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Summary

The continuing popularity of stratification as a way of controlling for confounders is
due to the fact that the process is simple and intuitively appealing (Rothman, 1986[1]).
Statistical modelling is a more powerful technique, but it is neither simple nor intuitive
and the fact that the exposure variable and the stratifying variable have the same logical
status means that most of the results are either irrelevant or not in an immediately useful
form. There is no reason for this divide. It is possible, as we show in this article, to cast
the input and output for an analysis in the style of stratification, but to use statistical
models for the computations, and thus reap the benefits of both approaches. We also
describe a graphical interface written for the Stata statistical package to do this.

1 Introduction

A central problem in epidemiology is to control the effect of an exposure on the outcome
for one or more confounding variables. Using stratification, this is done by forming strata
within which the confounding variables are approximately constant, estimating stratum-—
specific effects of exposure, checking to see whether these stratum-—specific effects are
roughly the same, and finally combining them to form a single estimate of their common
value. This single estimate is then called the effect of exposure controlled for the con-
founding variables. If the effect varies appreciably from one stratum to another it is said
to be modified by strata, and is usually reported separately for each stratum.

The word control is often used to describe both the act of estimating stratum-specific
effects and the act of combining them. This can lead to confusion, and we have adopted
the following convention:

e A variable is selected as a modifying variable if the effects of exposure are to be
estimated at different values of the variable in order to see whether they differ.



e A variable is selected as a control variable if the effects of exposure are to be esti-
mated at different values of the variable and then combined to give a single estimate.

Although stratification is intuitively appealing it does have some limitations. In order
to form strata the variable which is being controlled for must be categorical: it is not
possible to control for a metric variable without first grouping its values and converting
it to a categorical variable. Controlling for two or more variables involves forming strata
for every combination of values of the variables, which can lead to very small strata and
consequent loss of information.

The situation with statistical models is the mirror image of this. It is now possible to
control for many confounders without losing information, and the confounders can be
metric as well as categorical. But statistical modelling, in its conventional form, also has
some limitations. Instead of stratum specific effects there are interaction terms which are
not easy to interpret. In addition the sprawling output, 90% of which is usually irrelevant
to the aims of the study, makes it easy to lose the clarity of purpose which comes with
stratification (Vandenbroucke, 1987 [2]).

These limitations arise because statistical modelling grew out of multiple regression models
in which the mean (u) of a Gaussian distribution is related to other variables by

p= X1+ BoXo+ -+ B, X,

where the X’s are measurements on a continuous scale. The introduction of indicators
allowed variables to be categorical, product terms allowed interactions, and link functions
and families allowed other distributions, but the interpretation of the regression coeffi-
cients relies on understanding how the multiple regression model was manipulated into
fulfilling its new roles. Of course this has become second nature to experienced users
of statistical modelling, but for those with less experience the use of these models is
something of a minefield.

In this paper we show how the framework of exposure, modifier, and control variables
can be used to guide the way the statistical model is set up, and to present the results
without reference to the underlying X variables. It is our hope that this approach, which
could be implemented in any package with window facilities, will encourage the sensible
and fruitful use of statistical modelling by analysts who do not necessarily have much
insight into how statistical models are estimated by computer packages. In section 6 we
introduce a particular implementation using the statistical package Stata.

2 A simple example

The example refers to a study of 337 subjects followed after recording their weighed diet
over two weeks (Morris, Marr, and Clayton (1977) [3]; Clayton and Hills (1993) [4]). The
outcome of interest is in the variable d, coded 1 if the subject developed coronary heart
disease, 0 otherwise. The length of follow—up in years is in the variable y. The exposure
of interest in this analysis is the total energy consumption per day, averaged over the two



week period. For the purposes of this example the effect of the variable energy is studied
in two ways:

1. By using a categorical variable hieng with two levels, formed by cutting energy
into two groups: < 2500 and 2500+ Kcals per day.

2. By using energy itself, as a metric variable.

The subjects in the study were obtained from three different occupations (bus drivers,
bus conductors, and bank workers), coded in the variable job, so job was treated as a
potential confounder. Another potential confounder was height, and of course age, but
only job and height are used in this example.

Using strata based on job we obtain the following stratum-specific estimates of the rate
ratio comparing level 2 with level 1 of hieng:

Effects of hieng on the ratio scale

Level or value

of job Effect 957 Confidence Interval
driver 0.410 [ 0.124 , 1.362 ]
conductor 0.655 [ 0.227 , 1.888 ]
bank 0.518 [ 0.212 , 1.267 ]

Thus a high energy diet reduces the risk of coronary heart disease in all three strata,
presumably becuase it is associated with an active life-style. To control for job, the
stratum-specific estimates are combined to give

Level 2 versus level 1 Effect 95% Confidence Interval

0.525 [ 0.290 , 0.949 1]

To do the same thing with statistical modelling requires a model which includes hieng,
job and their interaction. Although both hieng and job are included in the model, no
distinction is drawn between them — the model is symmetric in the two variables. Output
from a statistical modelling program would look something like this.

Effect Coeff s.e.
hieng==1 0.410 0.251
job== 1.137 0.568
job==2 0.813 0.371
hieng==1 & job== 1.597 1.304
hieng==1 & job==2 1.262 0.964
_cons 0.014x%x* 0.005



The effect of hieng which is reported (0.410) refers to the effect of hieng at the first
level of job. The interactions contrast this with the effect of hieng at the other levels
of job. Thus the effect of hieng at the second level of job is 0.410 x 1.597 = 0.655 and
0.410 x 1.262 = 0.518 at the third level of job.

The main difference between these two approaches is that with stratification the effects
of exposure are reported for each stratum, while in statistical modelling the effects of
exposure are reported only for the first stratum. The effects in the other strata can be
recovered using the interaction terms, but to do this it is necessary to provide further
information about the functions of the variables in the analysis.

Another difference is that with stratification the effects of the job are not reported because
they are irrelevant to the analysis, but because the statistical modelling program treats
hieng and job symmetrically, it also reports the effects of job at the first level of hieng.
The interactions contrast these with the effects of job at the other levels of hieng. To
reproduce this with stratification it would be necessary to think of job as the exposure
and form strata using hieng.

3 The functions and attributes of the explanatory
variables

Explanatory variables are either metric (ie a measurement with units) or categorical. In
this example exposure is measured both as a categorical variable, hieng with 2 levels,
and as a metric variable, energy which takes values on a continuous scale with units 1
Kcal. The variable job is categorical, and the variable height is metric with units lcm.

The first choice to be made in an analysis is the exposure variable. There may be several
exposure variables of interest, but these should be studied separately, so for any particular
analysis there is only one exposure variable (we return to this point in the discussion).
When the exposure variable is categorical the effects of exposure are reported relative to
one of the levels (usually the first) called the base level. When the exposure variable is
metric the effects of exposure are reported per unit of the variable, or some multiple like
per 100 units or per 0.1 units. These are important attributes of the exposure variable.

The next choice is whether to include a modifying variable, and finally there may be
one or more control variables. Modifying variables and control variables can be either
categorical or metric.

4 Parametrizing the statistical model

To study the extent to which the variable job modifies the effects of hieng in the con-
ventional formulation, hieng, job and the interactions between them, are entered in the
model. When the exposure is categorical it is entered in the form of indicator variables
which pick out the levels; for two levels there are two indicator variables, but the one
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corresponding to the base level is omitted, leaving one. Similarly for the variable job.
The extent to which job modifies the effect of hieng is measured by the interactions
which are included as products made up from the indicator for hieng multiplied by each
indicator for job. Thus the model will contain the variables

AZ: B2a B3: A2 X B27 A2 X B3

where A; is the indicator for level ¢ of hieng, B; is the indicator for level j of job. The
coefficient of A is the effect of hieng (level 2 compared to level 1) when job is at level
1, and the coefficient of Ay x By measures the extent to which the effect of hieng differs
when job changes from level 1 to level 2.

Once the functions of the variables have been specified it is a simple job to reparametrize
the statistical model so that the terms refer to the effects of hieng for each level of job.
This is done by changing the list of variables to be included to

By, B3, Ay x By, As X By, Ay X Bs
Now the coefficients of Ay x By, Ay X By, Ay X Bj refer to the effect of hieng when job
is at levels 1, 2, 3 respectively.

The test to see whether the effects of hieng are modified by job is most easily carried
out using the model in its conventional form. A test for no effect modification is then the
same as the test for no interaction. When this test (plus inspection of the stratum-specific
effects) suggests that job does not modify the effect of hieng, the next step is to control
for job by excluding the interaction terms and fitting the model which includes

AZ, B?a B3

The coefficient of A, is the effect of hieng controlled for job.

To do the same thing with energy as a metric exposure requires an additional step in
modelling, namely the assumption that the effect of a unit change in energy is the same
at each value of energy (ie a linear relationship between the log rate and energy). The
effect per Kcal will be extremely small, so it would be more sensible to change this to
(say) per 100 Kcals. The model will include

By, Bs, energy x B;, energy X Bj, energy X Bj

and the ccoefficients of the last three terms are the stratum-specific effects of energy per
100 Kcals. The results look like this:

Effect per 100 unit(s) of energy

Level or value

of job Effect 95) Confidence Interval
driver 0.9078 [ 0.793 , 1.039 1]
conductor 0.9028 [ 0.794 , 1.027 ]
bank 0.8739 [ 0.783 , 0.975 ]
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Figure 1: Displaying effects when the modifier is metric

The variable job does not seem to modify the effect of energy so the effect of energy can
be controlled for job by including the variables

By, Bs3, energy

The coefficient of energy is the effect of energy controlled for job.

5 A metric modifier

To see whether the metric variable height modifies the effect of hieng it is again necessary
to make the assumption that a change of 1 unit in height is the same at each value of
height (ie a linear relationship between the log rate and height), but rather than display
the different slopes of the lines, we choose to display predicted effects of hieng at the 25,
50, and 75 percentiles of height (see Figure 1). In this way the results are made to look
the same as for a categorical modifier, and are easier to interpret:

Effects of hieng on the ratio scale

Level or value

of height Effect 95/ Confidence Interval
p25 0.6409 [ 0.348 , 1.181 ]

p50 0.5673 [ 0.295 , 1.091

P75 0.4916 [ 0.193 , 1.249 ]

With energy (a metric exposure) and height (a metric modifier), the model contains the
terms
energy, height, energy X height

and is displayed as



Effect per 100 unit(s) of energy

Level or value

of height Effect 95J Confidence Interval
p25 0.9256 [ 0.862 , 0.994 ]
p50 0.8931 [ 0.825 , 0.967 ]
p75 0.8564 [ 0.762 , 0.962 ]

Thus metric exposures and modifiers can be included in the statistical model but the results can
be made to follow the style of stratification.

6 The graphical interface

Stata is a command line driven package, and in some ways the use of a menu is contrary to
the spirit of the package. Although we agree that serious data analysis requires the use of a
reproducible file of commands which serves as a record of the analysis which has been carried
out, the use of a menu can greatly simplify interactive work. The information from the menu is
available in the form of global macros, so it is easy to include these in the reproducible file of
commands, and to by pass the menu, when a record is required.

There are several things which must be done before using statistical modelling in the way we
have suggested. The first is to specify which of the variables are categorical, and which are
metric; the second is to declare the exposure, modifying, and control variables, together with
their attributes; and finally the appropriate model must be specified. For this we have set up
a menu, called by the command efmenu. Once the information from the menu is available the
model can be fitted and the results arranged in the style of stratification, using the command
effects. The menu is in three parts, the first of which is shown in Figure 2. This is used to
declare which variables are categorical (metric is the default). Pressing OK produces the second
part, shown in Figure 3. The first box in this menu refers to the statistical model which will
be used — in this case it is poisson because the data are concerned with events in time. The
outcome variable is d and e(y) is entered in the model options box as this is how Stata provides
the follow—up time. To display the effects on a ratio scale, the exponential box is checked.
The exposure and modifying variables are selected in the next two boxes, and in the final part
the control variables can either be selected from a list of variables or given in the form of a
model formula. Because the stata windowing commands do not respond immediately to the
information which is entered, it is necessary to press OK again, and this causes further boxes
to be shown (see Figure 4), depending on the nature of the exposure and mofiying variables.
For example, if the exposure is metric a "per” box appears, and if the modifier is metric a
”showat” box appears. There is also a description of the model as currently specified, and if this
corresponds to what the user wants a further press of OK will close the menu, and the effects
command can be run. The results are shown below.

model : poisson d, e(y)
exposure hieng (categorical)
modifier  : job (categorical)
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Figure 2: The first part of the menu.

Number of records used in the fit : 337
Effects of hieng on the ratio scale
Level 2 versus level 1

Level or value

of job Effect 95/ Confidence Interval
driver 0.4103 [ 0.124 , 1.362 ]
conductor 0.65561 [ 0.227 , 1.888 ]
bank 0.5177 [ 0.212 , 1.267 ]

Overall test for effect modification
chi2( 2) = 0.331 P-value = 0.847

To control the effect of hieng for job the variable job must be removed from the modifier box
and added to the control box. The results look like this:

model : poisson d, e(y)
exposure hieng (categorical)
controlled : job (categorical)
Number of records used in the fit : 337
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Effects of hieng on the ratio scale
Level 2 versus level 1 Effect
0.5248
Test for no effects of exposure

Poisson: 1likelihood-ratio test

The only new thing here is that a test for no effects of exposure has been carried using a

likelihood ratio test.

A metric modifier is displayed at its quartiles, by default, but it is possible to select values at
which to display the predicted using the showat box. For example, to display the effects at

chi2(1) =

Figure 3: The second part of the menu.

95% Confidence Interval

[ 0.290 , 0.949 ]

4.69

values 155, 165, 175, and 185 for height, enter 155(10)185 in the showat box.

When controlling for both job and height they can be selected in the control variables box.
The additive model is selected by default, so the effects of a unit change in height is assumed
to be the same at each value of height and for each level of job. The same result would be
achieved by entering job + height in the control formula box. It would also be possible to fit
the model with different linear effects of height by entering job*height in the control formula

box.
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Figure 4: The third part of the menu

As a final example Figure 5 shows the menu for a metric modifier (height) controlled for job
using the level 2 of hieng as the base.

The results look like this.

model : poisson d, e(y)
exposure  : hieng (categorical)
modifier : height (metric)
controlled : job (categorical)

Number of records used in the fit : 337
Effects of hieng on the ratio scale
Level 1 versus level 2

Level or value

of height Effect 95J Confidence Interval
155 0.9444 [ 0.197 , 4.529 ]
165 1.3368 [ 0.612 , 2.921 ]
175 1.8923 [ 0.895 , 3.999 1]
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Figure 5: A modifier and a control variable

185 2.6786 [ 0.587 , 12.227 ]

Overall test for effect modification
chi2( 1) 0.516
P-value 0.472

Although the diet example uses Poisson regression the ideas apply to any of the commonly used
regression models in epidemiology, including cox, logistic, conditional logistic, OLS regression,
and many others. In Stata the results of any estimation command are stored in the same way,
so a single effects program can be used with many different models. A similar program could
be preapred for any package which works in the same consistent way.

7 Discussion

The framework allows one exposure variable, one modifier, and many control variables. Some
may see this a restriction, but in practice it is a useful constraint. When there are two exposures,
such as alcohol and tobacco in oral cancer, we should estimate the effect of alcohol controlled
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for tobacco in one analysis, and the effect of tobacco controlled for alcohol in another. These
two analyses simulate two quite different quasi-experiments: in the first tobacco is controlled,
but alcohol is allowed to vary; while in the second alcohol is controlled but tobacco is allowed
to vary. The two analyses thus answer two quite different scientific questions. The conventional
regression approach answers both questions in the same analysis, while the approach we have
presented in this paper requires two separate analyses for these two different questions. This
apparent disadvantage is really an advantage as it encourages clear thought about the purpose
of the analysis.

The use of an interface, such as the one we have described, turns the statistical model into
a black box: the user can analyse data without knowing or caring what goes on inside the
box. Those who have invested time into exploring the contents of this particular black box will
see this as a disadvantage, and indeed something is lost by not having the full conventional
output. But in our view the advantages stemming from the clarity of purpose imposed by the
interface far outweigh this loss, and of course there is nothing to stop the user from returning
to a stand—alone mode and fitting a conventional statistical model if this is desired.
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