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INTRODUCTION

Basic Concepts of Survival Analysis

T — Response, time to failure

! — row vector of covariates

[T2'3] — some density f(t)

Survival analysis characterized by censoring and
truncation

Much more convenient to think in terms of survival function
S(t) = P(T > t) and hazard function h(t) = f(t)/S(t), i.e.

instantaneous probability of failure given survival up to t.

Response is actually the triple (g, t, d) where subject observed
from (¢, t] and either failed (d = 1) or was censored (d = 0).
The covariates are assumed constant over (g, t].

Effect of 2! can either be parameterized as proportional hazards
(PH) or accelerated failure time (AFT).



PH assumes

h(ti) = ho(t;) exp(xi3)

for some baseline hazard hg(t).

AFT takes
S(ti) = So{exp(—x}B)t:}

for some baseline survival function Sy(t).

Parametric survival models assume some function form for hy(t),

and hence for Sy(t).

Parametric families supported by Stata (streg) are the expo-
nential, Weibull, Gompertz, lognormal, log-logistic, and gener-
alized gamma.

For example, Weibull PH formulation takes ho(t) = pt?~!, and
requires the additional estimation of the shape p.

Cox regression is a PH model that makes no assumption about
the functional form of hy(2).



Frailty models

Parametric specification plus covariates can only go so far in
explaining the variability in observed time to failure. Excess
unexplained variability is known as overdispersion.

Overdispersion is caused either by misspecification or omitted
covariates. As such, current model cannot adequately account
for why subjects with shorter times to failures are more “frail”
than others.

A frailty model attempts to measure this overdispersion by
modeling it as resulting from a latent multiplicative effect on
the hazard function, i.e. the hazard becomes

h(t|a) = ah(t)

where h(t) is a hazard function from a model we may have con-
sidered previously.

From a PH perspective, it is easy to see how o may correspond
to an omitted covariate (or set of covariates).

h(ti|oy) = a;h(t;) = a;ho(t;) exp(z3)

Same goes for AFT models, just harder to see since the frailty
enters multiplicatively on the hazard.



Frailty vs. Shared Frailty

Distinction is critical to success in using Stata’s streg, frailty()
[shared ()]

For the jth observation in the ith group, a frailty model treats
h(tij‘Oéij) = Oéijh(tz'j)

while a shared frailty model has
h(tijloi) = aah(ti;),

i.e., the frailty is shared among the group.

“Group” may represent a family, for example, or simply a single
subject for which multiple episodes are observed.

Thinking in terms of omitted variables, a frailty model could be
used when you think you lack measurements that vary within
the group, or a shared frailty model when you have a latent
common group effect.

[f considering the analogy to Stata’s poisson command, a
frailty model would be equivalent to nbreg while a shared frailty
model is analogous to xtpois.

Even when you have a single record per subject, the above still
represent different models, and hence may give different results.



EXAMPLE — BREAST CANCER DATA
We'll consider this data in one form or another throughout.

80 subjects, time ¢ = 0 corresponds to date of diagnosis. Anal-
ysis time in years until death or censoring. Covariates are age
at diagnosis, smoking status (0/1), and weekly calories from fat

in diet (x10?).

Subjects observed over two-year intervals where dietary fat re-
measured over each interval.

. list id _tO _t _d age smoking dietfat if id==35

id _to _t _d age smoking diet”t
255. 35 0 2 0 48 0 4.227
256. 35 2 4 0 48 0 4.334
257. 35 4 6 0 48 0 4.239
258. 35 6 8 0 48 0 4.514
259. 35 8 10 0 48 0 4.389
260. 35 10 11.03 1 48 0 4.324

Data generated so that time to failure given the covariates is
Weibull.

Omitting a covariate here and there creates “unexplained” het-
erogeneity which we can capture via a frailty model.



. Streg age smoking dietfat, dist(weib) nolog

Weibull regression —— log relative-hazard form

No. of subjects = 80 Number of obs = 671
No. of failures = 58
Time at risk = 1257.07
LR chi2(3) = 248.31
Log likelihood = -14.675006 Prob > chi2 = 0.0000
_t | Haz. Ratio  Std. Err. z P>|z]| [95% Conf. Intervall
_____________ +————————eerrrrrrrrrrrrrrrrrrrrrrrrrr -
age | 1.710954 .090628 10.14  0.000 1.542236 1.898129
smoking | 5.57421  1.831668 5.23 0.000 2.927393 10.61416
dietfat | 7.977746  1.751895 9.46 0.000 5.187502 12.2688
_____________ t————————r—rrrrrrrrrrrrr e — - —
/1n_p | 1.405362 .0968303 14.51  0.000 1.215578 1.595146
_____________ +________________________________________________________________
p | 4.077004  .3947774 3.372244 4.929049
1/p | .2452782 .0237504 .2028789 .2965384



PARAMETRIC FRAILTY MODELS

AVAILABILITY: Stata 7

The unconditional survival function

Suppressing the index, recall that
h(t|a) = ah(t)

for h(t) corresponding to any of our six parametric models.

This implies that the conditional survival function is

t «
S(tla) = exp{~ || h(ula)du} = {S(t)}
where, again, S(t) is a survival function to which we are accus-
tomed.

Since « is unobservable we require the unconditional survival
function.

For purposes of identifiability, assume the distribution of o has
positive support with mean one and variance 6. Problem then
reduces to estimating the additional frailty variance 6.

Unconditional survival function is then given by

So(t) = [, {5(t)}*g(a)da
where g(«) is the pdf of a.



We currently offer two choices for g(a).

(1) Gamma(1/6, 6) for which

o/ exp(—ar/0)
9@) = " )0

Se(t) = [1—0Wm{St)} "

(2) Inverse-Gaussian(1, 1/6) for which

gla) = <27n9043)_1/2 exp {—% (oz — 24 i)}

a

1
Sy(t) = exp {5 (1—[1—2 m{S(t)}]l/?)}
Log—normal distributed « is a possibility, but this would require

quadrature.

Using L'Hopital’s rule, one can show that limg_o Sp(t) = S(¢)
in either case.



Example

Applying this to our data, we purposely omit the covariate
dietfat from our model to get some heterogeneity.

. Streg age smoking, dist(weib) frailty(gamma) nolog

Weibull regression -- log relative-hazard form

Gamma frailty

No. of subjects 80
No. of failures = 58

Time at risk = 1257.07
Log likelihood = -68.135804
_t | Haz. Ratio Std. Err z
_____________ e
age |  1.475948  .1379987 4.16
smoking | 2.788548  1.457031 1.96
_____________ e e
/ln_p |  1.087761 .222261 4.89
/ln_the |  .3307466  .5250758 0.63
_____________ e
p |l 2.967622  .6595867
1/p | .3369701  .0748953
theta |  1.392007  .7309092

Likelihood ratio test of theta=0: chibar2(01)

Number of obs = 671
LR chi2(2) = 135.75
Prob > chi?2 = 0.0000
P>|z]| [95% Conf. Intervall]
0.000 1.228811 1.772788
0.050 1.00143 7.764894
0.000 .6521376 1.523385
0.529 -.698383 1.359876

1.91964 4.587727
.2179729 .520931
.4973889 3.895711

22 .57 Prob>=chibar2 = 0.000



. streg age smoking, dist(weib) frailty(invgauss) nolog

Weibull regression —— log relative-hazard form
Inverse-Gaussian frailty

No. of subjects = 80 Number of obs = 671
No. of failures = 58
Time at risk = 1257.07

LR chi2(2) = 125.44

Log likelihood = -73.838578 Prob > chi2 = 0.0000

_t | Haz. Ratio Std. Err z P>|z| [95% Conf. Intervall

_____________ +________________________________________________________________

age | 1.284133 .0463256 6.93 0.000 1.196473 1.378217

smoking | 2.905409 1.252785 2.47 0.013 1.247892 6.764528

————————————— +__—_—_—__—_—_—__—_—_—___—_—_—__—_—_—__—_—_—__——_—_—_——_—_—_——_—_

/1n_p | .7173904 .1434382 5.00 0.000 .4362567 .9985241

/1n_the | .2374778 .8568064 0.28 0.782 -1.441832 1.916788

_____________ +________________________________________________________________

p | 2.049079 .2939162 1.546906 2.714273

1/p | .4880241 .0700013 .3684228 .6464518

theta | 1.268047 1.086471 .2364941 6.799082

Likelihood ratio test of theta=0: chibar2(01) = 11.16 Prob>=chibar2 = 0.000

“chibar2” is a result of testing on the boundary. The LR test
compares Weibull frailty model to the standard Weibull.

Hazard ratios now have an interpretation that is conditional on

the frailty. Unconditionally, hazard ratios are only valid at time
0.

Parameter estimates for AFT models have the same interpre-
tation, either serving to accelerate or decelerate time.

Note the similarity in @ for both models.



Let’s now add dietfat back in and watch the frailty disappear.

. streg age smoking dietfat, dist(weib) frailty(invgauss) nolog

Weibull regression -- log relative-hazard form
Inverse-Gaussian frailty

No. of subjects
No. of failures
Time at risk

Log likelihood

Number of obs

671

243.77
0.0000

age
smoking
dietfat

/1n_p
/1n_the

= 80
= 58
= 1257.07
= -14.675007
Haz. Ratio Std. Err
1.710977 .0906212
5.574535 1.831704
7.978179 1.75185
1.40539 .0968185
-14.73854 1798.306
4.077115 .3947401
.2452715 .0237468
3.97e-07 .0007145

LR chi2(3)

Prob > chi2
P>|z| [95% Conf.
0.000 1.54227
0.000 2.927638
0.000 5.187961
0.000 1.215629
0.993 -3539.353

3.372414
.202878
0

1.898137
10.61451
12.26905

1.59515
3509.876

4.92907
.2965235

Likelihood ratio test of theta=0:

chibar2(01) =

0.00 Prob>=chibar2 =

1.000



Comparing the gamma and inverse—Gaussian

As dissimilar as the frailty survival functions Sy(t) appear for
the gamma vs. inverse-Gaussian, the associated hazard func-
tions do look a lot alike.

For the gamma,

ho(t) = h(t)[1 — 0In{S()}] "'

For the inverse—Gaussian,

ho(t) = h(t)[1 — 20 In{S(t)}] />

The above equations do, however, highlight an important dif-
ference between the two frailty distributions.

Consider two individuals with common frailty. Conditional
on the frailty, there respective hazards are proportional with

R (t)/RV(t) = ¢, say.

Marginally, however, for gamma frailties the hazard ratio
hg2>(t) / hém(t) = c at t = 0, but diminishes with time so that

ni2) ¢
i P (0

=1
{500 hél) (t)




This is known as the frailty effect, or attenuation due to frailty.

For the inverse-Gaussian, h((f)(t) / h((,1>(t) = cat t = 0 also,
however

e (t
lim 7?1)( ) = /2
7 hy (1)
and so the effect does not completely diminish with time.

Question: Is there a frailty distribution which would allow hg(t)
to retain its proportional hazards interpretation?

Answer: Yes. The positive stable distribution. For some 0 < 1,

1 o I'(kd+1
e T{ko +1)

T =1 k!

gs(a) = (—a ™) sin(8k)

For this frailty distribution
2
O
Dy ©
he (1)
and so you get a diminished effect, but this is constant over
time.

Positive stable family currently not available in Stata, but we're
looking to add it.



PARAMETRIC SHARED FRAILTY MODELS

AVAILABILITY: Future ado update to Stata 7.

Some calculations

Recall, for the jth observation in the ¢th group, a shared frailty
model treats

h(tijlai) = aihlti;)
fori=1,...,G and j =1,....n,.

Contribution to the likelihood function for a subject who was
observed from (tg;;, t;;] is

Sty
L(ti;|toi;, o) —{ )

S(toij)

| faunto)

Contribution to the likelihood for the ith group is

S(t;) }ai &

h(t;;)}™
EreIRC)

where D; = Z;”:l d;; is the number of deaths in the group.

L(ith group|e;) = o i

J=1

Unconditionally,

Ty

L(ith group) = /OOO ozlpi I1

J=1

g(a;)daoy

{ 5 (%3) }ai {R(t;;)}"

and we are free to choose g(«;) as before, i.e. gamma or inverse—
Gaussian.




Example

Recall, our breast cancer data has multiple records per subject.
Let’s now leave out age to introduce group-level heterogeneity.

. streg smoking dietfat, dist(weib) frailty(gamma) nolog

Weibull regression -- log relative-hazard form

No. of subjects

Gamma frailty

No. of failures =

Time at risk

Log likelihoo

d

Number of obs

671

11.88
0.0026

smoking
dietfat

/1n_p
/1n_the

333.0289
74.70181

2.576197
3.89541

LR chi2(2) =
Prob > chi?2 =
P>|z]| [95% Conf.
0.206 .286366
0.207 .3930114
0.052 -.0132872
0.004 . 7552672
.9868007
.0760627
2.12818

13.14704
1.013376
49.1762

9.87 Prob>=chibar2 = 0.001

Likelihood ratio test of theta=0:

= 80
58
= 1257.07
= -130.06979
Haz. Ratio Std. Err z
9.765663 17.58528 1.27
5.418364 7.253305 1.26
1.281455 .6605948 1.94
2.325339 .8010715 2.90
3.601876 2.37938
.2776331 .183403
10.23014 8.195076
chibar2(01)

[s this really what we want? Probably not.



Let’s try this instead:

. streg smoking dietfat, dist(weib) frailty(gamma) shared(id) nolog

failure _d: dead
analysis time _t: t

id: id

Weibull regression -- log relative-hazard form
Gamma frailty

No. of subjects = 80 Number of obs = 671
No. of failures = 58
Time at risk = 1257.07
LR chi2(2) = 11.05
Log likelihood =  -130.48938 Prob > chi2 = 0.0040
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
smoking | 5.376692 7.068356 1.28 0.201 .4087904 70.71794
dietfat | 3.00329 1.869374 1.77 0.077 .8866941 10.17234
_____________ +________________________________________________________________
/ln_p | .9551898 .4955395 1.93 0.054 -.0160498 1.926429
/1n_the | 1.923936 .6585433 2.92 0.003 .6332148 3.214657
_____________ +________________________________________________________________
p | 2.599164 1.287988 .9840783 6.864954
1/p | .3847391 .1906534 .1456674 1.016179
theta | 6.847858 4.509611 1.883657 24 .89475
Likelihood ratio test of theta=0: chibar2(01) = 9.04 Prob>=chibar2 = 0.001

Here we know which model is more appropriate, but in practice
ask yourself: Do [ want observation-level frailty or do I want to
impose a grouping constraint on the frailties?



Question: How do we handle predict? Do we

(a) Go the xt route and give everyone o = 1.

(b) Use @ from a shared frailty model and revert to the non-
shared forms for Sy(t), he(t), etc.



Some fun comparisons of frailty vs. shared frailty

Comparison I: single record per subject, full time span

Let’s drop dietfat from out data so that we can collapse our
multiple records per subject into single records.

. drop dietfat
. stjoin
(option censored(0) assumed)

(591 obs. eliminated)

. list id _tO0 _t _d age smoking in 20/30

id _to _t _d age smoking
20. 20 0 1.55 1 62 1
21. 21 0 14.97 1 36 1
22. 22 0 35 0 29 1
23. 23 0 13.28 1 41 1
24. 24 0 1.62 1 53 0
25. 25 0 1.89 1 59 0
26. 26 0 26.540001 1 43 0
27. 27 0 10.86 1 41 0
28. 28 0 .55000001 1 60 1
29. 29 0 34.23 1 27 0
30. 30 0 5.04 1 52 0

Surely for these data the frailty and shared frailty models should
agree if we specify shared(id), and in fact they do.



. streg age smoking, dist(weib) frailty(gamma) nolog

No. of subjects

No. of failures =

Time at risk

Log likelihoo

Number of obs

80

135.75
0.0000

age

/1n_p

Intervall

1.772788
7.764894

1.523385
1.359876

LR chi2(2)
Prob > chi2
P>|z| [95% Conf.
0.000 1.228811
0.050 1.00143
0.000 .6521376
0.529 -.698383
1.91964
.2179729
.4973889

4.587727
.520931
3.8956711

= 80
58
= 1257.07
d = -68.135804
Haz. Ratio Std. Err z
1.475948 .1379987 4.16
2.788548 1.457031 1.96
1.087761 .222261 4.89
.3307466 .5250758 0.63
2.967622 .6595867
.3369701 .0748953
1.392007 .7309092
Likelihood ratio test of theta=0: chibar2(01)

22.57 Prob>=chibar2 = 0.000

. streg age smoking, dist(weib) frailty(gamma) shared(id) nolog

No. of subjects
No. of failures

Time at risk

Log likelihoo

Number of obs

80

135.75
0.0000

age

/1n_p

= 80

= 58

= 1257.07
d = -68.135803
| Haz. Ratio Std. Err
+
| 1.475948 .137998
|  2.788548 1.457032
+
| 1.087762  .2222597
| .3307477  .5250732
+
|  2.967624  .6595832
I .33697  .0748948
| 1.392009 .7309064

LR chi2(2)
Prob > chi2
P>|z|
0.000 1.228812
0.050 1.00143
0.000 .6521405
0.529 -.6983769
1.919645
.2179733
.497392

1.772787
7.764895

1.523383
1.359872

4.587717
.5209295
3.895696

22 .57 Prob>=chibar2 = 0.000

Likelihood ratio test of theta=0:

chibar2(01) =



Comparison II: Non—informative episode splitting

. stsplit cat, at(5(5)35)
(205 observations (episodes) created)

. list id _t0 _t _d age smoking if (id==24) | (id==35)

id _to _t _d age smoking
73. 24 0 1.62 1 53 0
110. 35 0 5 0 48 0
111. 35 5 10 0 48 0
112. 35 10 11.03 1 48 0

By “non-informative” we mean that none of our covariates vary
between episodes. Recall, we have dropped dietfat.

In this case, again we do not expect to see any difference, and
in fact, we don'’t.



. streg age smoking, dist(weib) frailty(gamma) nolog
No. of subjects = 80 Number of obs = 285
No. of failures = 58
Time at risk = 1257.07
LR chi2(2) = 135.75
Log likelihood =  -68.135804 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err z P>|z| [95% Conf. Intervall]
_____________ +________________________________________________________________
age | 1.475948 .1379987 4.16 0.000 1.228811 1.772788
smoking | 2.788548 1.457031 1.96 0.050 1.00143 7.764894
_____________ +________________________________________________________________
/ln_p | 1.087761 .222261 4.89 0.000 .6521376 1.523385
/1n_the | .3307466 .5250758 0.63 0.529 -.698383 1.359876
_____________ +________________________________________________________________
p | 2.967622 .6595867 1.91964 4 .587727
1/p | .3369701 .0748953 .2179729 .520931
theta | 1.392007 .7309092 .4973889 3.895711
Likelihood ratio test of theta=0: chibar2(01) = 22.57 Prob>=chibar2 = 0.000

. streg age smoking, dist(weib) frailty(gamma) shared(id) nolog

No. of subjects = 80 Number of obs = 285
No. of failures = 58
Time at risk = 1257.07

LR chi2(2) = 135.75

Log likelihood = -68.135803 Prob > chi?2 = 0.0000

_t | Haz. Ratio Std. Err z P>|z| [95% Conf. Intervall

_____________ +________________________________________________________________

age | 1.475947 .1379978 4.16 0.000 1.228812 1.772786

smoking | 2.788547 1.45703 1.96 0.050 1.001431 7.764889

————————————— +__-—_—_—_-—_—_—_-—_—_—__—_—_—__—_—_—__—_—_—___—______—______-_—_

/1n_p | 1.087761 .2222597 4.89 0.000 .6521399 1.523382

/1n_the | .3307461 .5250734 0.63 0.529 -.6983788 1.359871

_____________ +________________________________________________________________

p | 2.967622 .6595826 1.919644 4.587714

1/p | .3369702 .0748949 .2179735 .5209298

theta | 1.392006 .7309054 .497391 3.89569

22 .57 Prob>=chibar2 = 0.000

Likelihood ratio test of theta=0:

chibar2(01) =



Comparison 1II: single record per subject, left—truncation

. drop cat
. stjoin
(option censored(0) assumed)

(205 obs. eliminated)

. stsplit cat, at(2)
(67 observations (episodes) created)

. drop if _t0==0
(80 observations deleted)

. list id _t0 _t _d age smoking in 20/30

id _to _t _d age smoking
20. 23 2 13.28 1 41 1
21. 26 2  26.540001 1 43 0
22. 27 2 10.86 1 41 0
23. 29 2 34.23 1 27 0
24. 30 2 5.04 1 52 0
25. 31 2 4.4099998 1 53 0
26. 32 2 3.3399999 1 52 0
27. 33 2 35 0 34 0
28. 34 2 35 0 28 0
29. 35 2 11.03 1 48 0
30. 36 2 35 0 39 0

Here we will see a difference in model estimations, even though
we are running a shared frailty model on groups all of size 1.

Why?

In general, if you have time gaps and/or informative episode
splitting you are running different models with different assump-
tions.



. streg age smoking, dist(weib) frailty(gamma) nolog

No. of subjects

No. of failures =

Time at risk

Log likelihoo

Number of obs

67

101.89
0.0000

age

/1n_p

Intervall

2.48499
15.44437

2.16312
1.837439

LR chi2(2)
Prob > chi2
P>|z| [95% Conf.
0.002 1.221005
0.176 .6054955
0.000 .8103676
0.201 -.3870105
2.248734
.1161213
.679084

8.611685
.4446946
6.280435

25.87 Prob>=chibar2 = 0.000

= 67
45
= 1110.37
d = -37.963915
Haz. Ratio Std. Err z
1.741891 .3157656 3.06
3.058021 2.526777 1.35
1.481744 .3425452 4.33
. 7252144 5674721 1.28
4.400613 1.507409
.2272411 .0778403
2.065174 1.171929
Likelihood ratio test of theta=0: chibar2(01) =

. streg age smoking, dist(weib) frailty(gamma) shared(id) nolog

No. of subjects
No. of failures

Time at risk

Log likelihoo

Number of obs

67

97.04
0.0000

age

/1n_p

1.872235
10.96942

1.831377
1.471168

= 67
= 45
= 1110.37
d = -40.38613
Haz. Ratio Std. Err
1.534071 .155921
3.057159 1.992844
1.305881 .2681155
.5454618 .4723077
3.690938 .9895978
.2709338 .0726416
1.725405 .814922

LR chi2(2)
Prob > chi2
P>|z|
0.000 1.256986
0.086 .8520254
0.000 .780384
0.248 -.3802442
2.18231
.1601928
.6836944

6.242479
.45823
4.354317

21.02 Prob>=chibar2 = 0.000

Likelihood ratio test of theta=0:

chibar2(01)



FRAILTY AND COX REGRESSION

AVAILABILITY:: future

Frailty models for Cox regression are essential to making our
frailty package “complete”.

Consider gamma distributed frailties. For ¢th group, the joint
distribution of the shared frailty and the data is

f(aivtvd) = g(@i)f(t7d‘@i)

Yy

= Q(Oéi)@z'Di I1 [ho(tz’j)exp(xﬁjﬁ)]dij {So(tz'j)}aie){p(xgjﬁ)

j=1

ho() is a nuisance parameter, just like in standard Cox regres-
slon.

Can show that distribution of a; given the observed data is also
a gamma, but with different shape and scale. In particular the
E-step of an EM algorithm would only require

1/0 + D;

A
E (87 t, d) = n; ol
(ilt, d) 1/6 — 522y In{So(t5) } exp(aiyB) — Ci




and
E{ln(a;)|t,d} = V(A4;) — In(C;),

where U() is the digamma function.

The M—Step of EM would then consist of fitting (for a current
f) a Cox regression with A;/C; as an offset to obtain 3 and an
estimate of the baseline survival function Sp().

Using the updated 5 and baseline survival function, we can
update 6 using the conditional distribution of o; given the data,
which depends on the quantities obtained from Cox.

This EM algorithm is slow to converge, but there exist modifi-
cations to make it faster.



CONCLUSIONS

Parametric frailty models offer a generalization of our current
models for those who wish to account for unobservable hetero-
geneity:.

There are two types: frailty and shared frailty.

Results can vary according to the choice of frailty distribution,
so it is important to offer some variety here.

Frailty for Cox regression is coming,.
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