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Extensions to gllamm:

e More response processes
— Ordinal responses

— I. Nominal responses and rankings

e Structural equations for the latent variables
— II. Regressions of latent variables on observed variables

— Regressions of latent variables on other latent variables
e Parameter constraints
e gllapred for posterior means and probabilities

e A manual
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Generalised Linear Latent and Mixed Models (GLLAMDMS)

e Conditional expectation of response
9(Elylx,u]) =7
where g is a link function and 7 is the linear predictor.

e Linear predictor:

L M
n=0%x+3 > uWAVZ0  for identification, )\f,l,)l =

m Ym “m
1=2m=1

e Conditional distribution of response is from exponential family

e Latent variables can be factors or random coefficients:
— Random coefficient: one explanatory variable multiplies the latent variable

— Factor: The items are treated as level 1 units and a linear combination of dummy

variables for the items multiplies the latent variable

-
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Response Processes

e The response variables may be of mixed type - requiring mixed links and families:

Links
identity

Families Polytomous responses
reciprocal

Gaussian ordinal logit
logarithm

gamma ordinal probit
logit

Poisson ordinal compl. log-log
probit

binomial multinomial logit
scaled probit
compl. log-log

e Heteroscedasticity: The dispersion parameter for the Gauss and gamma families can

differ between responses or depend on covariates
o Offsets

e Many response processes: multivariate survival, discrete survival data, rankings,

ceiling/floor effects
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I. Nominal responses and rankings

e Nominal or unordered categorical responses:
— Party voted for
— Treatment selected for a patient
— Brand of ketchup bought
One of A alternatives is ‘selected”: first choice data.
e Multinomial logit model (polytomous logistic regression):
— linear predictor for alternative a is V¢, e.g., V* = §§ + G{Age
— The probability that f is the ‘chosen’ alternative is

) exp(V/
Pr(f) = zﬁzlzim)va)

~

Latent Response Derivation of Multinomial Logit Model

o Associated with each alternative is an unobserved ‘utility’ U® (latent response). The
alternative with the highest utility is selected. Depending on the situation, utility
means attractivess or usefulness (voting/purchasing), cost-effictiveness (treatments),
etc. of the alternative.

Ut=V"4¢
e f is chosen if
U/ > U for all g # f
or
Uh—Us=vI—vi+( —¢) >0
o If the error term €” has an extreme value distribution of type I (Gumbel), then the

differences (e — €¥) have a logistic distribution and it follows that (McFadden, 1974)

o exp(Vf)
Pr(f) - Z;;l:1 exp(va)
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e voters who voted Conservative, Labour, Liberal in 1987 and

e Variables:

British Election Study

1992 elections.

— male, age, manual (father a manual worker)

— rldist: distance between voter and party on left-right
dimension constructed from respondent’s and paty’s
position on 4 scales, e.g.
more effort to redistribute wealth—less effort

— price: judgement how much prices have risen

— Expanded or “exploded” data

serialno year party chosen rldist
10. 11 92 con 1 .5031
11. 11 92 lab 0 30.12
12. 11 92 lib 0 16.18
13. 13 87 con 0 22.86
14. 13 87 lab 1 .3622
15. 13 87 lib 0 1.894
16. 13 92 con 0 20.62
17. 13 92 lab 1 .0567
18. 13 92 lib 0 1.507
19. 15 87 con 0 25.32

— zrldist, zprice are standardised versions

\

Multinomial logit in gllamm

e Data in expanded form: alternative sets (analogous to risk sets)

e Dummy variables 1ab and 1ib for Labour and Liberal and interactions with all
subject-specific explanatory variables
gen lab_age = lab*age
gen lib_age = lib*age

e Multinomial logit model with a random effect of zrldist:

Vi = 8% + (a + wi)dy;

where ¢ indexes the voter, j indexes the election and df; is the distance between

voter and party on the left-right political dimension.

eq betal: zrldist
gllamm party zrldist 1ab87 1ib87 lab92 1ib92 lab_mal lib_mal  /*
x/ lab_age lib_age lab_man lib_man lab_zpri lib_zpri, nocons /*

x/ i(serialno) expand(occ chosen o) f(binom) l(mlogit) eq(betal)
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party | Coef.  Std. Err. z P>|z| [95% Conf. Intervall
zrldist | -1.060069 .0494498 -21.44  0.000 -1.156989 -.9631496
1ab87 | .5425648 .2526952 2.15 0.032 .0472912 1.037838
1ib87 | .157179 .2357233 0.67 0.505 -.3048302 .6191881
lab92 | .6552893 .2613689 2.51  0.012 .1430156 1.167563
1ib92 | -.1244899 .2459711 -0.51 0.613 -.6065843 .3576046
lab_mal | -.8032313 .137831 -5.83  0.000 -1.073375  -.5330876
lib_mal | -.6890129 .1298547 -5.31 0.000 -.9435235 -.4345024
lab_age | -.3636854 .0465448 -7.81 0.000 -.4549116 -.2724592
lib_age | -.2127401 .0430409 -4.94 0.000 -.2970987 -.1283815
lab_man | .8029466 .1472146 5.45 0.000 .5144113 1.091482
lib_man | -.0675791 .1309883 -0.52 0.606 -.3243114 .1891532
lab_zpri | .573825 .0766719 7.48  0.000 .4235507 . 7240992
lib_zpri | .4458234 .0706312 6.31  0.000 .3073889 .584258

Variances and covariances of random effects

*x+xlevel 2 (serialno)

var(1): .27935136 (.07560918)

\

Multinomial Logit Model For Rankings

e Rankings are orderings of alternatives (parties, treatments, brands) according to

preference or some other characteristic.

e Associated with each alternative a is an unobserved utility U®

U=V ¢

where €* has an extreme value distribution (Gumbel)

e Let r° be the alternative with rank s. Then the ranking R = (’rl, r2, .. ~7‘A) is

obtained if
Ulsut s> ot

e The probability of a ranking R is (Luce, 1959)

(V') ep(V) eV

Pr(R) = X X - -
)= S exp (V) S, exp(V7) ST exp(V)

e At each ‘stage’, a first choice is made among the remaining alternatives

e A subject’s contribution to the likelihood is identical to the contribution of a

stratum to the partial likelihood in Cox’s regression




Rankings for British Election Study

e First choice: party voted for
e Rankings: the parties were rated on a five point scale
strongly against — strongly in favour

e The parties not voted for are ranked into second and third place using the rating

scales. (In 6.5% of votes, the party voted for did not have the highest score)

Slide 11
e original data
serialno year occ rank party
7. 11 87 3 1 con
11 87 3 2 lib
9. 11 87 3 2 lab
10. 11 92 4 1 con
11. 11 92 4 2 lib
12. 11 92 4 3 lab
f Data preparation for rankings
e “Exploding the data to alternative sets” using stsplit
egen maxr = max(rank), by(occ)
gen chosen=1
gen id=_n
stset rank, fail(chosen) id(id)
stsplit , at(failures) strata(occ) riskset(occstage)
replace chosen=0 if chosen==.
Slide 12 drop if rank==maxr
serialno year  occstage party chosen
11. 11 87 7 con 1
12. 11 87 7 lab 0
13. 11 87 7 lib 0
14. 11 92 9 con 1
15. 11 92 9 lab 0
16. 11 92 9 lib 0
17. 11 92 10 1lib 1
0

\ 18. 11 92 10 lab
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Analysing rankings
e There are a number of possible random structures for election within voter within
consituency.
e Example: correlated random coefficients for lab and lib at voter level
Vii = Bxi; + adfy + unizty; + u2ias,,
where z1;; and 9;; are dummy variables for Labour and Liberal, respectively.

— random coefficients of Labour and Liberal induce longitudial correlations across

elections for Labour and Liberal, respectively.

— correlation between random coefficients of Labour and Liberal induces both

cross-sectional and longitudinal correlations between the utilities for Labour and

Liberal.
eq lab: lab
eq lib: 1ib

gllamm party zrldist 1ab87 1ib87 lab92 1ib92 lab_mal lib_mal  /*
*/ lab_age lib_age lab_man lib_man lab_zpri lib_zpri, nocons /*
*x/ i(serialno) expand(occstage chosen o) f(binom) 1l(mlogit) /*
*x/ nrf(2) nip(10) eqs(lib lab)

-

log likelihood = -2647.2917
>>> fixed effects omitted

Variances and covariances of random effects

*x*xlevel 2 (serialno)

var(1): 18.918555 (2.2960479)
cov(1,2): 9.0408098 (1.1798509) cor(1,2): .82567035

var(2): 6.3374322 (.88875039)

Assuming uncorrelated random coefficients (using nocor option, gives a log-likelihood
of -2800.2076
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II. Regressions of latent variables on observed variables

Structural equations for the latent variables
Regress the latent variables on other latent and explanatory variables

u=Bu+Tw+ (¢

o u— (W, u® @ 00 D) v

5y Uy UL Ung e Uy (M elements)

— factors

— random coefficients
e B is an upper diagonal M x M matrix of regression coefficients
e I' is an M X p matrix of regression coefficients
e w are p explanatory variables

e ¢ is an M dimensional vector of errors/disturbances

(same level as corresponding elements in u).

Theoretical example

u(lz) 0 Bis u<12) I'yy 0 wy {2)
@ |- ) e
Uy 0 0 uy 0 F22 wa Cl
cluster ¢ o
unit j e School level factor regressed on (and mea-
(1(?) sured by) school level variables

e (a) School level factor affects pupil level fac-
tor (e.g. ability)

e (b) School level factor affects pupil level ran-

Iy dom coefficient (e.g. rate of increase in per-

formance)
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Example: Logistic regression with covariate measurement error

e Data and notation

— Effect of fibre intake (continuous, measured twice on a subset of subjects) on
coronary heart disease (CHD present/absent) (Morris, Marr and Clayton, 1977)

— Responses are dietary fibre intake (j = 1,2) and coronary heart disease (j = 3)
— w; is ith subject’s true dietary intake (- population mean)

e Measurement model for fibre intake: y;1, ¥;» conditionally independently normally
distributed with

E[yij|u] =0i+uid;, j=L2(B1=0, M=X=1)
e Disecase model: y;3 conditionally binomial with
logit(E[yis|u]) = B3 + uids Az is log(OR)
e GLLAMM

— z15 is 1 for the element(s) corresponding to fibre and 0 otherwise.

— z3i; is 1 for the element corresponding to CHD, 0 otherwise.

/ / !
iy = B'zij +uiNzy; 2 = (2105, 23i))

Diet example in gllamm, see STB53, sg129

id resp diet chd var
425. 217 3.06 1 0 1
426. 217 0 0 1 2
427. 218 3.14 1 0 1
428. 218 0 0 1 2
429. 219 2.75 1 0 1
430. 219 2.7 1 0 1
431. 219 0 0 1 2

diet is z; and chd is z3

eq id: diet chd
gllamm resp diet chd, nocons i(id) eqs(id) link(ident logit) /x
*/ fam(gauss binom) lv(var) fv(var) nip(30)
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Including other covariates

e Direct effect of = on y;3
Measurement model : E[yij\u] = Bj+uw, j=12
Disease model : logit(E[yis|u]) = O3+ Sz + wids
e Indirect effect of x on y3
u; = yx + G,
where (; is a residual error term

Measurement model : Efy;;jlu] = 8;+ vz + ¢
Disease model : logit(E[yis|u]) = S5+ vAsz + GAs

Slide 19 = would requires nonlinear constraint for the coefficients if

we couldn’t regress u on explanatory variables
e Direct and indirect effect of = on y;
Measurement model : Ely;;lu] = §; +vz + ¢
Disease model : logit(E[yis|u]) = B3 + (81 +A3)x + (s

(would not require a constraint for the coefficients)

Including effect of occupation (bus staff vs bank staff)

id resp diet chd var
425. 217 3.06 1 0 1
426. 217 0 0 1 2
427. 218 3.14 1 0 1
428. 218 0 0 1 2
429. 219 2.75 1 0 1
430. 219 2.7 1 0 1
431. 219 0 0 1 2

e gllamm syntax without occ
eq id: diet chd
gllamm resp diet chd, nocons i(id) eqs(id) link(ident logit) /*
*/ fam(gauss binom) lv(var) fv(var) nip(30)
e gllamm syntax with direct and indirect effects of occ (dummy for bus staff)
eq f1: occ
gen occc=occ*chd
gllamm resp diet chd occc, nocons i(id) egs(id) link(ident logit) /*
*/ fam(gauss binom) lv(var) fv(var) nip(30) geqs(fl)

%
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Results

e direct and indirect effect of x on y3

Log-likelihood=-186.90

Parameters Estimates SE
A3 -1.95 0.73
¥ -0.12 0.03
Ba -0.19 0.34
o? 0.02 0.003
var(u) 0.07 0.007

Log-likelihood=-187.05

Parameters Estimates SE
A3 -1.86 0.70
¥ -0.12 0.03
o? 0.02 0.003
var(u) 0.07 0.007




