a =
ms + bs

M
, and (18)

ms ≥ 0. (19)

for all (qε, dε, αε) where qε > 0. Since the seller gets the same utility in all active submarkets,

V s is not indexed by ε. The seller does not need to carry money to make payments, but

money holdings cannot be negative as stated in (19).
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In addition to all constraints specified above, the individual faces an endogenous lower

bound on next period’s real wealth because he or she must be able to repay the amounts

borrowed with probability one without reliance to unbounded borrowing (No-Ponzi game

condition):

a+1 ≥ amin with probability one. (20)

We denote by a+1 the stochastic real wealth for next period, which depends on the choice of

being a buyer or a seller, the realization of ε, and the trading match. The endogenous lower

bound amin is equal to minus the present discounted value of the maximum guaranteed

income the individual can obtain as a seller.

The optimization program described in equations (9) to (20) is easily solved once the

value function V is known. The value function V is a well defined function of a that can be

characterized using standard recursive methods. Also, V is concave with a linear segment

as stated in the following proposition and proved in the Appendix.

Proposition 1: There is an interval [a, a] ⊂ [amin,∞) where the equilibrium value

function V takes the linear form

V (a) = v0 + a. (21)

where v0 is a term independent of a. Outside this interval, V is strictly concave and

continuously differentiable. Finally, the interval [a, a] is absorbing, that is a ∈ [a, a] implies
a+1 ∈ [a, a] with probability one.

The linear segment of V is due to the endogenous choice of the trading role individuals

make each day. Intuitively, if an individual is not rich enough to be a buyer forever and

not so poor to have to be a seller at perpetuity, then the individual will alternate between

being a buyer and a seller. As the individual does so, wealth does not affect the quantities

consumed or produced, instead it affects how often and how early the individual consumes

or produces. Since utility is linear on the times and the timing an individual consumes and

produces, the value function is linear.

14



The property that the interval [a, a] is absorbing simplifies the model dramatically. As

long as all individuals have initial wealth in the interval [a, a] , as we assume from now on,

the behavior of all buyers and all sellers is independent from their wealth. Therefore, there

is no incentive to create submarkets that cater to individuals of different wealth and the

distributions of money holdings are easily characterized.

The optimal demands for money follow from the fact that money earns not interest but

bonds earn i > 0. This implies that it is not optimal to carry money balances that are never

used. Therefore, mb is equal to the highest contingent payment: mb = max {dε}ε∈[1,ε̄] and
ms = 0. Using these optimal demands for money, (21), and a+1 ∈ [a, a] with probability
one, the value functions of the buyer (10) and the seller (15) simplify into:

V b (a) = Sb + β

µ
v0 +

γ − 1
γ

¶
+ a, and (22)

V s (a) = Ss + β

µ
v0 +

γ − 1
γ

¶
+ a. (23)

These value functions differ only on the expected trading surpluses of buyers and sellers in

the goods market. Namely,

Sb =

Z ε̄

1

πb (αε) [εU (qε)− zε] dF (ε)− im, and (24)

Ss = πs (αε) [zε − C (qε)] . (25)

In (24), we define m to be the real money in next day utils: m ≡ βmb/M+1. Since buyers

carry only enough money to make the highest contingent payment, we have

m = max {zε}ε∈[1,ε̄] . (26)

Note that the insurance coverages are missing from (24). As long as a+1 ∈ [a, a] with
probability one, an individual is risk neutral and thus indifferent between purchasing

insurance or not. The only role played by insurance in this model is to ensure that wealth
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does not drift out of the interval [a, a]. This role is only important if individuals fail to trade

along the equilibrium path with positive probability. With efficient matching, insurance

is redundant if the interval of preference shocks is sufficiently narrow, so buyers purchase

positive amounts for all realizations of ε. In this case, the individual prevents a+1 from

drifting below a by choosing to be a seller and prevents it from drifting above a by choosing

to be a buyer.

3.2 Competitive Search Equilibrium

In this section we characterize the equilibrium conditions for the goods market and define

a symmetric monetary stationary equilibrium. We assume that all individuals have initial

wealth in the interval [a, a] , so the trading surpluses of buyers and sellers are given by (24)

and (25).

In the morning, when individuals can still rebalance their portfolios, sellers post their

trading offers in all submarkets where they wish to participate. A trading offer is a pair

(qε, zε) that specifies the output offered to and the payment demanded from a buyer of type

ε.6 All individuals have rational expectations regarding the number of buyers that will be

attracted by each offer, and thus about the relative proportion of buyers and sellers that

will trade in each submarket. In a competitive search equilibrium the offers posted by the

sellers must be such that no seller has incentives to post a deviating offer.

Let Ωε be the set of vectors (qε, zε, αε) characterizing the submarkets where the buyers

of type ε choose to trade in equilibrium. If buyers of type ε choose not to trade at all, then

Ωε is a singleton with qε = zε = 0 (there is a single inactive submarket for this type). The

set of all submarkets that are formed in equilibrium is then Ω = Πε∈[1,ε̄]Ωε.

A competitive search equilibrium is a set {Ω, S̄b, S̄s} such that the following four

6 We could allow for offers which are contingent both on the type ε and the wealth a of the buyer.

Since the buyer’s expected surplus (24) and money balances (26) are independent of a, from the sellers’ view point all
buyers of a given type ε are identical even if their wealth is different. Hence, restricting to offers

which are only contingent on ε is without loss of generality.
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conditions hold:

1. Sellers attain the same expected surplus S̄s in all active submarkets.

2. Buyers attain the same expected surplus S̄b.

3. The expected surpluses of buyers and sellers are identical provided at least one

submarket is active: S̄b = S̄s

4. Each ω ∈ Ω solves the following program:

S̄b = max
{(qε,zε,αε)}ε∈[1,ε̄]

Z ε̄

1

©
πb (αε) [εU (qε)− zε]

ª
dF (ε)− im (27)

subject to

m = max {zε}ε∈[1,ε̄] , (28)

εU (qε)− zε ≥ 0 for ε ∈ [1, ε̄] , and (29)

πs (αε) [zε − C (qε)] = S̄s for all active ε ∈ [1, ε̄] . (30)

The rationale for these conditions is the following. (1) Sellers are free to choose the

submarket where they participate, so they must attain the same expected surplus in all

active submarkets no matter the type of buyer they trade with. (2) Conditional on the

realization of ε, buyers are also free to trade in any submarket in Ωε, so they must attain the

same conditional expected surplus in any of these submarkets. Since the distribution of ε is

identical for all buyers, all buyers must attain the same ex ante expected surplus. (3) An

equilibrium with at least one active submarket must have both buyers and sellers present

in that submarket, so individuals must be indifferent between being buyers or sellers. (4)

Buyers choose among submarkets in order to maximize their expected surplus (27) subject

to three constraints. Constraint (28) says that the buyer must be able to pay for the good

in each submarket. Constraint (29) says that the buyer’s utility must be non-negative in

each submarket. Constraint (30) says that the buyer chooses among offers which give the

seller a fixed surplus S̄s. Clearly, sellers never post deviating offers that imply a lower
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expected surplus than S̄s because they can attain S̄s an any active submarket.7 If a seller

tries to post an offer that attracts buyers and yields a higher expected surplus than S̄s,

other sellers would profitably undercut this offer (e.g. by offering the same quantity for a

slightly lower payment). Finally, a seller cannot create a deviating submarket that attracts

several buyer types with cross-subsidies because other sellers would try to attract the type

paying the subsidy with a more attractive offer.

The solution to program (27) to (30) must maximize the total expected surplus from a

match subject to the cash constraint and the individual rationality constraints. Therefore,

in any active submarket buyers and sellers must trade with probability one:

αε = πb (αε) = πs (αε) = 1. (31)

Some buyer types may not trade because there is no active submarket serving them. This

is the case if the total surplus is lower than S̄s, for then no seller posts an offer targeting

these types:

qε = zε = 0 if εU (q)− C (q) ≤ S̄s for all feasible q. (32)

Using (31) and (32), solving for zε in (30), and restating (28), program (27) to (30)

simplifies to:

S̄b = max
m,{qε}ε∈[1,ε̄]

Z ε̄

1

max{εU (qε)− S̄s − C (qε) , 0}dF (ε)− im (33)

subject to

S̄s + C (qε) ≤ m for ε ∈ [1, ε̄] , and (34)

εU (qε)− C (qε) ≥ S̄s if qε > 0. (35)

When (34) and (35) do not bind, the first order condition with respect to qε is

εU 0 (qε) = C 0 (qε) . (36)

7 Since individuals are infinitesimal in the market, they take as given the expected surplus of other individuals.
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The output qε that solves (36) is unique and increasing with ε given the convexity of C and

concavity of U . Hence, either the cash constraint (34) is never binding or it binds in an

interval [ε̂, ε̄] . Similarly, either the individual rationality constraint (35) is never binding or

it binds for an interval [1, ε0]. Therefore, the quantities of output that solve program (33)

to (35) obey: 
qε = 0 for ε ∈ [1, ε0] if ε0 > 1,

εU 0 (qε) = C 0 (qε) for ε ∈ (ε0, ε̂], and

qε = qε̂ ≡ q̂ for ε ∈ [ε̂, ε̄] .
(37)

Furthermore, the buyers’ real money balances are given by

m = S̄s + C (q̂) . (38)

The break-point for zero output ε0 is characterized by combining (35) with equality and

(37). The break-point for a binding cash constraint ε̂ is obtained from the first order

condition of program (33) to (35) with respect to m :

i =

Z ε̄

1

δεdε, (39)

where δε is the Lagrange multiplier of (34). The Kuhn-Tucker Theorem implies δε = 0 for ε ∈ [1, ε̂] , and

δεC
0 (q̂) = [εU 0 (q̂)− C 0 (q̂)] dF (ε) for ε ∈ [ε̂, ε̄] .

(40)

Using (37) and (40) to solve the integral in (39), we obtain the break-point ε̂ as an implicit

function of i:

i =

Z ε̄

ε̂

³ε
ε̂
− 1
´
dF (ε). (41)

To complete the characterization of a competitive search equilibrium, it remains is to

determine S̄s. Since the expected surplus is the same for buyers and sellers, S̄s is given byZ ε̄

ε0

£
εU (qε)− S̄s − C (qε)

¤
dF (ε)− i

£
S̄s + C (q̂)

¤
= S̄s. (42)

We are ready for a formal definition of equilibrium. A symmetric monetary
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stationary equilibrium is a vector of real numbers
¡
i, ε0, ε̂,m, S̄s

¢
and a set of real

functions {(αε, qε, zε)}ε∈[1,ε̄] that satisfy the system of equations: (7), (30), (31), (32), (37),

(38), (41), and (42). This equilibrium is consistent with the environment conjectured

in Subsection 3.1. The credit market clears because individuals have a perfectly elastic

net demand for bonds at the interest rate (7). The insurance market clears by the way

the fair premia have been defined. These financial markets exhaust the gains for trading

financial securities in the morning because all individuals have identical marginal rates of

substitution in their margins of choice. Finally, since the solution to program (27) to (30)

is unique, there at most one active submarket for each type ε.

An interesting property of the equilibrium is that it can be implemented if sellers post a

trading offer which consists of a simple price schedule:

Z (q) = S̄s + C (q) , (43)

together with the promise to sell any quantity q for Z (q) utils (Z (q)β−1M+1 dollars). The

price schedule (43) has two tiers. The first tier is a flat amount that covers the seller’s

expected surplus. The second tier is a variable amount that covers the production cost

of output. One can easily check that a buyer facing (43) chooses a quantity of output

consistent with (37) and a quantity of money consistent with (41).

Interestingly, the price schedule in (43) is independent of the buyer’s type. This is

important because it means that all buyers face the same prices. Hence, the equilibrium

can be implemented even if types can not be publicly observed because buyers have no

incentives to lie about their type.

The welfare effects of inflation are captured by equations (32), (37), (38) and (41),

together with the equation that determines the equilibrium nominal interest rate (7). At

the Friedman rule (γ ↓ β), the opportunity cost of holding money vanishes since i ↓ 0.
Buyers then hold enough money to avoid being liquidity constrained in all contingencies:

ε̂ = ε̄. In this instance, in any active submarket qε is efficient since the marginal utility of
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consumption is equal to the marginal disutility of production.8 Therefore, the equilibrium

is efficient at the Friedman rule. For γ > β, the opportunity cost of holding money is

positive since i > 0. Buyers then react by reducing their money balances relative to the

Friedman rule and they are liquidity constrained for high realizations of the preference

shock: ε̂ < ε̄. When this happens, the output traded is below the efficient level of output,

and the marginal utility of consumption for liquidity constrained individuals is above the

marginal cost of production. This is the source of the welfare cost of inflation in this model.

The interest elasticities of the demand for money and the velocity of circulation of money

are implicitly determined by equations (41) and (38). As i increases, ε̂ falls so buyers reduce

their real money balances and spend on average a larger fraction of them. As a result,

money circulates faster. There are two effects of i on m. Buyers carry enough money to pay

for S̄s +C (q̂) . If i increases, q̂ falls and so m falls. Furthermore, the total expected surplus

decreases as a result of inflation, so the seller’s surplus S̄s falls implying a further reduction

in m.

3.3 Extension

As seen in Section 2, the time series of velocity in the United States displays an upward

trend which we argued was likely due to advances in the information technology. We do

not view these advances as having eliminated M1* as the main media of exchange, but as

allowing conversions in and out of M1* assets more easily and speedily. Thus individuals can

now face unexpected expenses without holding large precautionary balances. To incorporate

these technological advances in our model, we assume that a fraction of individuals in each

village are able to communicate with other fellow villagers early in the afternoon, so they

can rebalance their portfolio after they know their preference shock but prior meeting a

seller.9 Consequently, there is a fraction θ of individuals that experience the preference

8 As noted above, a market has no active submarket if the total expected surplus is lower than the opportunity cost of

sellers S̄s. This is also an efficiency condition.

9 See Berentsen, Camera, and Waller (2004) for a model that views banks as institutions that facilitate
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shock after deciding the demand for money, while the rest experience the preference shock

prior to this decision. For tractability, we assume that all individuals have the same ex ante

probability of a particular timing. However, over time, as technology advances, the fraction

θ of individuals that need precautionary balances declines.

The analysis of this extended model is analogous to the one in the previous sections. A

competitive search equilibrium must still satisfy conditions 1 to 3. Condition 4 is now that

each ω ∈ Ω solves the following program:

S̄b = max
{(αε,qε,zε),(α∗ε ,q∗ε ,z∗ε ,m∗ε)}ε∈[1,ε̄]

θ

µZ ε̄

1

©
πb (αε) [εU (qε)− zε]

ª
dF (ε)− im

¶
+(1− θ)

µZ ε̄

1

©
πb (α∗ε) [εU (q

∗
ε)− z∗ε ]

ª
dF (ε)− im∗

ε

¶
(44)

subject to

m = max {zε}ε∈[1,ε̄] and m∗
ε = zε for all ε ∈ [1, ε̄] , (45)

εU (qε)− zε ≥ 0 and εU (q∗ε)− z∗ε ≥ 0 for ε ∈ [1, ε̄] , and (46)

πs (αε) [zε − C (qε)] = S̄s and πs (α∗ε) [z
∗
ε − C (q∗ε)] = S̄s for all active ε ∈ [1, ε̄] . (47)

For the individuals that carry precautionary balances, the conditions for the optimality

of {(αε, qε, zε)}ε∈[1,ε̄] are the same as in the previous subsection. For the individuals that
carry only the money they know they are going go spend, the conditions of optimality of

{(α∗ε, q∗ε , z∗ε , ,m∗
ε)}ε∈[1,ε̄] are:

m∗
ε = z∗ε = S̄s + C (q∗ε) , and (48)

 α∗ε = 0 q∗ε = 0 if εU (q)− C (q) (1 + i) ≤ S̄s (1 + i) for all q

α∗ε = 1 εU 0 (q∗ε) = C 0 (q∗ε) (1 + i) otherwise.
(49)

this type of arrangements.
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Buyers that know their preference shock before deciding the demand for money carry only

the money they know they are going to spend. The real value of this money is equal to the

cost of producing the goods to be purchased plus the cost of selling them. Efficient matching

implies the ratio of buyers over sellers is one in all active submarkets. A submarket is active

if the trading surplus in this submarket can cover the cost of selling goods. Finally, the

marginal utility of consumption is equal to the marginal cost of acquiring goods, which

includes the cost of carrying money, in all active submarkets.

In this extended model, the equality between the expected trading surpluses of buyers

and seller is given by

S̄s = θ

Z ε̄

ε0

£
εU (qε)− S̄s − C (qε)

¤
dF (ε)− i

£
S̄s + C (q̂)

¤
+

(1− θ)

Z ε̄

1

©
εU (q∗ε)−

£
S̄s + C (q∗ε)

¤
(1 + i)

ª
dF (ε). (50)

A symmetric monetary stationary equilibrium is a real vector
¡
i, ε0, ε̂,m, S̄s

¢
, and

a set of real functions {(αε, qε, zε) , (α
∗
ε, q

∗
ε , z

∗
ε ,m

∗
ε)}ε∈[1,ε̄] that satisfy the system of equations:

(7), (31), (32), (37), (38), (41), (47), (48), (49), and (50).

4 The Estimation of the Model

This section estimates the extended model advanced in Subsection 3.3 using primarily the

United States data described in Section 2. The estimated model is then used to address

several important issues in monetary economics.

In the empirical implementation, we adopt specific functional forms for U, C, and F. The

functional forms for the utility of consuming and the disutility of producing are assumed to

be respectively isoelastic and linear:

U(qε) =
q1−σε

1− σ
, σ ∈ (0, 1) , and (51)
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C(qε) = qε. (52)

These functional forms are the most commonly used in the literature. With these functional

forms, an interesting property that will be used below is that the average commercial

margin is increasing with the curvature parameter σ. In particular, the average commercial

margin is σ/(2 − σ) as long as buyers purchase goods for all ε and i = 0.10 Intuitively, if

U has a large curvature parameter σ, individuals seek to consume small quantities often

because marginal utility is strongly decreasing in qε. As a result, individuals require a large

remuneration, in the form of a large commercial margin, to sacrifice their time to be sellers.

Previous literature offers little guidance about the distribution of preference shocks.

After some experimentation, we discovered that to generate a realistic elasticity of the

demand for money, large preference shocks must be rare relative to low preference shocks.

A convenient way to capture this is to assume that the distribution of shocks is uniform

on the interval (1, ε̄] but has mass probability at 1. This distribution has the following

convenient interpretation. With probability p, buyers have a "normal" desire to consume

in which case ε is normalized to 1. With probability 1− p, buyers experience a larger than

normal desire to consume. When this happens ε is uniformly distributed on the interval

(1, ε̄]. Algebraically, the distribution function is

F (ε) =

 p at ε = 1, and
1−p
ε̄−1 (ε− 1) for ε ∈ (1, ε̄].

(53)

Thus, the density for ε ∈ (1, ε̄] is constant and equal to

ϕ =
1− p

ε̄− 1 . (54)

With the distribution function (53), condition (41) that determines the critical shock ε̂ at

10 The derivation of this formula is lengthy and unrelated to the main issues of the paper, so it is not provided here.
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which individuals start being liquidity constrained simplifies into

i

ϕ
=
(ε̄− ε̂)2

2ε̂
. (55)

Equation (55) determines the key properties of the demand for money for individuals

that choose their money balances before knowing their preference shock. At i ↓ 0, the
liquidity constraint never binds (ε̂ = ε̄), so the demand for money depends on the maximum

realization of the preference shock ε̄. Large values of ε̄ imply a large demand for money. At

positive interest rates, the cost of carrying money balances induces individuals to accept

a positive probability of being liquidity constrained (ε̂ < ε̄). The size of this effect falls

with the density of the preference shocks ϕ. Intuitively, if large preference shocks are rare

(p close to one and ϕ close to zero), the losses from carrying less money are small because

individuals are seldom liquidity constrained. Hence, individuals are willing to cut money

balances substantially in response to a rise in i. As a result, the demand for money is highly

elastic.

We estimate the parameters of the model (β, σ, ε̄, p, θ) using primarily the time series

of the velocity of circulation of M1* and the nominal rate of interest examined in Section

2. The velocity of circulation of money in our model, the theoretical counterpart of the

velocity of M1*, is equal to:

Velocity ≡ GDP
M

=
θ
R ε̄
ε0

£
S̄s + C (qε)

¤
ϕdε+ (1− θ)

R ε̄
1

£
S̄s + C (q∗ε)

¤
ϕdε

θ
£
S̄s + C (q̂)

¤
+ (1− θ)

R ε̄
1

£
S̄s + C (q∗ε)

¤
ϕdε

. (56)

If θ = 0, velocity is one because all individuals carry exactly the money they know they are

going to spend. In contrast, if θ > 0, some individuals hold precautionary balances. As a

result, velocity is below one and it is interest elastic.

Assuming that variations in nominal interest rates are driven by exogenous shifts in

monetary policy, the time series examined in Section 2 provide information not only on

the level of velocity and its time trend, but also on the response of velocity to changes in

nominal interest rates. Therefore, we are able to identify ε̄, p, and the time profile of θ. The

parameters ε̄ and p are assumed constant, so preferences are time invariant. The parameter
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θ is assumed to be the following polynomial of time: θ = θ0 + θ1T + θ2T
2 + θ3T

3, where

T measures time from T = −1 at the beginning of the sample to T = 1 at the end of the
sample,11 and θ0 is normalized so the maximum value of θ is one.

To properly identify the rest of parameters in our model, we complement the data

on velocity and nominal interest rates with additional information. We calibrate

β so the real rate of interest is a realistic 3 percent. Similarly, we calibrate σ

to match the average commercial margin reported by the Bureau of the Census

(www.census.gov/svsd/www/artstbl.htlm) (around 28 percent) 12. Finally, we choose the

length of the period to be 2 weeks. This captures the fact that most households receive

income and make regular purchases at a fairly high frequency.

We estimated the model using nonlinear least squares and treating velocity as the

independent variable. More precisely, we converted the velocities and interest rates in

our data from annual to biweekly13, and we searched for the vector of parameter values

(σ, ε̄, p, θ0, θ1, θ2, θ3) that minimizes the sum of squared residuals (difference between actual

and predicted velocities) subject to the constraints σ = 0.435 and max(θ) = 1 (β is not

needed to calculate velocity for a given nominal interest rate). The parameter estimates are

reported in Table 2.

11 That is, T = (Year − 1947.5)/55.5.
12 Because preferences are additive σ is also the inverse of the intertemporal elasticity of substitution of consumption.

However, we do not think that calibrating σ to match the intertemporal elasticity of substitution is a

reasonable choice here. Faig and Jerez (2004) present a model with multiple purchases each period

that distinguishes between the two roles that σ plays here.

13 The biweekly velocity is the annual velocity divided by 26. One plus the biweekly interest rate

is equal to one plus the annual interest rate to the power of 1/26.
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Table 2

ESTIMATION OF THE MODEL

Sample: Annual time series United States 1892-2003

Dependent variable: Velocity (GDP/M1*)

Independent variables: Commercial paper rate and time

Method: Non-linear least squares

Period length: 2 weeks

σ = 0.435

θ0 = 0.859

Parameter ε̄ p θ1 θ2 θ3

Estimate 4.000 0.966 −0.275 −0.290 −0.156
Std. dev. estimates14 0.080 0.007 0.059 0.052 0.090

Sum of squared residuals = 0.029

R2 = 0.994

As we can see in Table 2, the five parameters (ε̄, p, θ1, θ2, θ3) are precisely estimated and

have reasonable values. The first four parameters are significantly different from zero at

all reasonable confidence intervals. The last parameter is marginally significant. The high

R2 signals a very close fit between the model and the data. To better judge this close fit

we plot in Figure 2 the annual velocity predicted by the model (dark plain line) and the

actual velocity (line with circles). The two lines move very closely together. To ascertain

how much this close fit is due to the correct estimation of the trend and how much it is

due to the correct predictions of the theoretical model, Figure 4 displays the deviations of

the actual and the predicted velocities from trend velocity (trend velocity is defined as the

predicted velocity for a constant interest rate at the average level of 4.56 percent). Figure

3 shows that our estimated model predicts very accurately the deviations of velocity from

14 The standard deviations of the estimates were calculated using the formula in Doan (2002) pp. 218-

9 with k = 5. This formula is robust to hetereostadicity and autocorrelations of the error term up to five years apart.
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trend. For example, the model correctly predicts the fall of velocity during the low interest

rate years of the Great Depression. It also predicts the rise in velocity, well above its trend,

during the period of high interest rates that went from the mid-sixties to the mid-eighties.

Finally, it predicts with a slight lead, the dramatic ups and downs of detrended velocity

in the last portion of the sample. The largest persistent residuals between the actual and

the predicted velocities correspond to the Second World War and its aftermath. However,

this deviation is not too surprising because this was a period of massive price and financial

controls. The time profile of trend velocity, displayed in Figure 2 with a thin line, is

interesting in itself. Trend velocity was almost constant in the first half of the sample.

Whereas it increased at an accelerating rate in the second half. As examined below, this

sharp rise in trend velocity has major implications for a variety of issues.
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Figure 2
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One of the reasons behind the close fit of the model illustrated in Figures 2 and 3 is the

correct response of velocity to changes in the nominal interest rate. The model accurately

predicts that neither the interest elasticity nor the interest semi-elasticity of velocity are

constant, but they change with the nominal interest rate. For the median value of θ (0.859),

Figure 4 graphs the interest semi-elasticity and the interest elasticity of velocity as functions

of the nominal interest rate. The elasticity is an increasing and concave function of the

rate of interest. The semi-elasticity is a decreasing and convex function of the same rate.

Curiously, the graph for this last function is approximately an hyperbola.

Figure 4
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Table 3

IMPLICATIONS OF THE MODEL

Year 1892 1920 1948 1976 2003

Estimated value of θ (%) 100 94.3 85.6 62.0 13.9

Equilibrium at average i (4.56 % annual)

Average commercial margin (%) 28.1 28.1 28.1 28.0 27.9

Precautionary balances over money supply (%) 87.1 86.4 85.2 80.6 47.6

Fraction of buyers liquidity constrained (%) 1.11 1.03 0.94 0.68 0.15

Seigniorage over GDP (%) 0.45 0.43 0.39 0.30 0.11

Interest semi-elasticity of velocity 5.77 5.76 5.72 5.52 3.41

Interest elasticity of velocity 0.26 0.26 0.26 0.25 0.16

Effect of rising i from 0 to 10% annual

Equivalent variation of consumption (%) 1.06 1.00 0.91 0.66 0.15

Reduction GDP (%) 6.98 6.63 6.09 4.63 1.65

Welfare cost over seigniorage (%) 25.6 25.4 25.1 23.8 14.7

Table 3 calculates the implications of the model for five values of θ that correspond to

our estimates for the years: 1892, 1920, 1948, 1976, and 2003. The upper part of Table 3

calculates implied equilibrium values if the nominal rate of interest had remained constant

at its average level (4.56 percent) throughout the sample. The lower half calculates the

implications of raising the nominal rate of interest from 0 to 10 percent. The time profile of

θ mirrors the time profile of trend velocity: it is almost constant from 1892 to 1948, it falls

significantly from 1948 to 1976, and it plummets from 1976 to 2003. This last drop in θ
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has had a major effect on the properties of the demand for money. As the table shows, the

drop in θ from 1976 to 2003 has led to dramatic reductions in the following: precautionary

balances, fraction of buyers that are liquidity constrained, ability to collect seigniorage, and

interest semi-elasticity and elasticity of velocity. For example, at a 4.56 percent nominal

rate of interest, the government could collect around 0.4 percent of GDP from 1892 to 1948,

but it could only collect 0.11 percent of GDP in 2003. The semi-elasticity of velocity was

between 5 and 6 between 1892 and 1976, but it dropped to 3.41 in 2003.

The sharp drop in the need for precautionary balances occurred in the last few decades

has also major implications for the welfare cost of inflation. For most of our sample years,

we find that the welfare cost of a 10 percent increase of inflation from the Friedman rule

is equivalent to a reduction of consumption of about 1 percent. This is consistent with

the estimates of Lucas (2000). However, we also find that the welfare cost of inflation has

plummeted with θ. Intuitively, the shift from a high and elastic demand for money to a low

and inelastic demand has compressed the area below the demand for money and hence the

welfare cost of inflation. The drop in θ has also reduced the effect of inflation on GDP and

the ratio of the deadweight-loss of inflation over the seigniorage it generates.15 In summary,

the drop in θ has radically altered the answer to most substantive questions in monetary

economics. The conventional wisdom about many dimensions of monetary economics needs

to be reworked in the new environment created by the revolution of the information and

communication technologies, which we believe are behind the drop in θ that we estimated

in our analysis.

5 Conclusion

Precautionary balances, when carefully studied in a model with rigorous microeconomic

foundations, are able to explain not only why the velocity of circulation of money has

been historically low, but also why it correlates the way it does with the nominal rate

15 Seigniorage is defined as (γ − 1)m. Deadweight-loss is defined as the change in Ss (which is equal to Sb).
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of interest. Our empirical implementation of the model discovers that precautionary

balances have plummeted in the last three decades. We attribute the origin of this drop

to the tremendous improvements in the information and communication technologies that

occurred during this time. These improvements have allowed individuals to accommodate

unexpected expenditure needs without holding large precautionary balances. This has

radically transformed many important issues of monetary economics. The demand for

money has not only fallen, but it is also less elastic. Moreover, both the seigniorage and the

welfare cost of inflation are now a small fraction of what they were 30 years ago.

Our model abstracts from several features of reality that are likely to be important to

the issues we study. For example, we abstract from the distinction between currency and

checkable deposits, and from the fact that some checkable deposits earn interest. Also,

we abstract from many ways that individuals can affect their demand for money, such as

converting assets at a higher frequency. Finally, we abstract from many complexities in the

production of goods such as the presence of physical capital. We list these features here not

only to acknowledge the limitations of our work, but also to stimulate future research.
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Appendix

Data sources

The interest rate is the short term commercial paper rate. For 1892-1971, it is from

Friedman and Schwartz (1982), Table 4.8, Column 6. For 1972-2003, it is the DRI series

FYCP90 (averaged).

Money is M1* = M1 - currency outside the country. M1 is the stock at the end

of June of each year. For 1892-1928, the source of M1 is United States Bureau of

the Census (1960), Series X267. For 1929-1958, it is the series constructed by St.

Louis FED that extends backwards modern M1 http://research.stlouisfed.org/aggreg.

For 1959-2003, it is the DRI series FM1. Currency in circulation abroad is from

the FED Flow of Funds Table L-204 in the file ltab204d.prn downloaded from

http://www.federalreserve.gov/releases/z1/current/data.htm.

For 1892-1928, GDP is calculated from the real GDP series in Kendrick (1961) and the

implicit price deflator in Friedman and Schwartz (1982), Table 4.8, Column 4. For 1929-

2003, it is from BEA NIPA Table 1.1.5 downloaded from www.bea.doc.gov/bea/dn/nipaweb

in Dec. 2004.

Proof of Proposition 1

Consider the problem of an individual in the equilibrium of our basic model where

all other individuals have value functions (21) and initial wealths in the interval [a, a],

except for a small positive measure of individuals that have identical wealth to that of

the individual whose value function we are characterizing. The assumption that there is a

positive measure of individuals whose problems are identical allows us to focus on deviations

by a positive measure of individuals.16 Throughout the appendix, we use without further

proof the absence of uncertainty in trading opportunities because of efficient matching.

16 Deviations with a single individual are less interesting because the demand for money depends on the

offers of all submarkets that buyers plan to visit. For instance, a single deviating seller who rises

the quantity offered to the highest type ε̄ to increase the expected payment fails to provide an incentive to any buyer to

carry extra money (since the probability that ε̄ is realized is zero). This would imply that amin is
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For all finite a ≥ amin, the set of feasible time and state contingent policies is non empty.

The feasible values of the quantities consumed and produced are bounded. Also, for all

feasible policies the present discounted utility is well defined and finite because U is a
continuous function. Consequently, we can use standard recursive methods to find the value

function.

In competitive search, we can recursively characterize the individual optimization

problem as follows. (This characterization uses a more general definition of competitive

search than in Section 3.2 because it allows the individual to have wealth outside the

interval [a, a] .) The individual chooses to be a buyer or a seller. As a seller, the individual

chooses (ε, qsε, z
s
ε ,m

s, bs), where ε is the buyer type the seller targets and (qsε, z
s
ε) are the

corresponding posted offers. As a buyer the individual chooses
³©

qbε, z
b
ε, µ

b
ε

ª
ε∈[1,ε̄] ,m

b, bb
´

where
©
qbε, z

b
ε, µ

b
ε

ª
ε∈[1,ε̄] is the set of choices contingent on the realization of their preference

shock. These choices are subject to the constraints (11)-(14), (16)-(19), and (20).

Moreover, in the financial markets the individual takes as given the rate of interest and

the insurance premia. In the goods market, the individual takes as given the reservation

expected trade surpluses of other traders and has rational expectations about their actions.

Therefore, as a seller the individual posts an offer (qsε, z
s
ε) to the buyers of type ε which

belong to a set of posted offers {(qsε, zsε)}ε∈[1,ε̄] that satisfies the following two conditions:R ε̄
1
[εU (qsε)− zsε] dF (ε) − imax {zsε}ε∈[1,ε̄] ≥ S̄b (buyers are guaranteed the reservation

expected trade surplus), and zsε − C (qsε) ≤ S̄s for ε ∈ [1, ε̄] (the posted offers cannot be
profitably undercut). As a buyer, the individual acts as if he/she were choosing

©
qbε, z

b
ε

ª
ε∈[1,ε̄]

that satisfies zbε −C
¡
qbε
¢
= S̄s for all qbε > 0, because competition among sellers implies that

all posted offers yield the same trade surplus S̄s to the sellers.

Let C(a) be the space of bounded and continuous functions f : [amin,∞) → R, with

the sup norm. Use the Bellman’s equations (10) and (15) together with (9) to define the

equal to a. In contrast, a positive measure of deviating sellers with similar offers to types in [ε̂, ε̄]

gives an incentive to a positive measure of buyers to carry extra money. Furthermore, the law of large numbers together

with efficient matching implies that these buyers find a trading partner with probability one.
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mapping T of C(a) onto itself by substituting f for V in the right hand sides of (10) and

(15) and denoting as Tf(a) the left hand side of (9). The choice variables and constraints

of these maximization programs are described in the previous paragraph. For a given a, the

set of feasible policies is non-empty, compact-valued, and continuous. The utility function

U is a bounded and continuous on the set of feasible policies, and 0 < β < 1. Therefore,

Theorem 4.6 in Stokey and Lucas with Prescott (1989) implies that there is a unique fixed

point to the mapping T , which is the value function V.

Let V(a) be the set of functions f : [amin,∞) → R that satisfy (21) where v0, a, and a

are given by:17

v0 =
S̄s

1− β
+

β

1− β

γ − 1
γ

,

a =

R ε̄
1
zεdF (ε) + im

1− β
− β

1− β

γ − 1
γ

, and (57)

a = − zε̄
1− β

− β

1− β

γ − 1
γ

;

and i, m, S̄s, and zε satisfy the equilibrium system of equations described in 3.2. Consider

the mapping T defined in the previous paragraph. Since V is concave, it is an optimal

policy to fully insure preference shocks (full insurance is strictly optimal if there is a positive

probability that a+1 /∈ [a, a]). In consequence, a+1 is not stochastic. Let ab+1 be next period
real wealth for an optimal policy conditional on being a buyer. Similarly, let asε+1 be the

optimal policy for a seller serving buyers of type ε. If ab+1, a
sε
+1 ∈ [a, a] for all ε, TV (a)

is the maximum of V b(a) and V s (a) in equations (22) and (23), so TV (a) is affine and

the trade surpluses are those in (24) and (25). The optimal policies of the individual are

the equilibrium ones characterized in Section 3.2. Therefore, the individual is indifferent

between being a buyer or a seller, and as a seller he/she is indifferent to serve any type of

buyer. This indifference is broken when one policy would lead to a+1 /∈ [a, a] . In such a
case, the strict concavity of V outside the interval [a, a] implies that it is suboptimal to

17 In the absence of insurance of preference shocks the integral in the expression for a should be replaced by z1.
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be a seller serving buyers of type ε if asε+1 > a. Likewise, it is suboptimal to be a buyer if

ab+1 < a. Consequently, the recursive budgets (11) to (13) and (16) to (18), together with

(57), imply that a+1 ∈ [a, a] if an only if a ∈ [a, a]. This implies that TV (a) is affine in
the interval [a, a] . Equation (23) implies that the constant term of this affine function is

the value of v0 in (57). If a > a, the optimal policy is to be a buyer. Vice versa, if a < a,

an optimal policy is to be a seller serving the set of liquidity constrained buyers. In both

cases, the strict concavity of U and convexity of C imply the strict concavity of TV (a) for

a /∈ [a, a]. In summary, T maps V(a) onto itself. Therefore, the value function V satisfies

(21). Finally, since V is concave, U is continuously differentiable, and the solution is
interior, V is continuously differentiable.
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