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Predictable returns and asset allocation:
Should a skeptical investor time the market?

Abstract

Are excess returns predictable and if so, what does this mean for investors? Previous literature

has tended toward two polar viewpoints: that predictability is useful only if the statistical

evidence for it is incontrovertible, or that predictability should affect portfolio choice, even if the

evidence is weak according to conventional measures. This paper models an intermediate view:

that both data and theory are useful for decision-making. We investigate optimal portfolio choice

for an investor who is skeptical about the amount of predictability in the data. Skepticism is

modeled as an informative prior over the improvement in the Sharpe ratio generated by using

the predictor variable. We find that the evidence is sufficient to convince even an investor with a

highly skeptical prior to vary his portfolio on the basis of the dividend-price ratio and the yield

spread. The resulting weights are less volatile, and, as we show, deliver superior out-of-sample

performance compared with weights implied by diffuse priors, dogmatic priors, and ordinary least

squares regression.



Introduction

Are excess returns predictable, and if so, what does this mean for investors? Classic studies by

Samuelson (1965, 1973) and Shiller (1981) show that in models with rational valuation, returns

on risky assets over riskless assets should be constant over time, and thus unpredictable by

investors. However, an extensive empirical literature has found evidence for predictability in

returns on stocks and bonds by scaled-price ratios and interest rates.1

Confronted with this theory and evidence, the literature has focused on two polar viewpoints.

On the one hand, if models such as Samuelson (1965) are correct, investors should maintain

constant weights rather than form portfolios based on possibly spurious evidence of predictability.

On the other hand, if the empirical estimates capture population values, then investors should

time their allocations to a large extent, even in the presence of transaction costs and parameter

uncertainty.2 Between these extremes, however, lies an interesting intermediate view: that both

data and theory can be helpful in forming portfolio allocations.

This paper models this intermediate view in a Bayesian setting. We consider an investor

who has a prior belief that the regression coefficients on the predictor variables are normally

distributed around zero. As the variance of this normal distribution approaches zero, the prior

belief becomes dogmatic that there is no predictability. As the variance approaches infinity, the

prior is diffuse: all levels of predictability are equally likely. In between, the distribution implies

that the investor is skeptical about predictability: predictability is possible, but it is more likely

that predictability is “small” rather than “large”.

An important aspect of this study is defining what “small” and “large” mean in the context

of predictability. We employ an economic metric: the expected improvement in the squared

maximum Sharpe ratio from conditioning portfolio choice on the predictor variable. This statistic

is analogous to the Gibbons, Ross, and Shanken (1989) statistic for measuring deviations from

the CAPM, and, in the case of a single predictor variable, is closely related to the population R2

implied by the predictive regression. By carefully specifying the variance of the distribution for

the predictor variables, we achieve a prior distribution over this statistic.

In our empirical implementation, we consider returns on a stock index and on a long-term

1See, for example, Campbell and Shiller (1988, 1991), Fama and French (1989), Fama and Schwert (1977),

Keim and Stambaugh (1986), Kothari and Shanken (1997).
2See, for example, Brennan, Schwartz, and Lagnado (1997), Campbell and Viceira (1999) for stocks and Sangv-

inatsos and Wachter (2005) for long-term bonds. Balduzzi and Lynch (1999) show that predictability remains

important even in the presence of transaction costs, while Barberis (2000) and Xia (2001) show, respectively, that

predictability remains important in the presence of estimation risk and learning.
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bond. The predictor variables are the dividend-price ratio and the yield spread between Trea-

suries of different maturities. We find that the evidence is sufficient to convince an investor who

is quite skeptical about predictability to vary his portfolio on the basis of these variables. The

resulting weights, however, are much less volatile than for an investor who allocates his portfolio

purely based on data. To see whether the skeptical prior would have been helpful in the observed

time series, we implement an out-of-sample analysis. We show that weights based on skeptical

priors deliver superior out-of-sample performance when compared to diffuse priors, dogmatic

priors, and to a simple regression-based approach.

Our study builds on previous work that has examined predictability from an investment per-

spective. Kandel and Stambaugh (1996) show in a Bayesian framework that predictive relations

that are weak in terms of standard statistical measures can nonetheless have large impacts on

portfolio choice.3 Kandel and Stambaugh explore informative priors but adopt an empirical

Bayes approach: the prior is formed by viewing data that is equal to the actual data in every

way except that there is no predictability. This prior, while analytically convenient, requires

knowledge of the entire sample of data. Shanken and Tamayo (2004) model time-varying risk

and expected return together in a Bayesian framework. The priors assumed by Shanken and

Tamayo are informative, but, like the priors in Kandel and Stambaugh, require knowledge of the

entire time series of the predictor variable.4 Our approach differs from these previous studies in

that both stocks and bonds, rather than only a stock index, are considered. More importantly,

our approach allows an investor to form a prior on the amount of predictability that is truly

“prior”, namely that does not require knowledge of the moments of the data.

Besides introducing an informative prior that can be specified without recourse to the data,

our study incorporates the findings of Stambaugh (1999) in a setting with informative priors.

Stambaugh shows that incorporating the first observation on the predictor variable into the

likelihood can make a substantial difference for portfolio choice; previous studies had conditioned

3Subsequently, a large literature has examined the portfolio consequences of return predictability in a Bayesian

framework. Barberis (2000) considers the optimization problem of a long-horizon investor when returns are

predictable. Xia (2001) considers the effect of learning about the predictive relation. Brandt, Goyal, Santa-Clara,

and Stroud (2003) develop a simulation-based approach to consider learning about other unknown parameters.

Johannes, Polson, and Stroud (2002) model the mean and volatility of returns as latent factors. In contrast to

the present study, these papers choose priors to be diffuse.
4Bayesian methods have also been shown to be useful for model selection. Avramov (2002) and Cremers (2002)

show that Bayesian procedures, combined with informative priors, lead to superior choices of predictor variables

when many such combinations of variables are considered. Like the studies mentioned above, these studies make

use of informative priors which require conditioning on the entire data set.
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on this observation. Moreover, the choice among “uninformative” priors can make a difference as

well: a prior that is uninformative in the sense of Jeffreys (1961) has different properties than the

priors that have been chosen by previous studies in the portfolio choice literature. Building on the

work of Stambaugh, this study also incorporates information contained in the first observation

on the predictor variable, and makes use of Jeffreys priors. We show that Jeffreys invariance

theory offers an independent justification for defining the prior over the change in the squared

maximum Sharpe ratio. As the degree of skepticism goes to zero, the prior satisfies the Jeffreys

condition for invariance.

Our use of informative priors has parallels in studies that examine the cross section of stock

and mutual fund returns. Pastor and Stambaugh (1999) show how informative beliefs about

asset pricing models can be incorporated into calculations of the cost of capital, while Pastor

(2000) shows how informative priors can enter into portfolio allocation decisions. Baks, Metrick,

and Wachter (2001) incorporate prior beliefs that are skeptical about fund manager skill into the

decision problem of investing in actively managed mutual funds. These studies illustrate how

informative prior beliefs can help improve decision making when applied to the cross section of

returns. Here, we show how related ideas can be applied to the time series.

The remainder of this paper is organized as follows. Section 1 describes the assumptions

on the likelihood and prior, the calculation of the posterior, and the optimization problem of

the investor. Section 2 applies these results to data on stock and bond returns, describes the

posterior distributions, the portfolio weights, and the out-of-sample performance across different

choices of priors. These sections assume, for simplicity, that there is a single predictor variable.

Section 3 extends the methods to allow for multiple predictor variables. Section 4 concludes.

1 Portfolio choice for a skeptical investor

Given observations on returns and a predictor variable, how should an investor allocate his

wealth? One approach would be to estimate the predictability relation, treat the point estimates

as known, and solve for the portfolio that maximizes utility. An alternative approach, adopted

in Bayesian studies, is to specify prior beliefs on the parameters. The prior represents the

investor’s beliefs about the parameters before viewing data. After viewing data, the prior is

updated to form a posterior distribution; the parameters are then integrated out to form a

predictive distribution for returns, and utility is maximized with respect to this distribution.

This approach incorporates the uncertainty inherent in estimation into the decision problem

(see Brown (1979)). Rather than assuming that the investor knows the parameters, it assumes,
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realistically, that the investor estimates the parameters from the data. Moreover, this approach

allows for prior information, perhaps motivated by economic models, to enter into the decision

process.

This section describes the specifics of the likelihood function, the prior, and the posterior used

in this study. The likelihood is described in Section 1.1, the prior in Section 1.2, and the posterior

in Section 1.3. Section 1.4 describes optimal portfolio choice given the posterior distribution.

1.1 Likelihood

This subsection constructs the likelihood function. Let rt+1 denote an N × 1 vector of returns

on risky assets in excess of a riskless asset from time t to t+1, and xt a scalar predictor variable

at time t. The investor observes data on returns r1, . . . , rT , and data on the predictor variable

x0, . . . , xT . Let

Y ≡ {r1, . . . , rT , x0, x1, . . . , xT}

represent the total data available to the investor. Our initial assumption is that there is a

single predictor variable that has the potential to predict returns on (possibly) multiple assets.

Allowing multiple, rather than a single, risky asset introduces little in the way of complication,

while allowing multiple predictor variables complicates the problem without contributing to

the intuition. For this reason, we postpone the discussion of multiple predictor variables until

Section 3.

The data generating process is assumed to be

rt+1 = α + βxt + ut+1 (1)

xt+1 = θ0 + θ1xt + vt+1, (2)

where




ut+1

vt+1



 | rt, . . . , r1, xt, . . . , x0 ∼ N (0,Σ) , (3)

α and β are N × 1 vectors and Σ is an (N +1)× (N +1) symmetric and positive definite matrix.

It is useful to partition Σ so that

Σ =





Σu Σuv

Σvu Σv



 ,

where Σu is the variance-covariance matrix of ut+1, σ
2
v = Σv is the variance of vt+1, Σuv is the

N × 1 vector of covariances of vt+1 with each element of ut+1, and Σvu = Σ>
uv. This likelihood is
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a multi-asset analogue of that assumed by Kandel and Stambaugh (1996), Campbell and Viceira

(1999), and many subsequent studies.

It is helpful to group the regression parameters in (1) and (2) into a matrix:

B =





α> θ0

β> θ1



 ,

and to define matrices of the observations on the the left hand side and right hand side variables:

Y =









r>1 x1
...

...

r>T xT









, X =









1 x0
...

...

1 xT−1









.

As shown in Barberis (2000) and Kandel and Stambaugh (1996), the likelihood conditional on

the first observation takes the same form as in a regression model with non-stochastic regressors.

Let p(Y|B,Σ, x0) denote the likelihood function. From results in Zellner (1996), it follows that

p(Y|B,Σ, x0) = |2πΣ|
−T

2 exp

{

−
1

2
tr
[

(Y −XB)>(Y −XB)Σ−1
]

}

, (4)

where tr(·) denotes the sum of the diagonal elements of a matrix.5

The likelihood function (4) conditions on the first observation of the predictor variable, x0.

Stambaugh (1999) argues for treating x0 and x1, . . . , xT symmetrically: as random draws from

the data generating process. If the process for xt is stationary and has run for a substantial

period of time, then results in Hamilton (1994, p. 53) imply that x0 is a draw from a normal

distribution with mean

x̄ ≡ E [xt |B,Σ] =
θ0

1− θ1
(5)

and variance

σ2x = E
[

(xt − x̄)2 |B,Σ
]

=
σ2v

1− θ21
. (6)

Combining the likelihood of the first observation with the likelihood of the remaining T obser-

5Maximizing the conditional likelihood function (4) is equivalent to running a vector auto-regression. Stam-

baugh (1999) points out that the resulting estimates for β are biased; Cavanagh, Elliott, and Stock (1995) show

that the t-test for the significance of β has the incorrect size. An active literature in classical statistics focuses on

solutions to these problems (e.g. Amihud and Hurvich (2004), Campbell and Yogo (2004), Eliasz (2004), Lewellen

(2004), Torous, Valkanov, and Yan (2005)).
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vations produces

p(Y|B,Σ) = p(Y|x0, B,Σ)p(x0|B,Σ)

=
(

2πσ2x
)− 1

2 |2πΣ|−
T
2

× exp

{

−
1

2
σ−2x (x0 − x̄)2 −

1

2
tr
[

(Y −XB)>(Y −XB)Σ−1
]

}

. (7)

Equation (7) is the likelihood function used in our analysis. Following Box, Jenkins, and Reinsel

(1970), we refer to (7) as the exact likelihood, and to (4) as the conditional likelihood.

1.2 Prior beliefs

This subsection describes the prior. We specify a class of prior distributions that range from

being “uninformative” in a sense we will make precise, to “dogmatic”. The uninformative priors

imply that all amounts of predictability are equally likely, while the dogmatic priors rule out

predictability all together; the investor believes that returns are not predictable regardless of

what data are observed. Between these extremes lie priors that downweight the possibility of

predictability. These informative priors imply that large gains from exploiting predictability are

unlikely, but not impossible.

The most obvious parameter that determines the degree of predictability is β. Set β to zero,

and there is no predictability in the model. However, it is difficult to think of prior beliefs about

β in isolation from beliefs about other parameters. For example, a high variance of xt might lower

one’s prior on β, while a large residual variance of rt might raise it. To capture this dependence,

we specify a hierarchical prior for β. That is, we specify a prior on B,Σ so that the prior for β

is conditional on the remaining parameters:

p(B,Σ) = p(β|α, θ0, θ1,Σ)p(α, θ0, θ1,Σ).

We further assume that the prior for β conditional on the remaining parameters is multivariate

normal:

β|α, θ0, θ1,Σ ∼ N(0, σ2βσ
−2
x Σu), (8)

where σβ is a non-negative scalar. Because σx is a function of θ1 and σv, the prior on β is also

implicitly a function of these parameters. The parameter σβ indexes the degree to which the

prior is informative. We show that as σβ → ∞, the prior over β becomes uninformative; all

values of β are viewed as equally likely. As σβ → 0, the prior converges to a point mass at zero

and the prior beliefs assign a probability of 1 to no predictability.
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Finite positive values of σβ involve some skepticism about the amount of predictability in the

data. The dependence between β, σx, and Σu allow this skepticism to be expressed in economic

terms, namely as the expected change in the squared maximum Sharpe ratio that results from

taking predictability into account. Conditional on B and Σ, the squared maximum Sharpe ratio

for an investor who conditions on xt is equal to

(α+ βxt)
>Σ−1

u (α + βxt).

The squared maximum Sharpe ratio for an investor who does not condition on xt is equal to

(α + βx̄)>Σ−1
u (α + βx̄)

(see Campbell, Lo, and MacKinlay (1997, pp. 184–188)). Therefore the expected gain from

incorporating information on xt equals

∆(SR)2 = E
[

(α + βxt)
>Σ−1

u (α + βxt)− (α + βx̄)>Σ−1
u (α+ βx̄) |B,Σ

]

= E
[

(βxt)
>Σ−1

u (βxt)− (βx̄)>Σ−1
u (βx̄) |B,Σ

]

= E
[

(βxt)
>Σ−1

u (βxt)− 2(βx̄)>Σ−1
u (βxt) + (βx̄)>Σ−1

u (βx̄) |B,Σ
]

= E
[

(xt − x̄)>β>Σ−1
u β(xt − x̄) |B,Σ

]

= σ2xβ
>Σ−1

u β. (9)

The first three lines follow from the definition of x̄ and the fourth line follows because xt is scalar.
6

Because (8) implies that σxC
−1
u β ∼ N(0, IN), where Cu is such that CuC

>
u = Σu, the change

in the squared maximum Sharpe ratio has a scaled chi-squared distribution with N degrees of

freedom.7

Equation (9) is a useful summary statistic for the amount of predictability in the data. As is

the case for the Gibbons, Ross, and Shanken (1989) statistic, the gain in the squared maximum

Sharpe ratio is quadratic. This is because both positive βs and negative βs are helpful for the

investor. For example, if the predictor variable is positive, negative βs indicate that the investor

should allocate less to the risky assets than he would otherwise, positive βs indicate that he should

6Section 3 extends this calculation to the case of multiple predictor variables.
7This prior distribution could easily be modified to impose other restrictions on the coefficients β. In the

context of predicting equity returns, Campbell and Thompson (2004) suggest disregarding estimates of β if the

expected excess return is negative, or if β has an opposite sign to that suggested by theory. In our model, these

restrictions could be imposed by assigning zero prior weight to the appropriate regions of the parameter space.

One could also consider a non-zero mean for β, corresponding to a prior belief that favors predictability of a

particular sign.
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allocate more. Either way he experiences a gain in the squared maximum Sharpe ratio relative

to assuming the βs are equal to zero. Pre- and post-multiplying Σ−1
u by the βs implies that the

investor does not downweight predictability on specific assets per se, but on predictability on the

mean-variance efficient portfolio. It is not the amount of predictability in individual assets that

matters, but predictability in “the best” portfolio; this is the same intuition for choosing Σ−1
u as

a weighting matrix for pricing errors in the Gibbons, Ross, and Shanken statistic. Finally, the

gain depends on σx: the greater is σx, the greater the gain because there is a greater range of

outcomes for the predictor variable.8

For the single-asset case, (9) is closely related to the R2, or the percent variance of the return

that is explained by the predictor variable. The population R2 is equal to

R2 = β2σ2x
(

β2σ2x + Σu

)−1
,

where Σu is now a scalar. It follows from (9), that

R2 =
∆(SR)2

∆(SR)2 + 1
. (10)

Thus when N = 1, placing a prior distribution on the change in the squared maximum Sharpe

ratio is equivalent to placing a prior distribution on the R2 of the regression (given a draw

from ∆(SR)2, a draw from the R2 can be obtained from (10)). In the case of N > 1, our

prior is equivalent to assuming a joint distribution on the R2 of each of the return equations. In

particular, (8) implies that each component of β is normally distributed with variance determined

by the appropriate diagonal element of Σu. The previous argument can then be applied to

individual components of β.

It is instructive to compare our choice of prior for β to the choice of prior on the intercepts

in cross-sectional studies. Pastor and Stambaugh (1999) and Pastor (2000) place an informative

prior on the vector of intercepts from regressions of returns on factors in the cross-section.

Building on ideas of MacKinlay (1995), these studies argue that failure to condition the intercepts

on the residual variance could lead to very high Sharpe ratios, because there would be nothing to

prevent a low residual variance draw from occurring simultaneously with a high intercept draw.

Baks, Metrick, and Wachter (2001) place an informative prior on estimates of mutual fund skill

(intercepts from regressions of returns on factors), and argue based on related ideas that this

informative prior should be conditioned on the residual variance of the fund. In the present

8The idea of limiting Sharpe ratios relates to the work of Cochrane and Saa-Requejo (2000), who show

how limiting the Sharpe ratio available from trading options puts bounds on option prices. Here, we impose a

distribution that makes large increases in the Sharpe ratio unlikely.
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study, β plays a role that is roughly analogous to the intercept in these previous studies. β = 0

implies no predictability, and hence no “mispricing”. As in these previous studies, conditioning

β on volatility measures ensures that a high draw of β could not coincide with a low draw of Σu,

leading to a very high R2 and Sharpe ratio improvement. However, in the time-series setting, it

is not sufficient to condition β on Σu; β must also be conditioned on σx in order to produce a

well-defined distribution for the Sharpe ratio improvement and the R2.

For the remaining parameters, we choose a prior that is uninformative in the sense of Jeffreys

(1961). Jeffreys argues that a reasonable property of a “no-information” prior is that inference

be invariant to one-to-one transformations of the parameter space. Given a set of parameters µ,

data Y , and a log-likelihood l(µ;Y), Jeffreys shows that invariance is equivalent to specifying a

prior as

p(µ) ∝

∣

∣

∣

∣

−E

(

∂2l

∂µ∂µ>

)∣

∣

∣

∣

. (11)

Besides invariance, this formulation of the prior has other advantages such as minimizing asymp-

totic bias and generating confidence sets that are similar to their classical counterparts (see

Phillips (1991)).9

We follow the approach of Stambaugh (1999) and Zellner (1996), and derive a limiting Jeffreys

prior as explained in Appendix B. This limiting prior takes the form

p(α, θ0, θ1,Σ) ∝ σx|Σu|
1/2|Σ|−

N+4
2 , (12)

for θ1 ∈ (−1, 1), and zero otherwise. Therefore the joint prior is given by

p(B,Σ) = p(β|α, θ0, θ1,Σ)p(α, θ0, θ1,Σ)

∝ σN+1
x |Σ|−

N+4
2 exp

{

−
1

2
β>
(

σ2βσ
−2
x Σu

)−1
β

}

. (13)

(note that σβ is a constant).

9The notion of an uninformative prior in a time-series setting is a matter of debate. One approach is to ignore

the time-series aspect of (1) and (2), treating the right hand side variable as exogenous. This implies a flat

prior for α, β, θ0, and θ1. When applied in a setting with exogenous regressors, this approach leads to Bayesian

inference which is quite similar to classical inference (Zellner (1996)). However, Sims and Uhlig (1991) show that

applying the resulting priors in a time series setting leads to different inference than classical procedures when

xt is highly persistent. Phillips (1991) derives an exact Jeffreys (1961) prior and shows that the inference with

this prior leads to different conclusions than inference with a prior that is flat for the regression coefficients. As a

full investigation of these issues is outside the scope of this study, we focus on the Jeffreys prior and explore the

robustness of our conclusions to other interpretations of “uninformativeness” in Appendix D.
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Jeffreys invariance theory provides an independent justification for modeling priors on β as

(8). Appendix A shows that the limiting Jeffreys prior for B and Σ equals

p(B,Σ) ∝ |Σx|
N+1

2 |Σ|−
N+4

2 . (14)

This prior corresponds to (13) as σβ approaches infinity. Modeling the prior for β as depending

on σx not only has an interpretation in terms of the squared maximum Sharpe ratio, but also

implies that an infinite prior variance represents ignorance as defined by Jeffreys (1961). Note

that a prior on β that is independent of σx would not have this property.

Figure 1 plots the cumulative density function of the change in the squared maximum Sharpe

ratio for prior beliefs corresponding to σβ = .04 and σβ = .08 for one and two assets. While

the two-asset case is the focus of this paper, the one-asset case is of interest because the prior

distribution for the R2 of each of the regressions is almost identical to the prior distribution of the

change in the squared maximum Sharpe ratio for N = 1.10 As Figure 1 shows, for σβ = .04, the

investor assigns only a 4% chance to a change in the squared maximum Sharpe ratio over 0.01,

and less than a 1% chance of an R2 of over 0.01. Thus this prior is quite skeptical. A slightly

less skeptical prior is given by σβ = .08. This prior assigns a 50% probabilility to a change in the

squared maximum Sharpe ratio over .01, and a 20% probability to an R2 of greater than .01.

1.3 Posterior

This section shows how the likelihood of Section 1.1 and the prior of Section 1.2 combine to form

the posterior distribution. From Bayes’ rule, it follows that the joint posterior for B,Σ is given

by

p(B,Σ|Y) ∝ p(Y|B,Σ)p(B,Σ),

where p(Y|B,Σ) is the likelihood and p(B,Σ) is the prior. Substituting in the prior (13) and the

likelihood (7) produces

p(B,Σ|Y) ∝ σN
x |Σ|

−T+N+4
2 exp

{

−
1

2
β>
(

σ2βσ
−2
x Σu

)−2
β

}

exp

{

−
1

2
σ−2x (x0 − x̄)2

}

exp

{

−
1

2
tr
[

(Y −XB)>(Y −XB)Σ−1
]

}

(15)

as a posterior.

This posterior does not take the form of a standard density function because of the presence

of σ2x in the prior and in the term in the likelihood involving x0 (note that σ2x is a nonlinear

10This follows from (10), because when x is small, x/(1 + x) = 1/(1 + 1/x) ≈ 1/(1/x) = x.
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function of θ1 and σv). However, we can sample from the posterior using the Metropolis-Hastings

algorithm (see Chib and Greenberg (1995)). Define column vectors

b = vec(B) = [α1, β1, · · · αN , βN , θ0, θ1]
>

b1 = [α1, β1, · · · αN , βN ]
>

b2 = [θ0, θ1]
> .

The Metropolis-Hastings algorithm is implemented “block-at-a-time”, by first sampling from

p(Σ|b,Y), then p(b1|b2,Σ,Y), and finally p(b2|b1,Σ,Y). The proposal density for the conditional

probability of Σ is the inverted Wishart with T + 2 degrees of freedom and scale factor of

(Y −XB)(Y −XB)>. The accept-reject algorithm of Chib and Greenberg (1995, Section 5) is

used to sample from the target density, which takes the same form as (15). The proposal densities

for b1 and b2 are multivariate normal. For b1, the proposal and the target are equivalent, while

for b2, the accept-reject algorithm is used to sample from the target density. Details are given

in Appendix C. As described in Chib and Greenberg, drawing successively from the conditional

posteriors for Σ, b1, and b2 produces a density that converges to the full posterior.

1.4 Predictive distribution and portfolio choice

This section describes how the posterior determines portfolio choice. Consider an investor who

maximizes expected utility at time T + 1 conditional on information available at time T . The

investor solves

maxET [U(WT+1)|Y ] (16)

where

WT+1 = WT [w
>
T rT+1 + rf,T ],

w are the weights in the N risky assets, and rf,T is the total return on the riskless asset from

time T to T + 1 (recall that rT+1 is a vector of excess returns). The expectation in (16) is taken

with respect to the predictive distribution

p(rT+1|Y) =

∫

p(rT+1|xT , B,Σ)p(B,Σ|Y) dB dΣ. (17)

Following previous single-period portfolio choice studies (see, e.g. Baks, Metrick, and Wachter

(2001) and Pastor (2000)), we assume that the investor has quadratic utility. The advantage

of quadratic utility is that it implies a straightforward mapping between the moments of the
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predictive distribution of returns and portfolio choice. It therefore allows us to illustrate the

implications of our methodology in a particularly clear way. However, because our method

produces an entire distribution function for returns, it can be applied to other utility functions,

and to buy-and-hold investors with horizons longer than one quarter.

Let Ẽ denote the expectation and Ṽ the variance-covariance matrix of the N assets corre-

sponding to the predictive distribution (17). For a quadratic-utility investor, optimal weights w∗

in the N assets are given by

w∗ =
1

A
Ṽ −1Ẽ, (18)

where A is a parameter determining the investor’s risk aversion. The weight in the riskless bond

is equal to 1−
∑N

i=1w
∗
i .

Given draws from the posterior distribution of the parameters αj, βj,Σj
u, and a value of xt, a

draw from the predictive distribution of asset returns is given by

rj = αj + βjxt + uj,

where

uj ∼ N(0,Σj
u).

The optimal portfolio is then the solution to (18), with the mean and variance computed by

simulating draws rj.

2 Results

To illustrate the methods described in the previous section, we consider the problem of a quadratic

utility investor who allocates wealth between a riskfree asset, a long-term bond, and a stock index.

We estimate two versions of the system given in (1)–(3), one with the dividend-price ratio as the

predictor variable and one with the yield spread. An appeal of these variables is that they are

related to excess returns through present value identities for bonds and stocks (see Campbell and

Shiller (1988, 1991)). This section focuses on the priors described in Section 1.2. To verify the

robustness of our results, we also investigate a second specification of “uninformativeness” for the

parameters α, θ0, θ1, and Σ, described in Appendix D. As Appendix D shows, the implications

of this second set of priors are very similar to the implications of the priors in Section 1.2.

The data are described in Section 2.1. Section 2.2 describes aspects of the posterior distribu-

tion, and Section 2.3 examines expected returns and portfolio weights. Results in Sections 2.2

and 2.3 condition on the full data set. Section 2.4 describes the time series of posterior means
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and portfolio weights in post-war data implied by conditioning only on the data observed up

until each quarter. Section 2.5 performs out-of-sample analyses.

2.1 Data

All data are obtained from the Center for Research on Security Prices (CRSP). Excess stock

and bond returns are formed by subtracting the quarterly return on the three-month Treasury

bond from the quarterly return on the value-weighted NYSE-AMEX-NASDAQ index and the

ten-year Treasury bond (from the CRSP indices file) respectively. The dividend-price ratio is

constructed from monthly return data on the stock index as the sum of the previous twelve

months of dividends divided by the current price. The natural logarithm of the dividend-price

ratio is used as the predictor variable. The yield spread is equal to the continuously compounded

yield on the zero-coupon five year bond (from the Fama-Bliss data set) less the continuously

compounded yield on the three-month bond. Data on bond yields are available from the second

quarter of 1952. We therefore consider quarterly observations from the second quarter of 1952

until the last quarter of 2004.

2.2 Posterior means

We first quantitatively describe the posterior beliefs of an investor who views the entire data

set. For both predictor variables, one million draws from the posterior distribution are simulated

as described in Section 1.3. An initial 100,000 “burn-in” draws are discarded. Table 1 reports

posterior means implied by the exact likelihood (7) and the prior (13), for values of σβ ranging

from zero to infinity. The predictor variable is the dividend-price ratio. Posterior standard

deviations are reported in parentheses. The table also shows results from estimating (1)–(3) by

ordinary least squares (OLS). For the OLS values, standard errors are reported in parentheses.

As Table 1 shows, the dividend-price ratio predicts stock returns but not bond returns. The

posterior mean for the β for bond returns is negative and small in magnitude. The posterior

mean for the β for stock returns is positive for all values of σβ > 0, and for the OLS estimate.

These posterior means are consistent with the classic findings of Campbell and Shiller (1988)

and Fama and French (1989) that the dividend-price ratio predicts stock returns with a positive

sign. For the diffuse prior, the posterior mean of β equals to 1.46, below the OLS estimate of

2.72. As the prior becomes more informative, the posterior mean for β becomes smaller: for

σβ = .08, the estimate is 1.41, while for σβ = .04, it is 0.69.

Table 1 also reports posterior means and standard deviations of “unconditional” means of
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bond and stock returns. That is, the table reports

E [E[rt+1|B,Σ]|Y ] = E

[

α + β
θ0

1− θ1
|Y

]

. (19)

This can also be thought of as the long-run mean of the asset return. The OLS mean is set equal

to α̂+ β̂ θ̂0

1−θ̂1
, whereˆdenotes the OLS estimate of a parameter. The unconditional means are of

interest because they help determine the average level of the portfolio allocation.

Table 1 shows that while the posterior means are virtually identical across the range of priors,

the unconditional means implied by OLS are strikingly different. For the long-term bond, the

posterior mean is about 0.18% per quarter for all values of the prior, while the OLS value is

0.23%. For the stock index, the posterior mean equals 1.17%, while the OLS value is 1.09%. In

order to understand the discrepancy between the mean implied by OLS and the posterior mean,

it is helpful to separate the discrepancy into two parts: the difference between the OLS mean

and the sample mean (1.67% for the stock index in this time period), and the difference between

the sample mean and the posterior mean. The difference between the OLS and the sample mean

arises mechanically from the difference between θ̂0

1−θ̂1
(equal to -3.72), and the sample mean of the

dividend-price ratio (equal to -3.50). The difference between the posterior mean and the sample

mean is less mechanical. The posterior mean lies below the sample mean because of the x0 term

in the exact likelihood (7). Because the dividend-price ratio in 1952 is above its conditional

maximum likelihood estimate, the exact likelihood function adjusts the mean of the dividend-

price ratio slightly upward. Because of the negative correlation between the stock return and

the dividend-price ratio, the mean return is adjusted downward. Similar reasoning holds for

bond returns, though here, the effect is much smaller because of the low correlation between the

dividend-price ratio and bond returns. Interestingly, this effect is not connected with the ability

of the dividend-price ratio to predict stock returns, as it operates equally for all values of the

prior.

Table 2 repeats this analysis when the yield spread is the predictor variable. The yield spread

predicts both bond and stock returns with a positive sign. Unlike for the dividend-price ratio,

OLS and the most diffuse prior lead to very similar results. This is because the yield spread

is less correlated with returns than the dividend-price ratio, and because it is less persistent.

Both of these characteristics of the dividend yield cause bias in the case of the OLS regressor

(Stambaugh (1999)). The posterior mean for β for the most dogmatic prior is, not surprisingly,

zero. As the prior becomes more diffuse, the posterior mean of β goes from from 0 to the OLS

estimate. As in the case of the dividend-price ratio, the posterior mean of long-run expected

returns, the persistence, and the long-run mean of the xt are nearly the same, regardless of the
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informativeness of the prior.

This section has shown the effect of different priors on the posterior means of β. The following

section examines the predictive distribution of returns and the implications for portfolio choice.

2.3 Conditional returns and portfolios from the full sample

Figure 2 plots expected excess returns (top two plots) and optimal portfolio holdings (bottom

two plots) as functions of the log dividend-price ratio. Each plot shows results for σβ = 0, .04, .08

and for the diffuse prior. The graphs are centered at the sample mean. Diamonds denote plus

and minus one and two sample standard deviations of the dividend-price ratio.

The linear form of (1) implies that expected returns are linear in the predictor variables,

conditional on the past data. Let ᾱ and β̄ denote the posterior means of α and β respectively.

Then the posterior mean equals

Ẽ = E [α + βxt + ut+1|Y ] = E [α|Y ] + E [β|Y ]xt = ᾱ + β̄xt

The slope of the relation between the conditional return and xt is therefore the posterior mean

of β. Figure 2 shows large deviations in the expected return on the stock on the basis of

the dividend-price ratio. As the dividend-price ratio varies from -2 standard deviations to +2

standard deviations, the expected return varies from -1% per quarter to 3% per quarter. On

the other hand, the dividend-price ratio has virtually no predictive power for returns on the

long-term bond.

The bottom panel of Figure 2 shows that the weight on the stock index also increases in the

dividend-price ratio. The relation is very nearly linear. The linear relation is not exact because

the predictive variance changes slightly with xt.
11 Bond weights decrease in the dividend-price

ratio because bond and stock returns are positively correlated, so an increase in the mean of

the stock return, without a corresponding increase in the bond return, will result in an optimal

portfolio that puts less weight on the bond.

For the diffuse prior, weights on the dividend-price ratio vary substantially, from -30% when

the dividend-price ratio is two standard deviations below its mean to 100% when the dividend-

price ratio is two standard deviations above its mean. As the prior becomes more informative,

11The predictive variance is equal to

Ṽ = E
[

(

(α− ᾱ) + (β − β̄)xt + ut+1

)2
]

,

which in principle depends on xt. Empirically this effect turns out to be very small.
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expected returns and weights both vary less. However, this change happens quite slowly. Condi-

tional expected returns under a prior with σβ = .08 are nearly identical to conditional expected

returns with a diffuse prior. Given that this prior assigned only a 20% probability of an increase

in the maximum squared Sharpe ratio over .02, this prior could be considered skeptical. Yet

there is sufficient evidence in the data to convince this investor to vary her portfolio to nearly

the same degree as an investor with no skepticism at all. For a more skeptical prior with σβ = .04,

differences begin to emerge: the slope of the relation between expected returns and the dividend-

price ratio is about half of what it was with a diffuse prior. Not surprisingly, with a dogmatic

no-predictability prior, the relation between expected returns and the log dividend-price ratio

is completely flat, and weights are a constant function of xt. For this prior, the level of the

conditional expected return is also equal to the level of the expected return unconditional on xt,

which, as described above, is lower than the sample mean of the return.

Figure 3 displays analogous plots for the yield spread. Both the conditional expected bond

return and the stock return increase substantially in the yield spread. For bonds, these expected

returns vary between -2% and 2% per quarter as the yield spread varies between -2 and +2

standard deviations. For stocks, expected returns vary between 0% and 3%, similar to the

variation with respect to the dividend-price ratio. These large variations in expected returns lead

to similarly large variation in weights for the diffuse prior: for bonds, the weights vary between

-200% and 200% as the yield spread goes between -2 and +2 long-run standard deviations from

the mean. For the stock, the weights vary between 0 and 75%. The variation in the weights

on the stock appears less than the variation in expected returns on the stock; this is due to the

positive correlation in return innovations between stocks and bonds.

Figure 3 also shows that the more informative the prior, the less variable the weights. How-

ever, when the predictor variable is the yield spread, inference based on a prior with σβ = .08

is substantially different than inference based on a diffuse prior. Skepticism reduces portfolio

timing more for the yield spread than for the dividend-price ratio, even though the classical

evidence in favor of the yield spread is, if anything, stronger than that for the dividend-price

ratio (see, e.g., Ang and Bekaert (2003)). Nonetheless, even the investors with skeptical priors

(σβ = .08, .04) choose portfolios that vary with the yield spread.

2.4 Posterior means and asset allocation over the post-war period

We next describe the implications of various prior beliefs for optimal weights over the postwar

period. Starting with the first quarter of 1972, we compute the posterior (15) conditional on
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having observed data up to and including that quarter. The posterior is computed by simulating

500,000 draws and dropping the first 50,000. The assets are the stock, the long-term bond, and

a riskfree asset. We consider prior beliefs with σβ = 0, .04, .08, and ∞.

Figure 4 plots the weights in the long-term bond and the stock, along with the de-meaned

dividend-price ratio for the most diffuse prior. For most of the sample, the weights in the stock

are highly positively correlated with the dividend-price ratio. Less correlation is apparent for

bond returns. From the mid-90’s, on, this correlation is reduced for both assets: despite the

continued decline in the dividend-price ratio, the allocation to stocks levels off and the allocation

to bonds rises. As Figure 4 shows, under diffuse priors, portfolio weights are highly variable and

often extreme.

Figure 5 offers another perspective on the relation between the predictor variable and the

allocation. The top panel of the figure shows the posterior mean of β for the stock index, and the

bottom panel shows the posterior mean of β for the bond. The posterior means are shown for

priors ranging from dogmatic to diffuse (σβ ranging from 0 to ∞) and for the point estimates of

β from OLS. The top panel shows that for stock returns, the OLS beta lies above the posterior

mean for the entire sample. The OLS estimates, the posterior mean when σβ = ∞, and the

posterior mean when σβ = 0.08 decline around 1995, and then rise again around 2000, but do

not reach their former levels. The posterior mean for σβ = .08 lies above the posterior mean for

the diffuse prior after 2000. This may seem surprising, as the role of the prior is to shrink the βs

toward zero. However, the prior shrinks the total amount of predictability as measured by the

expected change in the maximum squared Sharpe ratio. This can be accomplished not only by

shrinking β, but also by shrinking the persistence relative to the diffuse prior. In contrast to the

posterior means for the less informative priors, the posterior mean for σβ = .04 remains steady

throughout the sample and actually increases after 2000.

Figure 6 plots holdings in the bond and the stock for a range of beliefs about predictability.

Also plotted are holdings resulting from estimating (1) – (3) using ordinary least squares regres-

sion. Volatility in holdings for both the bond and the stock decline substantially as the prior

becomes more dogmatic. For the fully dogmatic prior, the weight on the stock index displays

some initial volatility, and then stays at about 40% after about 1976. The weight on the bond

for the fully dogmatic prior is more volatile. In both cases, any volatility in the weight is due to

changes in the parameter estimates, as the predictor variable plays no role in portfolio allocation

for the dogmatic prior. The prior that is close to dogmatic, σβ = .04, implies some market

timing for the stock portfolio based on the dividend-price ratio. In the early part of the sample

the weight in the stock index implied by this prior is about 50%, declining to zero at the end of
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the sample. Of course, σβ = .08 and the diffuse prior imply greater amounts of market timing.

These priors imply time-varying weights that fluctuate both at a very slow frequency, and at a

higher frequency. However, the weights that display by far the greatest fluctuations are those

arising from ordinary least squares regression.

Figures 7, 8 and 9 show the results of repeating this analysis for the yield spread. Figure 7

plots the weights in the long-term bond and the stock, along with the de-meaned yield spread.

Figure 7 shows that weights in both the bond and the stock are clearly positively correlated with

the yield spread, as also reflected in Figure 3, and are highly variable over time. This variation

takes place at a higher frequency than the variation for the dividend-price ratio, as a result of

the lower auto-correlation of the yield spread.

Figure 8 plots the posterior means of βs for priors with σβ = 0, .04, .08,∞, and the point

estimates of β from OLS. The βs on the yield spread display considerably more stability than

the βs on the dividend-price ratio. For all non-dogmatic priors, the posterior means of β are

positive for the entire sample and remain largely unchanged following the mid-1980s.

Figure 9 shows portfolio weights for a range of priors, and includes the weights implied by

ordinary least squares regression. The weight on the bond for the most dogmatic prior rises over

the sample, as the investor updates his beliefs about the parameters for the bond. In contrast,

the parameters for the stock stay approximately constant. The non-dogmatic priors all display

higher frequency movements associated with changes in the yield spread. These changes while

noticeable, are much less dramatic for the skeptical prior beliefs than for the diffuse prior beliefs.

In particular, the most diffuse prior beliefs indicate an allocation to the long-term bond that

is greater than 100% several times over the sample. However, the allocations for the skeptical

priors never rise above 100%. For the yield spread, the weights implied by an ordinary least

squares regression are nearly identical to the weights implied by the diffuse prior.

Figures 6 and 9 demonstrate that using predictive variables in portfolio allocations need not

lead to extreme weights. Combining the sample evidence with priors that are skeptical about

return predictability leads to a moderate amount of market timing. We now turn to the out-of-

sample performance of these strategies.

2.5 Out-of-sample performance

The previous analysis shows how skeptical priors can inform portfolio selection. The results in

the previous section show that even highly skeptical investors choose time-varying weights, but

these weights are less variable and extreme than the weights for investors with diffuse priors. In
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this section, we assess out-of-sample performance of the priors that are previously considered.

The goal is not to find which prior is “correct”, or to prove definitively whether predictability

is present or not. Rather, the purpose of this section is to relate the findings of this paper to

recent critiques of the predictability evidence (see, e.g., Goyal and Welch (2004)).

To assess out-of-sample performance in a way that controls for risk, we adopt a certainty

equivalent approach. The certainty equivalent return (CER) answers the question: “what riskfree

rate would the investor be willing to accept in exchange for not following this strategy?”. That

is

CER = E[rp]− A
1

2
Var[rp], (20)

where A is the appropriate risk-aversion parameter. In this analysis, the mean and variance

in (20) are computed using the sample mean and variance that result from following strategies

associated with given priors beliefs. That is, for each quarter, we apply the weights described

in the previous section to the actual returns realized over the next quarter. This gives us a

time series of 120 quarterly returns to use in computing the means and variances in (20). In

reporting the certainty equivalent returns, we multiply by 400 to express the return as an annual

percentage. Because of the high variability of expected returns and weights on the long-term

bond, we also report certainty equivalent returns on the portfolio that only allocates wealth

between the stock and the riskfree rate. Results are reported for values of A equal to 2 and 5.

As an additional metric, we also report out-of-sample Sharpe ratios. These are equal to the

sample mean of excess returns, divided by the sample standard deviation. Excess returns are

quarterly and constructed as described in the paragraph above. In reporting Sharpe ratios, we

multiply by 2 to annualize.

Table 3 reports CERs and Sharpe ratios when the dividend-price ratio is the predictor vari-

able. For both metrics, and for both types of portfolios (bonds and stocks, or stocks only), the

weights implied by ordinary least squares deliver worse performance than the weights implied by

the dogmatic prior. A similar result is found in Goyal and Welch (2004), who argue against the

use of predictability in portfolio allocation. Moreover, the OLS weights perform worse than all of

the priors, with the most diffuse prior featuring the next-worst performance. We find, however,

that predictability can increase out-of-sample performance, if the investor treats the evidence

with some skepticism: the intermediate prior of σβ = .04 has the best out-of-sample perfor-

mance across both the CER and Sharpe ratio metrics, regardless of the level of risk aversion,

or whether stocks, or stocks and bonds are in the portfolio. While it is the case that ignoring

the predictability evidence results in better performance than applying a diffuse prior, simply

looking at these two extreme positions hides the better performance that can be achieved by
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taking the intermediate view.

Table 4 reports analogous results for the yield spread as the predictor variable. When the cer-

tainty equivalent return metric is considered, the dogmatic prior outperforms the OLS estimates

and the most diffuse prior. For the Sharpe ratio, the OLS estimates outperform the dogmatic

prior, but the diffuse prior outperforms both. However, as in the case of the dividend-price ratio,

the best performance occurs with the intermediate priors.12 Both σβ = .04 and σβ = .08 deliver

superior out of sample performance when compared to the diffuse and dogmatic priors. The

differences can be large. When the risk aversion parameter equals 2, for example, a diffuse prior

loses money (the CER is equal to -7% per annum). The dogmatic prior does better, delivering

a CER of 5.27% per annum. However, for the intermediate prior of σβ = .08, the CER is 7.58%

per annum. Thus priors indicating skepticism about the degree of predictability lead to less ex-

treme portfolio allocations, and to more stable parameter estimates and superior out-of-sample

performance over the postwar period.

3 Extensions to multiple predictor variables

This section extends the results in Section 1 to the case of multiple predictor variables. We

continue to assume (1) and (2), except that xt is now allowed to be K × 1, β is N × K, θ0 is

K × 1, and θ1 is K ×K. Let Θ be the set of K ×K matrices θ1 such that the eigenvalues of θ1

are less than one in absolute value. Define

B =





α> θ>0

β> θ>1





The multivariate analogues of (5) and (6) are

x̄ = E [xt |B,Σ] = (IK − θ1)
−1 θ0, (21)

and

vec(Σx) = (IK2 − (θ1 ⊗ θ1))
−1 vec(Σv), (22)

where Σx = E
[

(xt − x0)(xt − x0)
>
]

(see Hamilton (1994, p. 265)).

As in Section 1, we specify a hierarchical prior for β. In the case of multiple predictor

variables, β is a matrix. It is convenient to stack the elements of β into a vector φ = vec(β>).

12Across the table, the one exception is for the Sharpe ratio with the stock only portfolio. Here, the diffuse

prior performs the best.
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The prior for β conditional on the remaining parameters is given by

φ |α, θ0, θ1,Σ ∼ N
(

0, σβΣu ⊗ Σ−1
x

)

. (23)

This prior for β also implies a chi-squared distribution for the improvement in the squared

maximum Sharpe ratio. Let Cx be a lower triangular matrix such that CxC
>
x = Σx, and

η =
(

C−1
u ⊗ C>

x

)

φ.

(recall that Cu is such that CuC
>
u = Σu). Then η ∼ N(0, σβINK), and

∆(SR)2 = E
[

(xt − x̄)>β>Σ−1
u β(xt − x̄) |B,Σ

]

= E
[

tr
(

(xt − x̄)>β>Σ−1
u β(xt − x̄)

)

|B,Σ
]

= E
[

tr
(

β>Σ−1
u β(xt − x̄)(xt − x̄)>

)

|B,Σ
]

= tr
(

β>Σ−1
u βE

[

(xt − x̄)(xt − x̄)> |B,Σ
])

= tr(β>Σ−1
u βΣx)

= φ>(Σ−1
u ⊗ Σx)φ = η>η.

The second line follows because (xt − x̄)
>β>Σ−1

u β(xt − x̄) is a scalar, the third line follows from

the fact that tr(AB) = tr(BA), and the fourth line follows from the linearity of the expectations

operator.

The framework above assumes that the prior standard deviation of the orthogonalized βs,

σβ, is the same for all predictor variables. It is possible to relax this assumption, at the cost of

a slightly more complicated specification. The definition of Cx implies

C−1
x xt|B,Σ ∼ N(0, IK).

Fix a choice of Cx that is lower triangular. The first element of C−1
x xt is proportional to the first

predictor variable, the second element is proportional to the component of the second predictor

variable uncorrelated with the first, and so on. Define a diagonal matrix

Σβ =









σβ,1

. . .

σβ,K









,

and let

φ |α, θ0, θ1,Σ ∼ N
(

0,Σu ⊗
[

(

C−1
x

)>
ΣβC

−1
x

])

. (24)

21



The elements of Σβ can then be interpreted with reference to the ordering of the predictor

variable. For each k, setting σβ,k = 0 implies a dogmatic prior on the effect of adding a kth

predictor variable, assuming that predictor variables 1, . . . k − 1 are already in the regression,

and that variables k + 1, . . . K are not.

Specification (23) is a special case of (24), where all the diagonal elements of Σβ are equal. For

this reason, we focus on (24) for the remainder of this section. The probability density function

corresponding to (24) is given by

p(φ |α, θ0, θ1,Σ) ∝ |Σx|
N/2|Σu|

−K/2 exp

{

−
1

2
φ>
(

Σu ⊗
[

(

C−1
x

)>
ΣβC

−1
x

])−1

φ

}

.

Appendix B shows that the Jeffreys prior on (α, θ0, θ1,Σ) takes the form

p(α, θ0, θ1Σ) ∝ |Σ|
−N+2K+2

2 |Σu|
K/2|Σx|

K/2. (25)

Therefore, the joint prior is given by

p(B,Σ) ∝ |Σx|
N+K

2 |Σ|−
N+2K+2

2 exp

{

−
1

2
φ>
(

Σu ⊗
[

(

C−1
x

)>
ΣβC

−1
x

])−1

φ

}

. (26)

This prior generalizes (13) to multiple predictor variables, while retaining its appealing proper-

ties. As elements of Σβ approach zero, p(B,Σ) approaches a dogmatic, no-predictability prior.

Appendix A shows that p(B,Σ) approaches a Jeffreys prior as the elements of Σβ approach infin-

ity. Intermediate levels of the elements in Σβ allow for skepticism about the level of predictability

in the same sense as σβ in Section 1.2. Finally, as the above discussion shows, this prior implies

well-defined prior beliefs on the improvement in the squared maximum Sharpe ratio.

The computations for the likelihood and the posterior closely follow those in Section 1. Define

Y =









r>1 x>1
...

...

r>T x>T









and

X =









1 x>0
...

...

1 x>T−1









.

The exact likelihood is given by

p(Y|B,Σ) = |2πΣx|
− 1

2 |2πΣ|−
T
2

exp

{

−
1

2
(x0 − x̄)>Σ−1

x (x0 − x̄)−
1

2
tr
[

(Y −XB)>(Y −XB)Σ−1
]

}

. (27)
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Applying Bayes rule to (26) and (27) leads to the posterior

p(B,Σ|Y) ∝ |Σx|
N+K−1

2 |Σ|−
T+N+2K+2

2 exp

{

−
1

2
(x0 − x̄)>Σ−1

x (x0 − x̄)

}

exp

{

−
1

2
φ>
(

Σu ⊗
[

(

C−1
x

)>
ΣβC

−1
x

])−1

φ−
1

2
tr
[

(Y −XB)>(Y −XB)Σ−1
]

}

. (28)

The procedure for sampling from this posterior is very similar to that described in Section 1.3.

The Metropolis-Hastings algorithm is used to draw blocks of parameters at a time. First, Σ

is drawn from p(Σ|B,Y) using the inverted Wishart distribution with T + K + 1 degrees of

freedom. Second, α and β are drawn from p(α, β|θ0, θ1,Y), and finally θ0 and θ1 are drawn

from p(θ0, θ1|α, β,Σ,Y). The computation of the conditional posteriors for (α, β), and (θ0, θ1) is

exactly as in Section 1.3.

4 Conclusions

How much evidence on predictability is enough to influence portfolio choice? One view is that

predictability should be taken into account only if the statistical evidence for it is incontrovertible.

An opposite view is that investors should time their allocations to a large extent, even if the

evidence for predictability is weak according to conventional measures. The first view states that

investors should be extremely skeptical when viewing data showing evidence of predictability,

while the second view states that no skepticism is necessary at all.

In this paper, we modeled the portfolio choice problem of an investor who has prior beliefs on

the amount of predictability in the data. These prior beliefs put “skepticism” about predictability

on a sound decision-theoretic basis. The skeptical investor believes that, while predictability is

possible, large investment gains from exploiting predictability are relatively unlikely.

To quantify the size of the investment gains, we introduced a measure that is analogous

to the Gibbons, Ross, and Shanken (1989) measure of mispricing. Just as the Gibbons, Ross,

and Shanken measure shows the gain in the squared maximum Sharpe ratio from investing

in additional assets, our measure shows the gain in the squared maximum Sharpe ratio from

exploiting predictability. By placing a prior distribution on this measure, the investor also places

a prior on the R2 from the predictability equations. The skepticism of the investor’s beliefs is

controlled by a single parameter, σβ. As σβ approaches zero, the beliefs become dogmatic that

there is no predictability, as σβ approaches infinity, the prior becomes uninformative in the sense

of Jeffreys (1961).
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We applied our method to post-war data on bond and stock returns, with the yield spread

and the dividend-price ratio as predictor variables. We found that even investors with a high

degree of prior skepticism still vary their allocations to long-term bonds and stocks based on

both of these variables. Thus the amount of predictability in the data is sufficient to influence

investment, even if the investor is skeptical about the existence of this predictability.

To see the implications of various prior beliefs for portfolio allocations over the postwar period,

we implemented an out-of-sample analysis. For each quarter starting in 1972, the posterior and

optimal portfolio weights were determined based on previous data. Parameter estimates implied

by skeptical priors were more stable than those implied by the diffuse prior and by ordinary least

squares regression. Moreover, these skeptical priors offered superior out-of-sample performance

when compared to both diffuse priors, dogmatic priors, and an ordinary least squares regression.

This study provides a method for rigorously implementing an intermediate view on pre-

dictability. The resulting portfolio weights are more reasonable, and in fact perform better out

of sample than either extreme view. The question remains as to why the skeptical prior out-

performs. Skepticism can be motivated by a theory of rational markets (see Samuelson (1965)).

Our results suggest that there may be value to this theory even if it does not hold exactly. More

broadly, this study supports the idea that using models to downweight unreasonable regions of

the parameter space may improve decision making.
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Appendix

A Jeffreys prior on B,Σ

Our derivation for the limiting Jeffreys prior on B,Σ follows Stambaugh (1999). Zellner (1996,

pp. 216-220) derives a limiting Jeffreys prior by applying (11) to the likelihood (7) and retaining

terms of the highest order in T . Stambaugh shows that Zellner’s approach is equivalent to

applying (11) to the conditional likelihood (4), and taking the expectation in (11) assuming that

x0 is multivariate normal with mean (21) and variance (22) (or mean (5) and variance (6) in the

K = 1 case). We adopt this approach.

We derive the prior density for p(B,Σ−1) and then transform this into the density for p(B,Σ)

using the Jacobian. Let b = vec(B), and ζ = (σ11, σ12, . . . , σ1,N+K , σ22, σ23, . . . , σ2,N+K , . . . , σN+K,N+K),

where σij denotes element (i, j) of Σ−1. Let

l(B,Σ;Y) = log p(Y|B,Σ, x0). (29)

denote the natural log of the likelihood. The definition of the Jeffreys prior requires

p(B,Σ−1) ∝

∣

∣

∣

∣

∣

∣

−E









∂2l
∂b∂b>

∂2l
∂b∂ζ>

∂2l
∂ζ∂b>

∂2l
∂ζ∂ζ>









∣

∣

∣

∣

∣

∣

1/2

(30)

Computing the expectation on the right hand side of (30) yields

p(B,Σ−1) ∝

∣

∣

∣

∣

∣

∣

Σ−1 ⊗Ψ 0

0 ∂2 log |Σ|

∂ζ∂ζ>

∣

∣

∣

∣

∣

∣

1/2

, (31)

where

Ψ =





1 x̄>

x̄ x̄x̄> + Σx



 .

Note that Ψ is (K +1)× (K +1). From the formula for the determinant of a partitioned matrix

(Green (1997, p. 33)), it follows that |Ψ| = Σx.

Box and Tiao (1973, pp. 474–475) show that

∣

∣

∣

∣

∂2 log |Σ|

∂ζ∂ζ>

∣

∣

∣

∣

1/2

= |Σ|
N+K+1

2 (32)
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(recall that Σ is (N +K)× (N +K)). It then follows from (31) that

p(B,Σ−1) ∝ |Σ−1 ⊗Ψ|1/2|Σ|
N+K+1

2

=
(

|Σ|−(K+1)|Ψ|N+K
)1/2

|Σ|
N+K+1

2

= |Ψ|
N+K

2 |Σ|N/2

= |Σx|
N+K

2 |Σ|N/2.

From results in Zellner (1996, p. 226), it follows that Jacobian of the transformation from Σ−1

to Σ is |Σ|−(N+K+1). Therefore

p(B,Σ) ∝ |Σx|
N+1

2 |Σ|−
N+2K+2

2 . (33)

B Jeffreys prior on α, θ0, θ1,Σ

We calculate the prior for (α, θ0, θ1,Σ
−1), and use the determinant of the Jacobian to transform

this into a prior for (α, θ0, θ1,Σ). Define blocks of Σ−1 as

Σ−1 =





(Σ−1)11 (Σ−1)12

(Σ−1)21 (Σ−1)22



 .

Here, (Σ−1)11 is N ×N , (Σ−1)12 is N ×K, (Σ−1)21 = (Σ−1)
>
12, and (Σ−1)22 is K ×K.

The starting point for the calculation is the information matrix (11) for B,Σ−1 given in

Appendix A. The information matrix for α, θ0, θ1,Σ
−1 can be obtained by removing the rows and

columns corresponding to derivatives with respect to β ij from (31). Without loss of generality,

the rows and columns of (31) can be re-ordered so that

p(B,Σ−1) ∝

∣

∣

∣
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0 ∂2 log |Σ|
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1/2

.

This corresponds to taking second derivatives of l with respect to vec(B>) rather than vec(B).

Because vec(B>) = (α>, θ>0 , vec(β)
>, vec(θ1)

>)>, removing the rows and columns corresponding

to vec(β) leads to

p(α, θ0, θ1,Σ
−1) ∝
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where
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From the formula for the determinant of a partitioned matrix, it follows that

|Φ| =
∣
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it follows that
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Applying the formula for the determinant of a partitioned matrix to Σ produces

|Σ| = |Σu|
∣

∣Σv − ΣvuΣ
−1
u Σuv

∣

∣ .

By the formula for the inverse of a partitioned matrix (Green (1997, p. 33)),

|
(

Σ−1
)

22
| =

∣

∣Σv − ΣvuΣ
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u Σuv
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.

Therefore,

|Φ| = |Σ|−(K+1)|Σ|K |
(

Σ−1
)

22
|K |Σx|

K

= |Σ|−(K+1)|Σu|
K |Σx|

K .

Finally, from (32) and (34),

p(α, θ0, θ1,Σ
−1) ∝ |Φ|1/2|Σ|

N+K+1
2

= |Σ|N |Σu|
K/2|Σx|

K/2.

which, by the Jacobian of the transformation from Σ−1 to Σ (see Appendix A) completes the

proof of (25).

C Sampling from the posterior (14)

The conditional density p(Σ|B,Y) has an expression identical to (15). The proposal density is

the inverted Wishart with T + 2 degrees of freedom (Zellner (1996, p. 395)):

f(Σ|B,Y) ∝ |Σ|−
T+N+2

2 exp

{

−
1

2
tr
[

(Y −XB)>(Y −XB)Σ−1
]

}

.
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Because the target density takes the form

p(Σ|B,Y) ∝ ψ(Σ)× proposal,

we can use the results in Chib and Greenberg (1995, Section 5) to sample from the posterior.

The density for p(B|Σ,Y) is sampled from in two steps: first we sample from p(b1|b2,Σ,Y),

and next we sample from p(b2|b1,Σ,Y). For the first of these steps, we can sample directly from

the true density, without using the accept-reject algorithm. Note that

tr
[

(Y −XB)>(Y −XB)Σ−1
]

= (b− b̂)>(Σ−1 ⊗X>X)(b− b̂) + terms independent of B

where b̂ = vec(B̂), and B̂ = (X>X)−1X>Y . Let V =
(

Σ−1 ⊗X>X
)−1

, and partition V so that

V =





V11 V12

V21 V22



 ,

where V11 is 2N × 2N , V12 is 2N × 2, and V22 is 2× 2. Then

(b− b̂)>(Σ−1 ⊗X>X)(b− b̂) =
(

b1 − b̂1 − V >
21V
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)>
(

V11 − V >
21V

−1
22 V21

)−1
(
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21V

−1
22 (b2 − b̂2)

)

+ terms independent of b1.

(see Green (1997, Chapter 3.1)). Then under the prior (13),

p(b1 | b2,Σ,Y) ∝ exp
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}
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.

This equation also holds under the prior (36). We now complete the square to derive the distri-

bution for b1. Let

Ω = Σ−1
u ⊗





0 0

0
(

σ2βσ
−2
x

)−1



 . (35)

The posterior distribution for b1 conditional on b2 and Σ is normal with variance

V ∗
11 =

(

Ω + (V11 − V12V
−1
22 V12)

−1
)−1

and mean

b∗1 = V ∗
11(V11 − V12V

−1
22 V12)

−1
(

b̂1 + V >
21V

−1
22 (b2 − b̂2)

)

.
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Similar reasoning can be used to draw from the posterior for b2 = [θ0, θ1] conditional on the

other parameters, Applying the results of Green (1997, Chapter 3.1),

(b− b̂)>(Σ−1 ⊗X>X)(b− b̂) =
(

b2 − b̂2 − V >
12V

−1
11 (b1 − b̂1)

)>
(

V22 − V >
12V

−1
11 V12

)−1
(

b2 − b̂2 − V >
12V

−1
11 (b1 − b̂1)

)

+ terms independent of b2.

The density is sampled from using an accept-reject algorithm. The proposal density is normal

with mean b̂2 + V >
12V

−1
11 (b1 − b̂1) and variance V22 − V >

12V
−1
11 V12. The target density is

p(b2|b1,Σ,Y) ∝ σN
x exp

{

−
1

2
β>
(

σ2βσ
−2
x Σu

)−2
β −

1

2
σ−2x (x0 − x̄)2

}

× proposal.

for θ1 ∈ (0, 1) and zero otherwise.13

D Results for the Flat Prior on θ1

An alternative specification, motivated by the multivariate approach with exogenous regressors,

is to assume a flat prior for (α, θ0, θ1) and consider a prior for Σ that is proportional to |Σ|−
N+2

2

(see, e.g., Pastor and Stambaugh (1999)). In this case,

p(α, θ0, θ1,Σ) ∝ |Σ|
−N+2

2

and

p(B,Σ) ∝ |σ2βσ
−2
x Σu|

−1/2|Σ|−
N+2

2 exp

{

−
1

2
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σ2βσ
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}
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2
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σ2βσ
−2
x Σu

)−1
β

}

. (36)

As σβ →∞, we obtain a prior considered by Stambaugh (1999).

Combining the prior (36) with the exact likelihood (7) produces

p(B,Σ|Y) ∝ σN−1
x |Σu|

−1/2|Σ|−
T+N+2

2 exp

{

−
1

2
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(
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}
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2
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(Y −XB)>(Y −XB)Σ−1
]
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. (37)

13For the case of multiple predictor variables, the procedure for simulating from the posterior is very similar.

In this case, V11 is NK ×NK and

Ω = Σ−1
u ⊗





0 0

0
(

C−1
x ΣβCx

)

−1



 .

The proposal density for Σ is an inverted Wishart with T +K + 1 degrees of freedom.
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as a posterior. The strategy for sampling from (37) is the same as for the posterior under the

limiting Jeffreys prior. The proposal densities are the same, except that Σ has an inverted-

Wishart density with T , rather than T +2 degrees of freedom. The target densities are different,

but can be derived in the same way as the target densities for (15).

Tables 5–8 report results for the prior (36). As Tables 5 and 6 show, the posterior means

implied by the flat prior are qualitatively similar to those implied by the limiting Jeffreys prior.

Indeed, for the yield spread the results are nearly indistinguishable. This is not surprising: the

flat prior and the Jeffreys prior differ in the weight they give to values of θ1 near to -1 and 1,

with the Jeffreys prior placing more weight at these extremes. However, the OLS estimate for

the yield spread persistence is 0.74, far away from these extremes. Thus the yield spread lacks

sufficient persistence to create a divergence in these two priors. In contrast, these two priors

do imply somewhat different results for the dividend-price ratio. The Jeffreys prior leads to

posterior means of θ1 that are closer to 1, and to posterior means of beta that are somewhat

higher (for the stock, the beta is 1.99 under the flat prior and 1.46 under the Jeffreys prior).

Table 3 shows that in spite of these differences, the out-of-sample performance of the dividend-

price ratio is virtually the same, regardless of which prior is considered. The intermediate prior

with σβ = .04 still delivers the best performance. Table 4 shows, not surprisingly, that the results

for the yield spread are also quite similar to the results for the Jeffreys prior.
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Table 1: Posterior Means: Dividend-Price ratio

σβ

Parameter 0 0.04 0.08 ∞ Reg.

βbond 0.00 0.02 -0.00 -0.18 -0.10

(0.00) (0.22) (0.43) (0.72) (0.73)

βstock 0.00 0.69 1.41 1.46 2.72

(0.00) (0.62) (0.97) (1.09) (1.52)

θ1 0.997 0.993 0.988 0.989 0.976

(0.002) (0.006) (0.009) (0.010) (0.015)

E
[

rbond
]

0.18 0.18 0.18 0.17 0.23

(0.27) (0.30) (0.34) (1.07)

E
[

rstock
]

1.16 1.17 1.17 1.17 1.09

(0.29) (0.24) (0.28) (0.72)

E[x] -3.49 -3.50 -3.50 -3.50 -3.72

(1.48) (0.99) (0.76) (1.35)

Notes: Posterior means for parameters in (1)–(3) implied by the likelihood (7) and the prior

(13). Posterior standard deviations are in parentheses. The assets are the ten-year bond and

the stock index; the log dividend-price ratio is the predictor variable x. Prior beliefs are indexed

by σβ, the prior standard deviation of the normalized coefficients on the predictor variable (see

(8)). E[·] denotes the posterior mean of the long-run expectation. The last column gives results

from ordinary least squares regression, where E[x] = θ̂0/(1 − θ̂1) and E[r] = α̂ + β̂E[x], and ˆ

denotes the regression estimate of a coefficient. For regression estimates, standard errors are in

parentheses. Data are quarterly from 1952 to 2004.



Table 2: Posterior Means: Yield spread

σβ

Parameter 0 0.04 0.08 ∞ Reg.

βbond 0.00 0.20 0.46 0.81 0.80

(0.00) (0.14) (0.20) (0.26) (0.26)

βstock 0.00 0.22 0.51 0.89 0.89

(0.00) (0.28) (0.42) (0.55) (0.56)

θ1 0.74 0.73 0.74 0.75 0.74

(0.05) (0.05) (0.05) (0.05) (0.05)

E
[

rbond
]

0.21 0.21 0.21 0.21 0.23

(0.28) (0.28) (0.29) (0.33)

E
[

rstock
]

1.67 1.67 1.67 1.67 1.69

(0.58) (0.59) (0.60) (0.63)

E[x] 0.97 0.97 0.97 0.97 0.99

(0.19) (0.19) (0.19) (0.21)

Notes: Posterior means for parameters in (1)–(3) implied by the likelihood (7) and the prior (13).

Posterior standard deviations are in parentheses. The assets are the ten-year bond and the stock

index; the yield spread is the predictor variable x. Prior beliefs are indexed by σβ, the prior

standard deviation of the normalized coefficients on the predictor variable (see (8)). E[·] denotes

the posterior mean of the long-run expectation. The last column gives results from ordinary least

squares regression, where E[x] = θ̂0/(1− θ̂1) and E[r] = α̂+ β̂E[x], and ˆ denotes the regression

estimate of a coefficient. For regression estimates, standard errors are in parentheses. Data are

quarterly from 1952 to 2004.



Table 3: Out-of-Sample Results for the Dividend-Price Ratio

Panel A: Certainty Equivalent Returns

σβ

R. A. Assets 0 0.04 0.08 ∞ Reg.

2 Bond and Stock 6.83 7.50 6.53 4.57 -1.81

Stock Only 8.64 9.22 8.09 7.47 0.34

5 Bond and Stock 6.73 6.98 6.57 5.77 3.20

Stock Only 7.42 7.64 7.16 6.91 4.04

Panel B: Sharpe Ratios

σβ

Assets 0 0.04 0.08 ∞ Reg.

Bond and Stock 0.18 0.21 0.17 0.09 0.10

Stock Only 0.29 0.32 0.26 0.24 0.18

Notes: Certainty equivalent returns (Panel A) and Sharpe ratios (Panel B) when the dividend-

price ratio is the predictor variable. For each quarter beginning in the first quarter of 1972,

the predictive distribution for returns is computed using all data up to that quarter assuming

the likelihood (7) and the prior (13). Optimal portfolios are then determined by (18) with risk

aversion parameter A = 2, 5; these are combined with actual returns over the following quarter

to create out-of-sample returns on the investment strategy. Certainty equivalent returns (CERs)

are obtained as

CER = E[rp]− A
1

2
Var[rp],

where rp are the quarterly returns on the investment strategy and the mean and variance are

computed using the sample. Sharpe ratios are the average excess returns on the investment

strategy divided by the standard deviation and do not depend on A. Prior beliefs are indexed by

σβ, the prior standard deviation of the normalized coefficient on the predictor variable (see (8)).

Reg. denotes out-of-sample results obtained from estimating (1)–(3) by ordinary least squares.

Each panel reports results from investing in both a stock index and the ten-year bond, and the

stock index alone. Data are quarterly from 1952 to 2004. CERs are in annualized percentages

(×400), and Sharpe ratios are annualized (×2).



Table 4: Out-of-Sample Results for the Yield Spread

Panel A: Certainty Equivalent Returns

σβ

R. A. Assets 0 0.04 0.08 ∞ Reg.

2 Bond and Stock 5.27 6.93 7.58 -7.00 -15.59

Stock Only 6.85 7.45 7.98 6.02 5.07

5 Bond and Stock 6.12 6.80 7.08 1.33 -2.07

Stock Only 6.72 6.96 7.17 6.39 6.02

Panel B: Sharpe Ratios

σβ

Assets 0 0.04 0.08 ∞ Reg.

Bond and Stock 0.17 0.25 0.32 0.29 0.25

Stock Only 0.24 0.27 0.31 0.34 0.33

Notes: Certainty equivalent returns (Panel A) and Sharpe ratios (Panel B) when the yield spread

is the predictor variable. For each quarter beginning in the first quarter of 1972, the predictive

distribution for returns is computed using all data up to that quarter assuming the likelihood (7)

and the prior (13). Optimal portfolios are then determined by (18) with risk aversion parameter

A = 2, 5; these are combined with actual returns over the following quarter to create out-of-

sample returns on the investment strategy. Certainty equivalent returns (CERs) are obtained

as

CER = E[rp]− A
1

2
Var[rp],

where rp are the quarterly returns on the investment strategy and the mean and variance are

computed using the sample. Sharpe ratios are the average excess returns on the investment

strategy divided by the standard deviation and do not depend on A. Prior beliefs are indexed by

σβ, the prior standard deviation of the normalized coefficient on the predictor variable (see (8)).

Reg. denotes out-of-sample results obtained from estimating (1)–(3) by ordinary least squares.

Each panel reports results from investing in both a stock index and the ten-year bond, and the

stock index alone. Data are quarterly from 1952 to 2004. CERs are in annualized percentages

(×400), and Sharpe ratios are annualized (×2).



Table 5: Posterior Means for the Dividend-Price Ratio with the Prior (36)

σβ

Parameter 0 0.04 0.08 ∞ Reg.

βbond -0.00 0.03 0.00 -0.15 -0.10

(0.00) (0.25) (0.47) (0.72) (0.73)

βstock 0.00 0.92 1.77 1.99 2.72

(0.00) (0.69) (1.03) (1.18) (1.52)

θ1 0.997 0.990 0.984 0.983 0.976

(0.002) (0.006) (0.010) (0.011) (0.015)

E
[

rbond
]

0.18 0.18 0.18 0.18 0.23

(0.28) (0.30) (0.32) (0.61)

E
[

rstock
]

1.17 1.17 1.17 1.17 1.09

(0.31) (0.21) (0.23) (0.40)

E[x] -3.51 -3.49 -3.50 -3.50 -3.72

(1.18) (0.71) (0.51) (0.71)

Notes: Posterior means for parameters in (1)–(3) implied by the likelihood (7) and the prior

(36). Posterior standard deviations are in parentheses. The assets are the ten-year bond and

the stock index; the log dividend-price ratio is the predictor variable x. Prior beliefs are indexed

by σβ, the prior standard deviation of the normalized coefficients on the predictor variable (see

(8)). E[·] denotes the posterior mean of the long-run expectation. The last column gives results

from ordinary least squares regression, where E[x] = θ̂0/(1 − θ̂1) and E[r] = α̂ + β̂E[x], and ˆ

denotes the regression estimate of a coefficient. For regression estimates, standard errors are in

parentheses. Data are quarterly from 1952 to 2004.



Table 6: Posterior Means for the Yield Spread with the Prior (36)

σβ

Parameter 0 0.04 0.08 ∞ Reg.

βbond 0.00 0.20 0.46 0.81 0.80

(0.00) (0.14) (0.20) (0.26) (0.26)

βstock 0.00 0.22 0.51 0.89 0.89

(0.00) (0.28) (0.42) (0.56) (0.56)

θ1 0.73 0.73 0.73 0.75 0.74

(0.05) (0.05) (0.05) (0.05) (0.05)

E
[

rbond
]

0.21 0.21 0.21 0.21 0.23

(0.28) (0.28) (0.29) (0.33)

E
[

rstock
]

1.67 1.67 1.67 1.67 1.69

(0.58) (0.59) (0.60) (0.63)

E[x] 0.97 0.97 0.97 0.97 0.99

(0.19) (0.19) (0.19) (0.20)

Notes: Posterior means for parameters in (1)–(3) implied by the likelihood (7) and the prior (36).

Posterior standard deviations are in parentheses. The assets are the ten-year bond and the stock

index; the yield spread is the predictor variable x. Prior beliefs are indexed by σβ, the prior

standard deviation of the normalized coefficients on the predictor variable (see (8)). E[·] denotes

the posterior mean of the long-run expectation. The last column gives results from ordinary least

squares regression, where E[x] = θ̂0/(1− θ̂1) and E[r] = α̂+ β̂E[x], and ˆ denotes the regression

estimate of a coefficient. For regression estimates, standard errors are in parentheses. Data are

quarterly from 1952 to 2004.



Table 7: Out-of-Sample Results for the Dividend-Price Ratio with the Prior (36)

Panel A: Certainty Equivalent Returns

σβ

R. A. Assets 0 0.04 0.08 ∞ Reg.

2 Bond and Stock 6.87 7.51 6.03 3.56 -1.81

Stock Only 8.68 9.17 7.51 6.29 0.34

5 Bond and Stock 6.74 6.98 6.36 5.35 3.20

Stock Only 7.44 7.62 6.93 6.43 4.04

Panel B: Sharpe Ratios

σβ

Assets 0 0.04 0.08 ∞ Reg.

Bond and Stock 0.18 0.21 0.15 0.09 0.10

Stock Only 0.29 0.32 0.24 0.21 0.18

Notes: Certainty equivalent returns (Panel A) and Sharpe ratios (Panel B) when the dividend-

price ratio is the predictor variable. For each quarter beginning in the first quarter of 1972,

the predictive distribution for returns is computed using all data up to that quarter assuming

the likelihood (7) and the prior (36). Optimal portfolios are then determined by (18) with risk

aversion parameter A = 2, 5; these are combined with actual returns over the following quarter

to create out-of-sample returns on the investment strategy. Certainty equivalent returns (CERs)

are obtained as

CER = E[rp]− A
1

2
Var[rp],

where rp are the quarterly returns on the investment strategy and the mean and variance are

computed using the sample. Sharpe ratios are the average excess returns on the investment

strategy divided by the standard deviation and do not depend on A. Prior beliefs are indexed by

σβ, the prior standard deviation of the normalized coefficient on the predictor variable (see (8)).

Reg. denotes out-of-sample results obtained from estimating (1)–(3) by ordinary least squares.

Each panel reports results from investing in both a stock index and the ten-year bond, and the

stock index alone. Data are quarterly from 1952 to 2004. CERs are in annualized percentages

(×400), and Sharpe ratios are annualized (×2).



Table 8: Out-of-Sample Results for the Yield Spread with the Prior (36)

Panel A: Certainty Equivalent Returns

σβ

R. A. Assets 0 0.04 0.08 ∞ Reg.

2 Bond and Stock 5.35 6.93 7.44 -6.28 -15.59

Stock Only 6.91 7.50 8.02 6.15 5.07

5 Bond and Stock 6.15 6.80 7.03 1.62 -2.07

Stock Only 6.74 6.98 7.18 6.44 6.02

Panel B: Sharpe Ratios

σβ

Assets 0 0.04 0.08 ∞ Reg.

Bond and Stock 0.17 0.25 0.31 0.29 0.25

Stock Only 0.24 0.27 0.31 0.34 0.33

Notes: Certainty equivalent returns (Panel A) and Sharpe ratios (Panel B) when the yield spread

is the predictor variable. For each quarter beginning in the first quarter of 1972, the predictive

distribution for returns is computed using all data up to that quarter assuming the likelihood (7)

and the prior (36). Optimal portfolios are then determined by (18) with risk aversion parameter

A = 2, 5; these are combined with actual returns over the following quarter to create out-of-

sample returns on the investment strategy. Certainty equivalent returns (CERs) are obtained

as

CER = E[rp]− A
1

2
Var[rp],

where rp are the quarterly returns on the investment strategy and the mean and variance are

computed using the sample. Sharpe ratios are the average excess returns on the investment

strategy divided by the standard deviation and do not depend on A. Prior beliefs are indexed by

σβ, the prior standard deviation of the normalized coefficient on the predictor variable (see (8)).

Reg. denotes out-of-sample results obtained from estimating (1)–(3) by ordinary least squares.

Each panel reports results from investing in both a stock index and the ten-year bond, and the

stock index alone. Data are quarterly from 1952 to 2004. CERs are in annualized percentages

(×400), and Sharpe ratios are annualized (×2).



Figure 1: Prior on the Change in the Squared Maximum Sharpe Ratio
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Notes: Prior distribution on the change in the expected squared maximum Sharpe ratio arising

from conditioning on the predictor variable. Prior beliefs are indexed by σβ, the prior standard

deviation of the normalized coefficients on the predictor variable (see (8)). N denotes the number

of assets available to the investor. When N = 1, the change in squared maximum Sharpe ratio

is a close approximation to the R2 of the predictive regression.



Figure 2: Conditional Expected Returns and Holdings when xt is the Dividend-Price Ratio
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Notes: Conditional expected returns (top two plots) and portfolio holdings (bottom two plots)

as functions of the log dividend-price ratio. Conditional expected returns are calculated using

the predictive distribution implied by the likelihood (7) and the prior (13) with the ten-year

bond and the stock index as risky assets and the dividend-price ratio as the predictor variable xt.

Given the predictive distribution, portfolio holdings are calculated using (18) for risk aversion

parameter A = 5. Prior beliefs are indexed by σβ, the prior standard deviation of the normalized

coefficients on the predictor variable (see (8)). Diamonds correspond to the sample mean and

plus and minus one and two sample standard deviations of the predictor variable. Data are

quarterly from 1952 to 2004.



Figure 3: Conditional Expected Returns and Holdings when xt is the Yield Spread
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Notes: Conditional expected returns (top two plots) and portfolio holdings (bottom two plots)

as functions of the yield spread. Conditional expected returns are calculated using the predictive

distribution implied by the likelihood (7) and the prior (13) with the ten-year bond and the

stock index as risky assets and the yield spread as the predictor variable xt. Given the predictive

distribution, portfolio holdings are calculated using (18) for risk aversion parameter A = 5.

Prior beliefs are indexed by σβ, the prior standard deviation of the normalized coefficients on

the predictor variable (see (8)). Diamonds correspond to the sample mean and plus and minus

one and two sample standard deviations of the predictor variable. Data are quarterly from 1952

to 2004.



Figure 4: Time Series of the Dividend-Price Ratio and Portfolio Holdings for the Diffuse Prior
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Notes: Time series of optimal portfolio holdings in the bond and in the stock index and the

de-meaned log dividend-price ratio. For each quarter beginning in the first quarter of 1972, the

predictive distribution for returns is computed using the data up to that quarter assuming the

dividend-price ratio is the predictor variable, the likelihood is (7), and the prior is (13) with

σβ =∞. This predictive distribution is used to determine optimal portfolios from (18) with risk

aversion parameter A = 5. Data are quarterly from 1952 to 2004.



Figure 5: Time Series of Posterior Means of β when xt is the Dividend-Price Ratio
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Notes: Time series of the posterior means of β, the coefficient on xt. The top figure plots β

corresponding to the stock return, the bottom figure plots β corresponding to the bond return.

For each quarter beginning in the first quarter of 1972, the posterior distribution is computed

using the data up to that quarter assuming the dividend-price ratio is the predictor variable, the

likelihood is (7), and the prior is (13) for various values of σβ. Also plotted are the βs implied

by estimating (1)–(3) by ordinary least squares regression (Reg). Data are quarterly from 1952

to 2004.



Figure 6: Time Series of Portfolio Holdings when xt is the Dividend-Price Ratio
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Notes: Time series of optimal portfolio holdings in the stock index (top panel) and in the ten-

year bond (bottom panel). For each quarter beginning in the first quarter of 1972, the predictive

distribution for returns is computed using the data up to that quarter assuming the dividend-

price ratio is the predictor variable, the likelihood is (7), and the prior is (13) for various values

of σβ. This predictive distribution is used to determine optimal portfolios from (18) with risk

aversion parameter A = 5. Reg. denotes results obtained from estimating (1)–(3) by ordinary

least squares. Data are quarterly from 1952 to 2004.



Figure 7: Time Series of the Yield Spread and Portfolio Holdings for the Diffuse Prior
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Notes: Time series of optimal portfolio holdings in the bond and in the stock index and the

de-meaned yield spread. For each quarter beginning in the first quarter of 1972, the predictive

distribution for returns is computed using the data up to that quarter assuming the yield spread

is the predictor variable, the likelihood is (7), and the prior is (13) with σβ =∞. This predictive

distribution is used to determine optimal portfolios from (18) with risk aversion parameter A = 5.

Data are quarterly from 1952 to 2004.



Figure 8: Time Series of Posterior Means of β when xt is the Yield Spread
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Notes: Time series of the posterior means of β, the coefficient on xt. The top figure plots β cor-

responding to the stock return, the bottom figure plots β corresponding to the bond return. For

each quarter beginning in the first quarter of 1972, the posterior distribution is computed using

the data up to that quarter assuming the yield spread is the predictor variable, the likelihood is

(7), and the prior is (13) for various values of σβ. Also plotted are the βs implied by estimating

(1)–(3) by ordinary least squares regression (Reg). Data are quarterly from 1952 to 2004.



Figure 9: Time Series of Portfolio Holdings when xt is the Yield Spread
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Notes: Time series of optimal portfolio holdings in the stock index (top panel) and in the ten-

year bond (bottom panel). For each quarter beginning in the first quarter of 1972, the predictive

distribution for returns is computed using the data up to that quarter assuming the yield spread

is the predictor variable, the likelihood is (7), and the prior is (13) for various values of σβ.

This predictive distribution is used to determine optimal portfolios from (18) with risk aversion

parameter A = 5. Reg. denotes results obtained from estimating (1)–(3) by ordinary least

squares. Data are quarterly from 1952 to 2004.


