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Introduction and motivation

Evaluation of probit model likelithood functions
requires calculation of Normal probability
distribution functions.

Algorithms exist for accurately calculating
accurate univariate and bivariate Normal pdfs, but
not for trivariate or higher dimensional Normal
distributions (at least not in Stata). Instead, ...

Recent literature on calculating multivariate
Normal pdfs using simulation-based methods

Here: multivariate probit model estimated using
simulated ML (‘GHK’ simulator): mvprobit

—cf. triprobit at SSC-IDEAS



The model

M equation multivariate probit model:

yim>x< - Bm,)(zm T gim >, M = 19 9M

v,y = 1 ify, " > 0and 0 otherwise
m=1, ..., M, are error terms distributed as
multivariate normal, each with a mean of zero, and
variance-covariance matrix V, where 7 has values of 1

on the leading diagonal and correlations p; = p,. as
off-diagonal elements.

 Structure like a SUR model but depvars are binary (and
need not have same set of X in every equation)

« M different choices at a point in ttme OR choices on one
item at M points in time (panel model with free
correlations)
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Estimation principles (M = 3)

Log-likelihood function for a sample of NV independent
observations:
L=2;w;logd;(1; £2)
w; 1s an optional weight
D,(u;; ) 1s standard trivariate normal cdf, where
M = (K By X, KBy Xy 5 KisP3'X5)
with K, =2y, — 1, foreachj, k=1,...,3.
Q) has elements Q; , where .= 1forj=1, ..., 3; £, =Q,
= K KnPay » £25) = Q3 = KK P31, £255 = $y5 = K3KpP3,.
* Log-likelihood function depends on the trivariate standard
normal distribution function @,(.)!

* Evaluate using Geweke-Hajivassiliou-Keane (GHK)
smooth recursive conditioning simulator 5



The GHK simulator

Exploits the fact that a multivariate normal distribution function can be
expressed as the product of sequentially conditioned univariate normal
distribution functions — which can be easily and accurately evaluated.

Trivariate case: 8 joint probabilities corresponding to the eight possible
combinations of successes (y,,, = 1) and failures (y;, = 0). Focus on
Pr(every outcome is a success):

Pry,=1,y,=1,y;=1) = Pr(e, <P,/'X| &, <B,X, & <B,'X)
=Pr(g; < B,/ Xj| g, < Bz,Xz, e <PB,/X)
X Pr(g, <B,’X, [ & <B,"X)) X Pr(g; <PB,'X))
Expression involves conditioning upon unobservable variables (that
are correlated with each other).

However if a good approximation for these conditional distributions
can be found, then the likelihood function only requires evaluation of
univariate integrals.

How may the approximations be derived?



The GHK simulator (ctd.)

Cholesky decomposition of the covariance matrix for the errors:
E(ee")=V=CeeT
where C 1s the lower triangular Cholesky matrix corresponding to V'
and e ~ @4(0, 1), 1.e. three uncorrelated standard normal variates.
Hence: g, = C e
&, =Cpe +Cpe
€= (e, + Cppey + Cyzey
and C; 1s the jkth element of matrix C.
= rewrite Pr(three successes) as
Pr(e, < B,°X, &, < B,’X, & <B,'X;)
=Prle; < (By'X; - Cye, — Gy10)/Ciz | €, < (B)'X, — Cy1e))/Cyy € < BXY/C
X Prle, < (B,’X, — C,,e))/Cy, | €, < B,/X,/C,] X Prle; < B,/X,/C,,].
The standard normal variates, e, that now appear in the decomposition are
uncorrelated with each other (by construction).

The first two conditional probabilities can be further rewritten as
unconditional probabilities defined in terms of truncated standard
normal variates: ....



The GHK simulator (ctd.)

Rewriting in terms of truncated standard normal variates:
Pr(e, < B,'X| &, < B,X, & <BX;)
=Prle; < (ByX; — Cyhe," — Ci1e,7)/Cs5] X Pre, < (B,X, — Cype,)/Cypl
x Pr[e, < B,/X,/C,,]
=03 X0, X0, say,
where e, and e, are truncated univariate standard normal variates with
upper truncation points at 3,"X,/C,, and (B,’X, — C,,e,")/C,,
respectively.
Computation of Q, is straightforward and, if one had some specific values

for e,” and e,”, then one could also compute Q, and Q,, and hence the
overall multivariate probability.

Similar arguments for all the other probabilities of success/failure (and for
M >3).



The GHK simulator (ctd.)

GHK simulator:

(i) Derive values for e,”, e,” via random draws from upper truncated
standard normal distributions with truncation points as above (use
random number generator, plus inversion formula);

(1) Recursively compute a multivariate probability value from the QOs.
(111) Replicate R times, and then

(1v) Calculate the simulated probability as the arithmetic mean of the
values of the simulated probabilities from each replication.

SML estimator: ML with the multivariate normal probabilities calculated
at each iteration using the GHK simulator = numerically intensive!

« SML estimator consistent as N — oo and R — oo. (Asymptotic, like
ML!)

o Simulation bias — 0 when R raised with N. [ (R /N N) — o sufficient.]

9



The mvprobit program

mvprobit equationl equation2 ... equationM
[weight] [if exp] [in range] [, draws(#) seed(#)
betal atrho0O (matrix name) robust cluster (varname)
constraints (numlist) level(#) maximize options ]

where each equation is specified as

( [egname:] depvar [=] [varlist] [, noconstant] )
by may be used; all types of weights allowed; has standard features of estimation
commands including access to estimated results; no limit on M (in principle)

Options
draws (#) : number of random draws in simulation (R). Default = 5.

seed (#) : initial value of random-number seed used in simulation process.
(Default = 123456789).

beta0: estimates of the marginal probit regressions are reported.

atrhoO (matrix name) : starting values for the off-diagonal elements of the
correlation matrix V that differ from the default starting values (all zero).

Remaining options: same as the corresponding ones for biprobit. 0



Prediction using mvppred

mvppred newvarname prefix [if exp] [in rangel I[,
statistic]
where statistic is one of
xb the linear prediction for each equation; the default.
stdp the standard error of the linear predictions for each equation.
pmarg the marginal success probability for each equation.
pall the joint probabilities: (i) Pr(y,, = 1, forallm = 1,...,M), and
(1) Pr(y,, =0, for all m = 1,...,.M).
Only one statistic may be chosen at a time.

For statistics xb, stdp, and pmarg, results are stored in the variables
newvarname prefixi, forequationsi=1, ..., M.

For the pall statistics, results are stored in the variables
newvarname prefixIls for predicted probability (1) and
newvarname prefix0s for predicted probability (i1).

[Options for prediction restricted to the ‘all successes’ and ‘all failures’ cases =
the only two cases that could be programmed without M being fixed. (Number
of joint probabilities is 2*.)] 1



[1lustrations

(1) (1) syntax, options etc., and (i1) accuracy of
SML relative to ML (mvprobit vs.
biprobit)

— ‘School’ data (Pyndyck & Rubenfeld; Stata
manuals), N=95, M =2

(2) Simulated data, N = 5000, M = 4.

‘School’ data:
private: whether children attend a private school,

vote : whether the household head had voted for an increase in the property tax,
years: # years family has been at the present residence
logptax: log(property tax); loginc :log(income). 12



biprobit estimates:

use http://www.stata-press.com/data/r7/school.dta, clear
biprobit (private=years logptax loginc) (vote=years logptax loginc), nolog

Number of obs 95
Wald chi2 (6) = 9.59

Seemingly unrelated bivariate probit

Log likelihood = -89.254028 Prob > chi2 = 0.1431
| Coef Std. Err z P>|z]| [95% Conf. Interval]
_____________ +________________________________________________________________
private |
years | -.0118884 .0256778 -0.46 0.643 -.0622159 .0384391
logptax | -.1066962 .6669782 -0.16 0.873 -1.413949 1.200557
loginc | .3762037 .5306484 0.71 0.478 -.663848 1.416255
_cons | -4.184694 4.837817 -0.86 0.387 -13.66664 5.297253
_____________ +________________________________________________________________
vote |
years | -.0168561 .0147834 -1.14 0.254 -.0458309 .0121188
logptax | -1.288707 .5752266 -2.24 0.025 -2.416131 -.1612839
loginc | .998286 .4403565 2.27 0.023 .1352031 1.861369
cons | -.5360573 4.068509 -0.13 0.895 -8.510188 7.438073
_____________ o el
/athrho | -.2764525 .2412099 -1.15 0.252 -.7492153 .1963102
_____________ +________________________________________________________________
rho | -.2696186 .2236753 -.6346806 .1938267
Likelihood ratio test of rho=0: chi2 (1) = 1.38444 Prob > chi2 = 0.2393
predict pll,pll
predict p00,p00
predict xbbl, xbl Predictions of joint & marginal probabilities,
predict xbb2, xb2 . L
predict stdpbl, stdpl linear pI'CdlCthHS, etc.
predict stdpb2, stdp2
predict pmargbl, pmargl

predict

pmargb2, pmarg?2

13



mvprobit estimates (R = 100) are close to ML estimates:

(vote=years logptax loginc),

Number of obs
Wald chi2(6)
Prob > chi2

95
9.64
0.1405

-.0620386
-1.411126
-.6699806

-13.6223

-.0462285
-2.402908

.1373982
-8.511157

.0383921
1.204514
1.408981
5.342006

.011798
-.1585563
1.85395
7.385558

mvprobit (private = years logptax loginc)
> dr (100)
Multivariate probit (SML, # draws =
Log likelihood = -89.220805
| Coef. Std. Err
private |
years | -.0118233 .0256205
logptax | -.1033056 .6672673
loginc | .3695001 .5303571
cons | -4.140149 4.837923
vote |
years | -.0172153 .0148029
logptax | -1.280732 .5725493
loginc | .9956743 .437904
cons | -.5627991 4.055359
/atrho21l | -.2811165 .2396506
rho21 | -.2739382 .2216667
Likelihood ratio test of rho2l1 = 0:
chi2 (1) = 1.45088

mvppred pall,
(Pr (all zeros),
mvppred xbm, xb

pall

(xb will be stored in variables xbmi,

mvppred stdpm, stdp

Pr (all ones)

Prob > chi2

0.

i

(stdp will be stored in variables stdpmi,
mvppred pmargm, pmarg
(pmarg will be stored in variables pmargmi,

will be stored

1,

i

in variables pallOs, pallls)

..., #eqgs) L.
Predictions

= 11 .. -:#eqs)

i=1,...,6 #eqgs)

nolog

14



SML predictions very similar to ML counterparts

su pallls pll pallOs p00 xbml xbbl xbm2 xbb2 /*

More on choice of R below.

> */ stdpml stdpbl stdpm2 stdpb2 pmargml pmargbl pmargm2 pmargb2
Variable | Obs Mean  Std. Dev. Min Max
_____________ o o oo
pallls | 95 .0513848 .0293697 .0006823 .1675037
pll | 95 .0514965 .0295284 .0006783 .1691212
pallos | 95 .3252403 .1496049 .0397381 .8772917
po0 | 95 .3241522 .1485598 .040815 .882799
xbml | 95 -1.273431 .2017621 -1.930628 -.8744448
xbbl | 95 -1.275218 .2041617 -1.937996 -.8695227
xbm2 | 95 .3308476 .4381363 -1.365069 1.519954
xbb2 | 95 .3313479 .4383708 -1.37215 1.52224
stdpml | 95 .3404043 .1805338 .185824 1.0466098
stdpbl | 95 .3405953 .1807651 .1859334 1.049172
stdpm?2 | 95 .2541217 .1181758 .141525 .7976922
stdpb2 | 95 .2546185 .1186652 .1415696 .8023056
pmargml | 95 .1057509 .0322633 .0267645 .190938
pmargbl | 95 .1055308 .032576 .0263119 .1922807
pmargm2 | 95 .6216642 .1502225 .0861157 .9357387
pmargb2 | 95 .6218135 .1500823 .0850083 .9360256

Less similarity between SML and ML with smaller R, we found.

N =95 1s ‘small’, so potential finite sample biases anyway.

Raise N and M in simulated data example ...

15



Simulated data: M =4, N= 5000

set seed 12309
set obs 5000
obs was 0,

matrix R

> 5,

1)

now 5000

= (1, .25, .5, .75 \ .25, 1, .75, .5\

drawnorm ul u2 u3 u4, corr(R)

corr ux*
(obs=5000)

x1

| ul u2 u3 u4
_____________ o o e
ul | 1.0000
u2 | 0.2587  1.0000
u3 | 0.5077 0.7483  1.0000
usd | 0.7523 0.5093 0.7589  1.0000
uniform()-.5

ge
ge
ge
ge

X2
X3
X4

= uniform() + 1/3
= 2*uniform() + .5

.5*uniform() - 1/3

* Equations

ge
ge
ge
ge

ge
ge
ge
ge

vls
y2s
y3s
vés

vl
V2
v3
v4

.5+ 4*%x1 + ul

3 + .5*%x1 - 3*x2 + u2

1 - 2*x1 + .4*x2 -.75*x3 + u3

-6 + 1*x1 - .3*X2 + 3*x3 - .4*x4 + uéd

y1ls>0
y2s8>0
y3s>0
y4s>0

.75, 1, .75 \ .75, .5, .7

Correlation structure (V)

Equations

16



mvprobit estimates
(R=175)

Estimates quite close
to those 1n the ‘true’
model

NB warning message at
iteration 1 not a problem
as model later converged

LR test of MVP against M
independent univariate
probits (V identity matrix)

mvprobit (yl=x1l) (y2=x1 x2) (y3 = x1 x2 x3) (y4=x1 x2 x3 x4), dr(75)

Iteration 0:

log likelihood = -8681.8526

Warning: cannot do Cholesky factorization of rho matrix

Iteration 1:

log likelihood = -7922.4199

Iteration 2 log likelihood = -7749.5212
Iteration 3: log likelihood = -7746.5769
Iteration 4: log likelihood = -7746.5734
Iteration 5 log likelihood = -7746.5734
Multivariate probit (SML, # draws = 75) Number of obs = 5000
Wald chi2 (10) = 5561.10
Log likelihood = -7746.5734 Prob > chi2 = 0.0000
| Coef. std. Err z P>|z| [95% Conf. Interval]
,,,,,,,,,,,,, o oo oo e e ool
vl
x1 3.991634 .0962586 41.47 0.000 3.80297 4.180297
cons .5078066 .0233257 21.77 0.000 .462089 .5535241
,,,,,,,,,,,,, o o o o o e e e e oo
v2
x1 .5413448 .0704179 7.69 0.000 .4033283 .6793614
x2 -2.848419 .0781794 -36.43 0.000 -3.001648 -2.695191
cons 2.867846 .0734467 39.05 0.000 2.723894 3.011799
,,,,,,,,,,,,, o o o o o e e e e oo
v3
x1 -2.011164 .0708565 -28.38 0.000 -2.15004 -1.872288
x2 .5341271 .0642228 8.32 0.000 .4082527 .6600015
x3 -.7438451 .0311735 -23.86 0.000 -.8049441 -.6827462
cons .9133876 .0725944 12.58 0.000 .7711051 1.05567
_____________ o m o o o e
v4
x1 1.125271 .0891551 12.62 0.000 .9505303 1.300012
x2 -.3030878 .0826195 -3.67 0.000 -.4650191 -.1411565
x3 2.898115 .0779738 37.17 0.000 2.745289 3.050941
x4 -.4352364 .1598866 -2.72 0.006 -.7486084 -.1218644
cons -5.751499 .1685475 -34.12 0.000 -6.081846 -5.421152
_____________ o m o o o o e
/atrho21 | 2621885 0317031 8.27 0.000 2000516 .3243253
,,,,,,,,,,,,, o o m o o e e e oo
/atrho31l | 5646645 0345949 16.32 0.000 4968597 .6324692
_____________ o m o o o o e
/atrho4l | 9396437 0571792 16.43 0.000 8275746 1.051713
_____________ o m o o o e
/atrho32 | 9737444 0406156 23.97 0.000 8941392 1.05335
,,,,,,,,,,,,, o o m o o e e e oo
/atrho42 | 5670195 0424459 13.36 0.000 4838271 .6502119
,,,,,,,,,,,,, o o o o o e e e e oo
/atrho43 | 1.007126 0537097 18.75 0.000 9018571 1.112395
_____________ o m o o o e
rho21l | 2563413 0296198 8.65 0.000 1974249 3134127
,,,,,,,,,,,,, o o o o o e e e e oo
rho31 | 5114301 0255462 20.02 0.000 4596439 5597501
_____________ o m o o o e
rho41l | 7350585 0262846 27.97 0.000 6791715 7824714
_____________ o m o o o e
rho32 | 7503451 0177483 42.28 0.000 7134322 7831052
,,,,,,,,,,,,, o o o o o e e e e oo
rho42 | .513167 0312682 16.41 0.000 4493034 5718126
_____________ o m o o o e
rho43 | 7645708 0223127 34.27 0.000 7172009 8049075
Likelihood ratio test of rho2l = rho31l = rho4l = rho32 = rho42 = rho43 = 0: 1'7
chi2(6) = 1870.56 Prob > chi2 = 0.0000



Using mvprobit: further remarks

e Choosing number of random draws: higher
R 1ncreases accuracy but also run-time;

* Choosing seed (different random numbers
give different simulated probabilities)

Re-estimated the earlier models for each value
of R=1, ..., 150, and several alternative
seed values

18



SML estimate of p,,;: R=1, ..., 150; seed = 123456789, 999

(a) two-equation model, generated data (/N = 5000)

Seed = 123456789 Seed = 999
3 37

P, (‘true’)

.25 .25

ho21
N

ho21
N

\\\\\\\\\\\\\\\\ .
1 10 20 30 40 5 60 70 8 9 100 110 120 130 140 150 1 10 20 30 40 5 60 70 8 9 100 110 120 130 140 150
Number of random draws Number of random draws

(a) two-equation model, ‘School’ data (V= 95)

Seed = 123456789 Seed = 999

rho21
rho21

par(ML) ]

\\\\\\\\\\\\\\\\ )
1 10 20 30 40 5 60 70 8 9 100 110 120 130 140 150 1 10 20 30 40 5 60 70 8 9 100 110 120 130 140 150
Number of random draws Number of random draws

With ‘large’ N, SML estimator OK regardless of seed when R >\ N

19



Using mvprobit: further remarks

Run-time:

e Four-equation model took c. 2.25 hours using Stata 7/SE on Pentium
P4/1.4Ghz; c. 5.3 hours using Stata 7/IC on Sun Solaris)

 increases linearly in R (for given N, M)

* 1increasing number of explanatory variables, ceteris paribus, has no big
effect

e atrho option use reduced run-time relatively little (since got good
estimates of /" within a few iterations anyway)

* Runtime increases substantially as M increases (several days/weeks if
N =1000s and M > 6 or 7!)

Capacity:
* R*M temporary variables created: set memory

« For ‘large’ models (many covariates, many M): set matsize

20



