A discrete-time split population survival (‘cure’) model for Stata 6 or Stata 7: spsurv

Stephen P. Jenkins
Institute for Social and Economic Research
University of Essex
Email: stephenj@essex.ac.uk
Outline

• The model
• `spsurv` syntax
• Illustration using the cancer data (`cancer.dta`)
• Reflections
 – heterogeneity in the cure probability?
 – maximisation issues (‘backing up’)
 – robust option is infeasible

Thanks to StataCorp Technical Support for their help!
Overview

• `spsurv` estimates what economists refer to as split population survival models (Schmidt and Witte, 1989) and biostatisticians refer to as cure models, for the case where

• survival time metric is intrinsically discrete or survival times are grouped into intervals.

• Cf. the continuous time lognormal cure model `lncure` by Mario Cleves (`st` compatible, most `streg` features and options, but particular parametric hazard shape)

• `ml`, method `d0` (can’t use `lf`)
The model

- Standard survival models assume that prob(eventual failure) > 0 for all individuals; split population models suppose that a proportion, c, never fail (‘cured’).
- Likelihood contribution for person i with survival time t:

$$\ln L_i = d_i \ln[(1-c)(h_{it})(S_{it-1})] + (1-d_i) \ln[c + (1-c)S_{it}]$$

where d_i is a binary censoring indicator (=1 if failure, 0 if right-censored), S_{it} is the discrete-time survivor function, and the (cloglog) discrete-time hazard rate

$$h_{it} = 1 - \exp[-\exp(I_{it})]$$

$$I_{it} = f(t) + b'X_{it}$$
spsurv depvar varlist [if <exp>] [in <range>] , id(idvar) seq(seqvar) [nocons] [cpr0(#) eform level(#) mlopts]

• Data organised in person-month form (expand)
• depvar event indicator in each period at risk of event (derive from censoring indicator)
• varlist covariates, including duration dependence
• idvar person identifier
• seqvar spell interval identifier for each \(i \) (1,\ldots,t)
• cpr0(#) value of logit(c) used as starting value (default = -4, i.e. a cure probability of about 0.018)
Illustration (i): set up the data

```
use cancer
(Patient Survival in Drug Trial)

ge id = _n  /* create unique person identifier */
expand studytim /* 1 obs/month at risk of death */
(696 observations created)
sort id

quietly by id: ge t = _n /* spell month id, by i */
quietly by id: ge dead = died & _n==_N  /* depvar */
* drug = 1 (placebo); drug =2,3 (receives drug)
recode drug 1=0 2/3=1
(744 changes made)
lab var drug "1=receives,0=placebo"
ge logt = ln(t) /* duration dependence */
```
Illustration (ii): **cloglog** model, used to derive starting values

```
.cloglog dead drug age logt

Iteration 0:  log likelihood =  -111.3772
Iteration 1:  log likelihood =  -111.264
Iteration 2:  log likelihood =  -111.26371
Iteration 3:  log likelihood =  -111.26371

Complementary log-log regression
Number of obs   =        744
Zero outcomes  =        713
Nonzero outcomes =         31

LR chi2(3)      =     35.20
Log likelihood  =  -111.26371  Prob > chi2     =     0.0000

------------------------------------------------------------------------------
dead | Coef.  Std. Err.     z    P>|z|     [95% Conf. Interval]
---------+--------------------------------------------------------------------
drug |  -2.18907   .4110876  -5.325   0.000   -2.994787   -1.383353
age  |   .119348   .0371648   3.211   0.001    .0465064    .1921896
logt |   .6402733   .2454492   2.609   0.009    .1592017    1.121345
_cons |  -9.928747   2.272995  -4.368   0.000  -14.38374   -5.473759
------------------------------------------------------------------------------
```
Illustration (iii): spsurv

```
.spsurv  dead drug age logt, id(id) seq(t)
```

Iteration 0: log likelihood = -111.60074
Iteration 1: log likelihood = -111.26779
Iteration 5: log likelihood = -111.26372
Iteration 6: log likelihood = -111.26371

Split population survival model

```
<table>
<thead>
<tr>
<th></th>
<th>Number of obs</th>
<th>LR chi2(4)</th>
<th>Log likelihood</th>
<th>Prob &gt; chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>744</td>
<td>35.20</td>
<td>-111.26371</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
```

| hazard | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|--------------|-----------|-------|------|----------------------|
| dead | | | | | |
| drug | -2.189079 | .4110974 | -5.325| 0.000| -2.994815 -1.383343 |
| age | .1193277 | .037166 | 3.211 | 0.001| .0464837 .1921717 |
| logt | .6401813 | .2454488 | 2.608 | 0.009| .1591105 1.121252 |
| _cons | -9.927432 | 2.273042 | -4.367| 0.000| -14.38251 -5.47235 |

cure_p					
--------	--------------	-----------	-------	------	
_cons	-16.43746	325.1069	-0.051	0.960	-653.6352 620.7603

Pr(never fail) = 7.266e-08; Std.Err. = .00002362; z = .00307591; P>|z| = 0.998
Other issues

• Heterogeneity in the cure probability, \(c \)?
 – OK to program, but hard to derive signif. estimates

• ‘Backing up’ in maximization with some test data sets (‘true’ maximum overshot)

• \(S_E \) globals get zapped by \texttt{ml} in version 6 but not version 5 or 7!

• Robust option -- requires \texttt{d1} -- ‘infeasible’ (true for other programs with data in groups):
 likelihood not of the linear form such that can take derivative w.r.t. to \(X \beta \) (1 score vector per equation). Harder than Gould/Sribney ML book examples might suggest!