Extensions to gllamm 7th UK Stata Users' Meeting

Sophia Rabe-Hesketh Department of Biostatistics and Computing Institute of Psychiatry, London

Slide 1

 $\label{eq:ccs} \mbox{Andrew Pickles}$ School of Epidemiology and Health Sciences and CCSR $\mbox{The University of Manchester}$

Anders Skrondal Department of Epidemiology National Institute of Public Health, Oslo

Extensions to gllamm:

- \bullet More response processes
 - Ordinal responses
 - I. Nominal responses and rankings
- Structural equations for the latent variables
 - II. Regressions of latent variables on observed variables
 - Regressions of latent variables on other latent variables
- \bullet Parameter constraints
- gllapred for posterior means and probabilities
- A manual

Generalised Linear Latent and Mixed Models (GLLAMMs)

• Conditional expectation of response

$$g(E[y|\mathbf{x}, \mathbf{u}]) = \eta$$

where g is a link function and η is the linear predictor.

 \bullet Linear predictor:

inear predictor:

$$\eta = \boldsymbol{\beta'}\mathbf{x} + \sum_{l=2}^{L} \sum_{m=1}^{M_l} u_m^{(l)} \boldsymbol{\lambda}_m^{(l)\prime} \mathbf{z}_m^{(l)} \quad \text{for identification, } \boldsymbol{\lambda}_{\text{m}1}^{(l)} = 1$$

- Conditional distribution of response is from exponential family
- Latent variables can be factors or random coefficients:
 - Random coefficient: one explanatory variable multiplies the latent variable
 - Factor: The items are treated as level 1 units and a linear combination of dummy variables for the items multiplies the latent variable

Response Processes

 \bullet The response variables may be of mixed type - requiring mixed links and families:

Links

identity
reciprocal
logarithm
logit
probit
scaled probit
compl. log-log

Polytomous responses ordinal logit ordinal probit ordinal compl. log-log multinomial logit

Slide 4

- Heteroscedasticity: The dispersion parameter for the Gauss and gamma families can differ between responses or depend on covariates
- Offsets
- Many response processes: multivariate survival, discrete survival data, rankings, ceiling/floor effects

I. Nominal responses and rankings

- Nominal or unordered categorical responses:
 - Party voted for
 - Treatment selected for a patient
 - Brand of ketchup bought

One of A alternatives is 'selected': $first\ choice\ data$.

- Multinomial logit model (polytomous logistic regression):
 - linear predictor for alternative a is V^a , e.g., $V^a = \beta_0^a + \beta_1^a \text{Age}$
 - The probability that f is the 'chosen' alternative is

$$\Pr(f) = \frac{\exp(V^f)}{\sum_{a=1}^{A} \exp(V^a)}$$

Latent Response Derivation of Multinomial Logit Model

• Associated with each alternative is an unobserved 'utility' U^a (latent response). The alternative with the highest utility is selected. Depending on the situation, utility means attractivess or usefulness (voting/purchasing), cost-effictiveness (treatments), etc. of the alternative.

$$U^a = V^a + \epsilon^a$$

• f is chosen if

$$U^f > U^g$$
 for all $q \neq f$

Ol

$$U^f - U^g = V^f - V^g + (\epsilon^f - \epsilon^g) > 0$$

• If the error term ϵ^a has an extreme value distribution of type I (Gumbel), then the differences ($\epsilon^f - \epsilon^g$) have a logistic distribution and it follows that (McFadden, 1974)

$$\Pr(f) = \frac{\exp(V^f)}{\sum_{a=1}^{A} \exp(V^a)}$$

Slide 5

British Election Study

- voters who voted Conservative, Labour, Liberal in 1987 and 1992 elections.
- Variables:
 - male, age, manual (father a manual worker)
 - rldist: distance between voter and party on left-right dimension constructed from respondent's and paty's position on 4 scales, e.g.

more effort to redistribute wealth \rightarrow less effort

- ${\tt price} :$ judgement how much prices have risen
- Expanded or "exploded" data

serialno year party chosen rldist 10. 11 92 1 .5031 con 11. 92 lab 30.12 12. 11 92 lib 16.18 22.86 13. 13 87 con 14. 13 87 lab .3622 15. 1.3 87 lib 1.894 13 20.62 16. con 17. 13 92 lab .0567 18. 13 92 lib 1.507 19. 15 87 25.32 con

- zrldist, zprice are standardised versions

Multinomial logit in gllamm

- Data in expanded form: alternative sets (analogous to risk sets)
- Dummy variables lab and lib for Labour and Liberal and interactions with all subject-specific explanatory variables

gen lab_age = lab*age
gen lib_age = lib*age

Slide 8

• Multinomial logit model with a random effect of zrldist:

$$V_{ij}^a = \boldsymbol{\beta}^{a\prime} \mathbf{x}_{ij} + (\alpha + u_i) d_{ij}^a$$

where i indexes the voter, j indexes the election and d_{ij}^a is the distance between voter and party on the left-right political dimension.

```
eq beta1: zrldist
gllamm party zrldist lab87 lib87 lab92 lib92 lab_mal lib_mal /*
  */ lab_age lib_age lab_man lib_man lab_zpri lib_zpri, nocons /*
  */ i(serialno) expand(occ chosen o) f(binom) l(mlogit) eq(beta1)
```

party	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
zrldist	-1.060069	.0494498	-21.44	0.000	-1.156989	9631496
lab87	. 5425648	.2526952	2.15	0.032	.0472912	1.037838
lib87	. 157179	. 2357233	0.67	0.505	3048302	.6191881
lab92	. 6552893	.2613689	2.51	0.012	. 1430156	1.167563
lib92	1244899	.2459711	-0.51	0.613	6065843	.3576046
lab_mal	8032313	.137831	-5.83	0.000	-1.073375	5330876
lib_mal	6890129	. 1298547	-5.31	0.000	9435235	4345024
lab_age	3636854	.0465448	-7.81	0.000	4549116	2724592
lib_age	2127401	.0430409	-4.94	0.000	2970987	1283815
lab_man	.8029466	. 1472146	5.45	0.000	.5144113	1.091482
lib_man	0675791	. 1309883	-0.52	0.606	3243114	.1891532
lab_zpri	. 573825	.0766719	7.48	0.000	. 4235507	.7240992
lib_zpri	.4458234	.0706312	6.31	0.000	.3073889	. 584258
_						

Slide 9

Variances and covariances of random effects

***level 2 (serialno)

var(1): .27935136 (.07560918)

Multinomial Logit Model For Rankings

- Rankings are orderings of alternatives (parties, treatments, brands) according to preference or some other characteristic.
- ullet Associated with each alternative a is an unobserved utility U^a

$$U^a = V^a + \epsilon^a$$

where ϵ^a has an extreme value distribution (Gumbel)

• Let r^s be the alternative with rank s. Then the ranking $R=(r^1,r^2,\cdots r^A)$ is obtained if

$$U^{r^1} > U^{r^2} > \dots > U^{r^A}$$

• The probability of a ranking R is (Luce, 1959)

$$\Pr(R) = \frac{\exp(V^{r^1})}{\sum_{s=1}^{A} \exp(V^{r^s})} \times \frac{\exp(V^{r^2})}{\sum_{s=2}^{A} \exp(V^{r^s})} \times \dots \times \frac{\exp(V^{r^A})}{\sum_{s=A-1}^{A} \exp(V^{r^s})}$$

- \bullet At each 'stage', a first choice is made among the remaining alternatives
- A subject's contribution to the likelihood is identical to the contribution of a stratum to the partial likelihood in Cox's regression

Rankings for British Election Study

- First choice: party voted for
- Rankings: the parties were rated on a five point scale

strongly against \rightarrow strongly in favour

- The parties not voted for are ranked into second and third place using the rating scales. (In 6.5% of votes, the party voted for did not have the highest score)
- original data

Slide 11

0
serialno
20110

se	rialno	year	occ	rank	party
7.	11	87	3	1	con
8.	11	87	3	2	lib
9.	11	87	3	2	lab
10.	11	92	4	1	con
11.	11	92	4	2	lib
12.	11	92	4	3	lab

Data preparation for rankings

• "Exploding the data to alternative sets" using stsplit

```
egen maxr = max(rank), by(occ)
gen chosen=1
gen id=_n
stset rank, fail(chosen) id(id)
stsplit , at(failures) strata(occ) riskset(occstage)
replace chosen=0 if chosen==.
drop if rank==maxr
```

se	rialno	year	occstage	party	chosen
11.	11	87	7	con	1
12.	11	87	7	lab	0
13.	11	87	7	lib	0
14.	11	92	9	con	1
15.	11	92	9	lab	0
16.	11	92	9	lib	0
17.	11	92	10	lib	1
18.	11	92	10	lab	0

Analysing rankings

- There are a number of possible random structures for election within voter within consituency.
- Example: correlated random coefficients for lab and lib at voter level

$$V_{ij}^{a} = \beta^{a'} \mathbf{x}_{ij} + \alpha d_{ij}^{a} + u_{1i} z_{1ij}^{a} + u_{2i} x_{2ij}^{a}$$

where z_{1ij} and x_{2ij} are dummy variables for Labour and Liberal, respectively.

- random coefficients of Labour and Liberal induce longitudial correlations across elections for Labour and Liberal, respectively.
- correlation between random coefficients of Labour and Liberal induces both cross-sectional and longitudinal correlations between the utilities for Labour and Liberal.

```
eq lab: lab
eq lib: lib
gllamm party zrldist lab87 lib87 lab92 lib92 lab_mal lib_mal /*
  */ lab_age lib_age lab_man lib_man lab_zpri lib_zpri, nocons /*
  */ i(serialno) expand(occstage chosen o) f(binom) l(mlogit) /*
  */ nrf(2) nip(10) eqs(lib lab)
```

Slide 13

II. Regressions of latent variables on observed variables

Structural equations for the latent variables

Regress the latent variables on other latent and explanatory variables

$$\mathbf{u} = \mathbf{B}\mathbf{u} + \mathbf{\Gamma}\mathbf{w} + \boldsymbol{\zeta}$$

• $\mathbf{u} = (u_1^{(2)}, u_2^{(2)}, \cdots, u_{M_2}^{(2)}, \cdots u_1^{(l)}, \cdots, u_{M_l}^{(l)}, \cdots, u_{M_li}^{(L)})'$ (*M* elements)

- factors

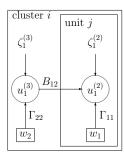
Slide 15

- random coefficients

- ullet B is an upper diagonal $M \times M$ matrix of regression coefficients
- Γ is an $M \times p$ matrix of regression coefficients
- ullet w are p explanatory variables
- ζ is an M dimensional vector of errors/disturbances (same level as corresponding elements in \mathbf{u}).

Theoretical example

$$\begin{bmatrix} u_1^{(2)} \\ u_1^{(3)} \end{bmatrix} = \begin{bmatrix} 0 & B_{12} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1^{(2)} \\ u_1^{(3)} \end{bmatrix} + \begin{bmatrix} \Gamma_{11} & 0 \\ 0 & \Gamma_{22} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} + \begin{bmatrix} \zeta_1^{(2)} \\ \zeta_1^{(3)} \end{bmatrix}$$



- School level factor regressed on (and measured by) school level variables
- (a) School level factor affects pupil level factor (e.g. ability)
- (b) School level factor affects pupil level random coefficient (e.g. rate of increase in performance)

Example: Logistic regression with covariate measurement error

- \bullet Data and notation
 - Effect of fibre intake (continuous, measured twice on a subset of subjects) on coronary heart disease (CHD present/absent) (Morris, Marr and Clayton, 1977)
 - Responses are dietary fibre intake (j = 1, 2) and coronary heart disease (j = 3)
 - $-u_i$ is *i*th subject's true dietary intake (- population mean)
- Measurement model for fibre intake: y_{i1} , y_{i2} conditionally independently normally distributed with

$$E[y_{ij}|\mathbf{u}] = \beta_j + u_i\lambda_j, \quad j = 1, 2 \ (\beta_1 = \beta_2, \ \lambda_1 = \lambda_2 = 1)$$

• Disease model: y_{i3} conditionally binomial with

$$logit(E[y_{i3}|\mathbf{u}]) = \beta_3 + u_i\lambda_3 \quad \lambda_3 \text{ is } log(OR)$$

- \bullet GLLAMM
 - $-z_{1ij}$ is 1 for the element(s) corresponding to fibre and 0 otherwise.
 - $-z_{3ij}$ is 1 for the element corresponding to CHD, 0 otherwise.

$$\eta_{ij} = \boldsymbol{\beta}' \mathbf{z}_{ij} + u_i \boldsymbol{\lambda}' \mathbf{z}_{ij} \qquad \mathbf{z}_{ij} = (z_{1ij}, z_{3ij})'$$

Diet example in gllamm, see STB53, sg129

chd

var

425. 217 3.06 426. 0 217 427. 218 3.14 1 0 1 428. 218 0 429. 219 2.75 1 1 430. 219 2.7 0 1 431. 219

resp

diet

//31

Slide 18

 $\mathtt{diet} \text{ is } z_1 \text{ and } \mathtt{chd} \text{ is } z_3$

eq id: diet chd

id

gllamm resp diet chd, nocons i(id) eqs(id) link(ident logit) /* */ fam(gauss binom) lv(var) fv(var) nip(30)

Including other covariates

• Direct effect of x on y_3

Measurement model : $E[y_{ij}|\mathbf{u}] = \beta_j + u_i, \quad j = 1, 2$ Disease model : $logit(E[y_{i3}|\mathbf{u}]) = \beta_3 + \beta_4 x + u_i \lambda_3$

• Indirect effect of x on y_3

$$u_i = \gamma x + \zeta_i,$$

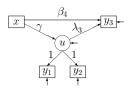
where ζ_i is a residual error term

Measurement model : $E[y_{ij}|\mathbf{u}] = \beta_j + \gamma x + \zeta_i$ Disease model : $logit(E[y_{i3}|\mathbf{u}]) = \beta_3 + \gamma \lambda_3 x + \zeta_i \lambda_3$

 \Rightarrow would require nonlinear constraint for the coefficients if we couldn't regress ${\bf u}$ on explanatory variables

• Direct and indirect effect of x on y_3

Measurement model: $E[y_{ij}|\mathbf{u}] = \beta_j + \gamma x + \zeta_i$ Disease model: $\log \operatorname{ic}(E[y_{i3}|\mathbf{u}]) = \beta_3 + (\beta_4 + \gamma \lambda_3)x + \zeta_i \lambda_3$ (would not require a constraint for the coefficients)



Including effect of occupation (bus staff vs bank staff)

	id	resp	diet	chd	var
425.	217	3.06	1	0	1
426.	217	0	0	1	2
427.	218	3.14	1	0	1
428.	218	0	0	1	2
429.	219	2.75	1	0	1
430.	219	2.7	1	0	1
431.	219	0	0	1	2

Slide 20

Slide 19

• gllamm syntax without occ

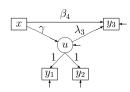
eq id: diet chd
gllamm resp diet chd, nocons i(id) eqs(id) link(ident logit) /*
*/ fam(gauss binom) lv(var) fv(var) nip(30)

• gllamm syntax with direct and indirect effects of occ (dummy for bus staff)

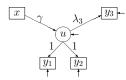
```
eq f1: occ
gen occc=occ*chd
gllamm resp diet chd occc, nocons i(id) eqs(id) link(ident logit) /*
*/ fam(gauss binom) lv(var) fv(var) nip(30) geqs(f1)
```

Results

 \bullet direct and indirect effect of x on y_3



• Indirect effect of x on y_3



${\it Log-likelihood}{=}{-}186.90$

Parameters	Estimates	SE
λ_3	-1.95	0.73
γ	-0.12	0.03
β_4	-0.19	0.34
σ^2	0.02	0.003
var(u)	0.07	0.007

 ${\it Log-likelihood}{=}\text{-}187.05$

Parameters	Estimates	SE
λ_3	-1.86	0.70
γ	-0.12	0.03
σ^2	0.02	0.003
var(u)	0.07	0.007