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Context

e Subjects with rheumatoid arthritis develop
damage to the joints.

e We wish to predict the severity of damage.

e Damage scale:

2 o o

No damage

Joint space narrowing

Slight evidence of erosion

Clear evidence of erosion

Worse than 4, not as bad as 6

No further damage to joint possible



What do you do with ordinal data ?

. Dichotomise: use logistic regression

. Pretend there is an interval scale: use linear
regression

. Ignore the ordering: fit a multinomial model

. Use methods specifically for ordinal data



Types of Ordinal Data

e Grouped Continuous

— There is a underlying continuous variable.

— Not measured exactly, only to certain fixed
ranges.

— E.g. Age 15-24, 25-34, 35-50 etc.

e Assessed

— Subjective judgement made by an individual.
— E.g. strongly disagree, disagree, neither
agree nor disagree, agree, strongly agree.

— May or may not be an underlying continuous

latent variable.
— Erosions outcome is of this type.



Ordinal Regression Models

e Generalized Linear Models

1. The Cumulative Odds Model
2. The Continuation Ratio Model
3. Ordered Probit Model
— Almost identical to the Cumulative Odds
Model

e The Stereotype Model

— Non-linear form of constrained multinomial
model



Generalized Linear Models

Model the Cumulative Response Probability ~;

75(x) = pr(Y < j|x)

n(v) = 6; + Bx

n = logit = Cumulative Odds
11 = complementary log log = Continuation Ratio
1 = probit = Ordered Probit

All assume that, on some scale, the effect of x
is the same for all levels of Y.



The Cumulative Odds Model
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Assume 6, and 0, are both estimates of the
same population parameter.

Should test that 6; =~ 0-



Comments

e Motivation: Grouped continuous data
— Changing groupings does not affect the
population parameter being estimated.

e Reversal invariant.

e Stata commands

— ologit resp preds
— omodel logit resp preds



The Continuation Ratio Model
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same population parameter.

Should test that 6; =~ 6,



Comments

Not reversal invariant.
Not collapsing invariant.
Subtables are independent: easy model to fit

Stata commands

— ocratio resp preds
— | have not found a test of proportionality of
hazards.



The Stereotype Model

e The full multinomial model can be thought of a
series of independent logistic regressions

— category 2 vs category 1
— category 3 vs category 1

e If we assume that the regression function is the
same for all categories, we have a stereotype
model.

e Stereotype model has fewer parameters than
multinomial, but is nested within it.
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Multinomial Model

e Full multinomial model is

exp (303 + 5 ivz'jﬁjs>

Pr(y; = s|xi1...Tip) =

Zle exp </30t + 35 wijﬁjt)

e This is not identified: commonly fix 3;; = 0, forj = 0 to p.

e This compares all groups with group 1.
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Stereotype Model

e The stereotype model assumes that for all groups, 8;s = ¢s3;, i.e.

exp (/BOS + bs D5y wijﬁj)

Pr(y; = s|i1 ... Tip) =

Zle exp </80t + bt 5y wijﬁj)

B; = Logistic Regression Function

¢s = Distance apart of groups

e Commonly ¢, is fixed at 0 and ¢, fixed at 1.
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Distinguishability & Dimensionality

Distinguishability

If ¢; = ¢4, then = does not distinguish
between groups z and j.

Can test constrained model with ¢; = ¢; for
adequacy of fit.

Dimensionality

If one function of x discriminates between all
groups, relationship is one-dimensional (i.e.
ordinal).

If more than one function is required (i.e.
different variables differentiate between different
levels) relationship is multi-dimensional.

In multidimensional models, outcome categories

are not strictly ordered with respect to
predictors/
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Ordinal relationship
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2 dimensional relationship
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Indistinguishable categories
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Stereotype Regression Strategy

Determine dimensionality

Constrain parameters where possible

— Decide which variables belong to which
dimensions if there are more than one
— Collapse indistinguishable groups together
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Model

e Outcome

— Severity of the most eroded joint (1 - 6)

e Predictors

— Age (measured in decades, 15 - 85)
— Rheumatoid factor (present or absent)
— Shared epitope (0, 1 or 2 copies)
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Cumulative Odds Model

omodel logit erosion age rf epitope
Ordered logit estimates

Number of obs
LR chi2 (3)
Prob > chi?2
Pseudo R2

251
62.04
0.0000
0.0745

Log likelihood = -385.29669
erosion | Coef. Std. Err
age | .3986464 .0879168
rf | 1.309473 .2594066
epitope | .4779209 .1671797

.2263326
.8010456
.1502548

Approximate likelihood-ratio test of proportionality of odds

across response categories:
chi2 (12) = 471 .71
Prob > chi2 = 0.0000

.5709603
1.817901
.805587
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Continuation Ratio

ocratio erosion age rf epitope

Continuation-ratio logit Estimates

Number of obs

chi2 (3)
Prob > chi?2
Pseudo R2

687
45.26
0.0000
0.0544

Log Likelihood = -393.6903
erosion | Coef Std. Err Z
age | .1749616 .0646592 2.706
rf | .9110031 .1926102 4.730
epitope | .392571  .1267941 3.096

.0482319
.5334939
.144059

.3016914
1.288512
.6410829

Omnibus Test of Proportional Hazards

LR Chi2 (12)
Prob > chi?2
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Stereotype Regression: 1 Dimensional

soreg erosion age rf epitope
Stereotype Logistic Regression

Comparison to null model

Comparison to full model

Number of obs

251
66.67
0.0000
33.56
0.0000

LR Chi2 (7)
Prob > chi?2
LR Chi2 (8)
Prob > chi?2
P>|z| [95% Conf
0.001 .2208578
0.000 .4242595
0.000 .4334925
0.000 .403039
0.001 .3460371
0.006 .545121
0.028 .0838967

.8675274

.354789
.471253
.393882

.318153
.183167
1.47017

| Coef std. Err

phill (dropped)
phi2l .5441926 .1649698
phi3l .889524 .2373843
phi4l .9523727 .2647397
phi51 .8984605 .2527707
phi6l 1 )
betall .832095 .2479933
beta2l 1.864144 .6729833
beta3l .7770334 .3536477

betal = a%e

beta2 = r

beta3 = epitope
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Stereotype Regression: 2 Dimensional

soreg erosion age rf epitope, maxdim(2)

Stereotype Logistic Regression Number of obs = 251
Comparison to null model LR Chi2(12) = 97.42
Prob > chi?2 = 0.0000
Comparison to full model LR Chi2 (3) = 2.81
Prob > chi?2 = 0.4217
soreg erosion age rf epitope, maxdim(2) c(1/14)
Stereotype Logistic Regression Number of obs = 251
Comparison to null model LR Chi2 (4) = 88.34
Prob > chi?2 = 0.0000
Comparison to full model LR Chi2(11) = 11.89
Prob > chi?2 = 0.3719
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Determining Dimensions
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Applying Constraints (1)

| Coef. Std. Err. z P>|z| [95% Conf. Intervall
_______ s
phill (dropped)
phi2l 1.692431 1.098211 1.541 0.123 -.4600231 3.84488
phi3l 2.272531 1.469143 1.547 0.122 -.6069365 5.151999
phidl 1.517726 .9933333 1.528 0.127 -.4291719 3.464623
phi51 1.273904 .8419309 1.513 0.130 -.3762501 2.924058
phi6l 1 . . . . .
betall .4506742 .3014424 1.495 0.135 -.140142 1.04149
phill (dropped)
phi21 1
phi3l 1
phial 1
phi5l 1
phi6l 1 . . . . .
betall .7684656 .1288242 5.965 0.000 .5159748 1.020956

betal = age



beta22
beta32

phil?2
phi2?2
phi32
phi4?2
phi52
phié62
beta22

beta32

beta?2
beta3

Coef.

Applying Constraints (2)

Std. Err.

[95% Conf.

Intervall

(dropped)
-.0372127
.3594271
.7134761
.7098553
1
2.169331
1.120352

(dropped)
(dropped)
.4986462
1

1

1
1.683544

.8272222
rf
epitope

.1810902
.1656013

.236255
.2355299

7273564
.4247061

.1550644

.3560441
.2424987

N

.205
.170
.020
.014

.982
.638

.216

.728
.411

.001

.000
.001

-.392143
.0348545
.2504249
.2482251

.7437389
.287943

.1947256

.9857109
.3519335

.3177176
.6839997
1.176527
1.171485

3.594924
1.95276

.8025669

2.381378
1.302511
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Stereotype Regression:
Interpretation(1)

First dimension
® Boge = 0.77

.¢1:O1¢2:¢3:¢4:¢5:¢6:1

e Odds of having some slight damage rather than
none increases by e%77 per decade.

e Age does not help to predict how severe the
damage is, only that it exists.
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Stereotype Regression:
Interpretation(2)

Second dimension

¢ IBTf = 1.68, /Bep'itope = 0.83
® ¢1:¢2:O,¢3:O.50,¢4:¢5:¢6:]_

e Odds of being in group 4, 5 or 6 rather than
group 1 or 2 is greater by e!-® in the RF+.

e Odds of being in group 3 rather than group 1 or
2 is greater by e(1-68%0-50) jn the RF+.

e Odds of being in group 4, 5 or 6 rather than
group 1 or 2 is greater by €33 per copy of the
shared epitope.

e Odds of being in group 3 rather than group 1
or 2 is greater by e(0-83%0-50) nar copy of the
shared epitope.
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Relaxing Assumptions

In theory, can relax the assumptions of the
cumulative odds and continuation ratio models.

Fit a separate 3 for each level of the outcome.

But can theoretically produce negative probabilities
P(y > 3) > p(y > 2).

May want to introduce constraints to reduce

the number of parameters (partial proportional
odds).

Model fit is similar, parameter interpretations
differ.

May need to choose model on grounds other
than goodness of fit.
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Conclusions

Importance of relationship between predictors
and outcome.

An ordinal outcome need not have an ordinal
relationship with predictors.

Several models may fit: ease of interpretation
may be the deciding factor.

Constraints can be used to reduce the number
of parameters and simplify interpretation.
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