
SUGUK 2004 invited lecture:

Topics in time series modeling with Stata

Christopher F Baum
Boston College∗

July 21, 2004

1 Stata: the language of choice for time series analysis?

Over time, Stata has come to incorporate more and more features for effective analysis of time series
data: whether pure time series, or panel data with emphasis placed on the time series dimension
of the panel. In this context, I must stress that ‘time series modeling’ should be taken in the broad
sense, referring to (possibly multivariate) models built with data organized as time series, rather
than the narrow sense of “Box–Jenkins” or ARIMA univariate time series models. I only consider
modeling performed in the time domain (rather than the frequency domain).

Prior to Stata 7, support for time series analysis was weak, since Stata lacked the notion of a time
series calendar. In working with time series data, the researcher wants to refer to observations
in terms of calendar time, and see dates displayed on the statistical output and in graphs. Stata
7 incorporated a time series calendar and added a bewildering array of date functions which, if
properly employed, can decompose dates into their components (e.g., the calendar month associated
with a particular date) and translate dates between the several supported data frequencies.

At the same time, the time series operators (L., D., F.) were introduced, bringing a tremendous
simplification to any programming involving time series, and a built–in mechanism ensuring that
inappropriate computations are not made. For instance, x[n-1] will always refer to the previous
observation on x, which may or may not belong to the prior period. L.x will unambiguously refer to
the prior period’s value. One may succinctly refer to a set of lagged (or led) values with a numlist:
L(1/4).x to specify that four lags are to be included in a regressor list. One may even combine
the operators: e.g., the lagged second difference in x is denoted LD2.x, while the second lag of ∆x
is L2D.x.

Reliance on this housekeeping becomes overwhelmingly important in working with panel data, in
∗I am very grateful to Dr Mustafa Caglayan and the Department of Economics at the University of Leicester for

their hospitality. Most of this lecture was prepared in Leicester during a visit to the department in May and June
2004.

1

which one must always be concerned with staying within bounds of an individual unit’s time series.
In the context of an unbalanced panel, Stata’s approach to housekeeping is far superior to that of a
matrix language such as GAUSS or MATLAB, and places much less of a burden on the researcher’s
keeping track of those details. Since Stata refers to observations by their associated date (after a
time series calendar has been established by tsset) rather than by their number, users’ references
to the data may be in the more natural context of specifying calendar dates rather than calculating
observation numbers: e.g., regress inv L(1/4).gdp if tin(1968q4,1979q3) will restrict the
sample to that range of dates.

A second advantage, from the programmer’s standpoint, is that the nature of Stata’s data trans-
formation commands (generate, replace, egen) make it feasible in many instances to perform
a transformation over the individual time series of a panel with little overhead. In a number of
routines discussed below this feature has been used to advantage to greatly simplify the code, and
make a routine more generally useful.

Nevertheless, the facilities now present in Stata for management of time series data have their
weaknesses. It is inordinately difficult for many users to transform dates generated in some other
software (e.g., Excel) to the Stata date format without mucking around with substrings, wrangling
with two–digit vs. four–digit years, etc. Stata does not support business–daily data, and for those
of us in economics and finance, that is a pity. It is most unfortunate to give up the advantageous
features of Stata’s calendar and time series operators when working with this common data format.
Some of Stata’s most common commands lack support for time series operators: e.g. xtreg, which
unlike most xt commands, requires the generation of lagged or differenced series. And my pet
peeve: many time series statistical commands cannot be coerced to operate on a single time series
of a panel, although that should be a perfectly legitimate computation. I will discuss and illustrate
some of the routines that I have authored or coauthored to deal with some of these issues.

In this talk, I will discuss a number of Stata’s capabilities in the area of time series modeling,
including data management and graphics (although graphics is far from my area of expertise; I’ll
leave that to Vince Wiggins and Nick Cox, both experts in the field). I will focus on a number
of user–contributed routines, some of which have found their way into official Stata, with others
likely to follow. Given time limitations, there are certain areas I will not cover in this discussion:
vector autoregressions and structural VARs (a laudable and very ambitious addition to Stata 8);
ARCH and GARCH modeling (another very well–implemented and powerful modeling tool in Stata
8); cointegration tests (available via Patrick Joly’s johans and vececm routines, and soon perhaps
from official Stata) nor panel unit root tests (several of which I have (co–)authored).

2 Data management and graphics

2.1 tsmktim

Properly defining a time–series date variable, or the time–series component of a panel date variable

tsmktim datevar, start(1970)

2

tsmktim datevar, start(1970q2)
tsmktim datevar, start(1970m5)
tsmktim datevar, start(1jul1970)
tsmktim datevar, start(1970q2) seq(ind)

This quite simple routine will extract the date from the start argument, classify the data frequency,
generate the appropriate series, assign that frequency’s format and perform tsset datevar. The
last example above handles the case when there are some non–consecutive observations, as identified
by the ind series, which will then be used to place the proper gaps in the data. But what if we have
a panel, and want to identify each unit’s timeseries as beginning in 1970? A revision of tsmktim
earlier this month brought that capability: one may now command

tsmktim datevar, start(1970) i(country)

in order to achieve that goal, having the result of tsset country datevar to define both a panel
variable and a time variable. Like most of the routines I will discuss, tsmktim is available from the
SSC archive which I maintain via official Stata’s ssc command (in versions 7 and 8.x).

2.2 egen functions useful for time series data

• egen, filter from Nick Cox’s egenmore package. That routine has the flexibility to compute
any linear filter (including two–sided filters), with the option of automatically scaling the
weights to unity. For instance,

egen filty = filter(y), l(-2/2) c(1 4 6 4 1) n

specifies that a two–sided centered/centred moving average be computed, with weights 1/16,
4/16, 6/16, 4/16, 1/16. The n option specifies that the weights are to be normalized/normalised
(dividing by their sum of 16). As an illustration of Stata’s flexibility with time series data,
note that egen, filter may readily be applied to panel data (those which have been defined
as a panel to Stata via tsset panelvar datevar). This same egen command could be em-
ployed in that context, and the filter would then be automatically applied separately to each
timeseries within the panel.

Several other functions in the egenmore package provide useful housekeeping tools:

• eom() will generate a new variable with the date of the End of Month for a given month and
year

• bom() provides the same functionality for the Beginning of Month.

• the record() function: e.g.

egen maxtodate = record(wage), by(id) order(year)

egen hiprice = record(share price), by(firm) order(quote date)

where the first example identifies the highest wage to date in a worker’s career (related,
perhaps, to her “reservation wage”), while the second identifies the highest price received to
date for each firm’s shares.

3

2.3 tsspell

A last utility routine that might be just the trick for many users’ needs is Nick Cox’ tsspell.
Beyond the notion of spells of illness, spells of unemployment, etc. we often wish to identify spells
in which some characteristic is present: e.g., a period during which a share price does not decline.
Spells may be used to advantage defined on the presence of changes in a variable (e.g., the Bank of
England changing the base rate); by the occurrence of a particular event (such as a general election,
or a natural phenomenon such as an earthquake); or by the presence of some condition (e.g., the
period during which Labour forms the government, or those quarters in which the sign of the change
in real GDP is positive). Like the current version of tsmktim, tsspell will automatically handle
data which have been defined as a panel, generating spells for each unit in the panel.

2.4 Modified time series routines

Trivial modifications of official Stata commands that permit those commands to operate on single
time series within a panel: panelauto, providing various autocorrelation routines, and panelunit,
providing a number of unit root tests.

Researchers often work with “long–format” panel data involving time series of non–trivial length:
e.g., quarterly GDP for the G–8 economies, or a set of monthly exchange rates between USD and
a set of other currencies. In this context, we wish to evaluate the time series properties of each
unit’s time series, either in raw data form or in terms of regression residuals (from, for instance, a
fixed–effects model). Annoyingly, most of official Stata’s diagnostic commands will not work in this
format even when an if or in qualifier is used to restrict the scope of the command to a single time
series. These packages rectify that limitation. With these routines, one might readily generate a
set of tests for each time series in a panel and array the test results for evaluation and presentation.
For example:

webuse grunfeld, clear
mat def comp_stat = J(10,5,0)
qui forvalues i=1/10 {
reg invest L.invest mvalue time if company==‘i’
mat comp_stat[‘i’,1] = e(r2)
archlm2
mat comp_stat[‘i’,2] = r(arch)
mat comp_stat[‘i’,3] = r(p)
bgodfrey2, lag(2)
mat comp_stat[‘i’,4] = r(chi2)
mat comp_stat[‘i’,5] = r(p)
local rn "‘rn’ comp_‘i’"
}
mat rownames comp_stat = ‘rn’
mat colnames comp_stat = r^2 ARCH p-value BG(2) p-value
mat list comp_stat, format(%9.3f) ///
ti("Regression statistics for Grunfeld data") noheader

4

2.5 tsgraph

Provides analogous capability to Stata 8.2’s tsline for Stata 7 users (plus a bit more, in terms of
automatically handling up to four time series from a panel).

3 Statistics/econometrics

3.1 Capabilities of arima

Stata’s arima command performs estimation of univariate ARIMA(p,d,q) models, or “Box–Jenkins”
models with an AR(p) autoregressive component, a MA(q) moving average component, and requir-
ing dth order differencing to achieve covariance stationarity—and much, much more.The use of the
term arima for this command seems to lead to many users overlooking its potential usefulness for
a wide variety of time series modeling tasks.

arima may be used to fit an ordinary regression model—of y on a set of regressors X—in which the
disturbances are modeled as an ARMA(p,q) process. Unlike prais, which fits a regression model
with AR(1) errors, arima is capable of fitting a general error structure to any regression model,
including those containing one or more lags of the dependent variable, via maximum likelihood and
the Kalman filter.

arima provides the ability to compute dynamic forecasts of a regression model that contains a
lagged dependent variable. In the context of a regression model with strictly exogenous regressors
(that is, those whose distributions are independent of the error process), ex ante or out–of–sample
predictions may be calculated via predict for any post–sample period for which the regressors
are available. If the regression model contains a lagged dependent variable, an ex ante prediction
may only be made for the period for which the dependent variable is available, and predict will
compute a one–step–ahead static forecast: that is, ŷt = Xtβ̂, where one of the columns of X is
yt−1. For many purposes, a sequence of static forecasts is appropriate; for instance, mimicking the
decisions of economic agents at each point in time over the forecast horizon, where their information
set contains all variables dated T + τ and earlier, and they seek to forecast yT+τ+1. But if we are
building a dynamic model for y, we may want to simulate the performance of that model over a
horizon (T + 1) . . . (T + κ), where the initial conditions include information dated T and earlier,
and the further evolution of y over the forecast period is purely determined by the model (possibly
inclusive of stochastic shocks, in a stochastic simulation). To construct the dynamic or recursive
forecasts of y implied by this mechanism, we must estimate the model with arima—even if we
do not specify an ARMA(p,q) error structure—and use the dynamic() option on the subsequent
predict command. To compare the two forecasting strategies, consider:

webuse friedman2, clear
label var pc92 "Real Personal Consumption"
arima pc92 L.pc92 L(0/1).m2 if tin(,1981q4)
* static (one-step-ahead) 20-quarter forecast

5

predict consump_st if tin(1982q1,1986q4)
* dynamic (recursive) 20-quarter forecast
predict consump_dyn if tin(1982q1,1986q4), dynamic(q(1982q1))
tsline pc92 consump_st consump_dyn if tin(1982q1,1986q4)

3.2 ivreg2

There are a number of features in the latest version of ivreg2 (Baum, Schaffer and Stillman, 2003)
that are relevant for the analysis of time series and panel data models. ivreg2 can now perform
GMM estimation to deal with arbitrary departures from independence of the errors (e.g., serial
correlation), both in conjunction with the heteroskedasticity–robust (“White”) component and in
stand–alone form. The former capability allows ivreg2 to efficiently estimate models with HAC
(heteroskedasticity– and autocorrelation–consistent) standard errors, and for the specification of
the kernel from a list of eight choices (with Bartlett, à la Newey–West, as default).

3.3 Unit root tests

3.3.1 dfgls

The “DF–GLS” (Dickey–Fuller Generalised Least Squares) approach of Elliott, Rothenberg, Stock
is preferred by many time series econometricians to the “first–generation”, more widely known
tests of Dickey and Fuller (dfuller) or Phillips and Perron (pperron). Inferences drawn from the
DF–GLS test are likely to be more robust than those based on the first–generation tests.

3.3.2 kpss and other fractional integration tests

In contrast, the KPSS (Kwiatkowski, Phillips, Schmidt and Shin, 1992) test utilizes the (perhaps
more natural) null hypothesis of stationarity, or I(0), rather than the Dickey–Fuller style null
hypothesis of I(1) or nonstationarity in levels (difference stationarity). The KPSS test (command
kpss) is also often used (in conjunction with, e.g., dfgls) to detect “long memory” or fractional
integration: a non–integer value of the integration parameter which implies that the series is neither
I(0) nor I(1), but I(d), 0 < d < 1. A number of other user–written routines examine this prospect
for single (and in some cases multiple) time series: e.g., gphudak, modlpr and roblpr (Baum and
Wiggins, 2000b).

3.3.3 Tests allowing for structural change

A well–known weakness of the “Dickey–Fuller” style unit root test, with I(1) as a null hypothesis,
is their potential confusion of structural breaks in the series as evidence of nonstationarity. Many
econometricians have attempted to deal with this confusion by devising unit root tests that allow

6

for some sort of structural instability in an otherwise deterministic model. One test of this nature,
devised by Zivot and Andrews (1992), allows for a single structural break in the intercept and/or
the trend of the series, as determined by a grid search over possible breakpoints, and then conducts
a Dickey–Fuller style unit root test conditional on the series inclusive of the estimated optimal
break(s). I have made the zandrews test, translated from RATS code, available in Stata.

One obvious weakness of the Zivot–Andrews strategy, as well as similar tests proposed by Perron
and Vogelsang (1992), is their inability to deal with more than one break in a time series. Clemente,
Montañés and Reyes (1998) proposed tests that would allow for two events within the observed
history of a time series: either additive outliers (the AO model, which captures a sudden change
in a series) or innovational outliers (the IO model, allowing for a gradual shift in the mean of the
series). This taxonomy of structural breaks follows from Perron and Vogelsang’s work (1992), but
in this paper those authors dealt with series including a single AO or IO event. The single–break
additive outlier model may be written as (Baum, Barkoulas and Caglayan (1999)):

yt = δDTbt + yt−1 + wt

with DTbt = 1 for t = Tb + 1 and 0 otherwise, under the null hypothesis of a unit root. Tb is the
breakpoint, to be located by grid search. Under the alternative hypothesis,

yt = c + δDUt + vt

where DUt = 1 for t > Tb and 0 otherwise. This specification nests the null hypothesis in the case
that the distribution of vt may be factored into a unit root and a stationary ARMA process. The
testing strategy is then to estimate the regression

yt = µ + δDUt + ỹt

the residuals of which are then regressed on their lagged values, a number of lagged differences and
a set of dummy variables needed to make the distribution of the test statistic tractable:

ỹt =
k∑

i=1

ωiDTbt−i + α ˜yt−i +
k∑

i=1

θi∆ ˜yt−i + et

The coefficient on the lagged value is analogous to the Augmented Dickey–Fuller coefficient, and
will be significantly less than unity if the null may be rejected.

The equivalent model for the innovational outlier (gradual change) model expresses the shock (the
effect of δ above) as having the same ARMA representation as other shocks to the model, leading
to the formulation

yt = µ + δDUt + φDTbt + αyt−1 +
k∑

i=1

θi∆yt−i + et

where again an α coefficient significantly less than unity will provide evidence against the I(1) null
hypothesis.

In each of these models, the breakpoint Tb and the appropriate lag order k are unknown. Tb is
located via a grid search, while k is determined by a set of sequential F–tests. These models are
the Perron–Vogelsang single–break forms of the AO and IO schemes; they have been generalized

7

by Clemente et al. to double breaks by introducing DU1t and DU2t, which by analogy are defined
as step functions for two breakpoints, Tb1 and Tb2.

I have constructed a draft set of Stata routines (clemao1, clemao2, clemio1, clemio2) that
implement the AO and IO models for one and two structural breaks.

It might be very useful to compare results from dfuller with those forthcoming from the clem...
routines; if the latter routines provide evidence of significant additive or innovational outliers in
the time series, then results derived from dfgls are placed in doubt, since this is evidence that the
ADF model is clearly misspecified by the omission of relevant explanatory variables.

3.4 Calculating statistics from moving–window samples

A natural concern in the presence of structural change might be the degree to which descriptive
statistics of a particular series are time–dependent. Covariance stationarity of a time series requires,
in simple terms, that the mean and variance of the series are time–invariant, and that the remaining
elements of the autocovariance function of the time series are also constant over time. A broader
notion of stationarity requires that the entire distribution function is time–invariant: e.g., the
degree of skewness or kurtosis present in the series should also be fixed over time. Although Stata
contains a command to compute statistics for subsamples—tabstat—it cannot be coerced to deal
with overlapping subsamples. That is, tabstat works like any Stata command prefixed with by:,
so that if one defines each twelve months of a monthly series as one element of a by–group, tabstat
will handle the task of computing annual statistics very nicely. But it will not deal with computing
statistics from a sequence of by–groups that are formed by a “moving window” with, e.g., eleven
months overlap. The mvsumm routine of Baum and Cox deals with this task. It will compute any
of the univariate statistics available from summ, detail and generate a time series containing that
statistic over the defined time series sample (requiring prior use of tsset). One may specify the
window width (the number of periods included in the statistic’s computation) as an option, as
well as the alignment of the resulting statistic with the original series. This routine is especially
handy for many tasks in financial research, in which some measure of recent performance–the
average share price over the last twelve months, or the standard deviation (volatility) of the share
price over that interval–is often needed as a regressor. As an ilustration of Stata’s programming
flexibility, the mvsumm routine will automatically operate separately on each time series of a panel
if it detects that a panel calendar has been established by tsset. That added flexibility was very
readily incorporated in its logic.

As useful as mvsumm might be, like the underlying summarize it will only handle a single time–series.
I was recently contacted by an IMF researcher who wondered how a moving correlation might be
generated. After only a small amount of head–scratching it became apparent to me that this could
be provided by a trivial set of modifications to mvsumm, producing mvcorr. This routine, using
largely identical syntax, allows one to compute a moving–window correlation between two series.
Why might this be useful? Well, in finance, the computation of an optimal hedge ratio involves the
computation of just such a correlation: for instance, between spot and futures prices of a particular
commodity. And since mvcorr requires tsset, and thus supports time–series operators, it will allow
the computation of moving autocorrelations: e.g., mvcorr invest L.invest, win(5) gen(acf)
end will specify that the first sample autocorrelation of an investment series should be computed

8

from a five–period window, aligned with the last period of the window (via option end) and placed
in the new variable acf.

3.5 Moving–window regression estimates

As a last topic, I would like to discuss some work in progress: the creation of a time–series routine,
sorely lacking from Stata, that would compute moving–window regression estimates. Parallel to the
rationale for mvsumm, one may indeed compute regression estimates for non–overlapping subsamples
via official Stata’s statsby; but that command is not really capable of dealing with overlapping
subsamples, as that would correspond to the same observation being a member of several by–groups.

The challenge in devising such a routine is not in the necessary computations, nor even in the
programming: it lies in providing a user interface that will allow the researcher to specify, in some
comprehensible form, what she would like calculated for each crank of the window. That is, can we
define a command’s syntax so that it can be more or less intuitively employed by the Stata user,
and generate the statistics that one might wish to track as time series over the estimation sample?
I have made a stab at producing such a routine, as rollreg, with the logic borrowed heavily from
a RATS routine originally authored by Simon van Norden at the Bank of Canada.

A first concern with a moving–window estimation routine: how should the window be designed?
One simple scheme would mimic mvsumm, and allow for a window of fixed width that is to be passed
through the sample, one period at a time. (One could imagine something like a 12–month window
that is to be advanced to end–of–quarter months, but that could be achieved by merely discarding
the intermediate window estimates). But there are also applications in which an “expanding win-
dow” is desired: that is, starting with the first τ periods, compute a set of estimates that consider
observations 1 . . . (τ + 1), 1 . . . (τ + 2), and so on. This sort of window corresponds to the notion of
the information set available to an economic agent at a point in time (and to the scheme used to
generate instruments in a dynamic panel data model (cf. xtabond). Thus, our routine must have
that facility, and for completeness we also might want to allow for a window that takes into account
the last τ periods, and expands the window back toward the beginning of the sample. This sort of
moving–window estimate is useful in considering the usefulness of past information in generating,
e.g., an ex ante forecast, using a greater or lesser amount of that information in the computation.
So that must be included as well.

A further choice need be made: a moving–window regression will generate sequences of results
corresponding to each estimation period. From the design standpoint, should those sequences be
stored in columns of a matrix (which perhaps make them easier to present in tabular format)
or as additional variables in the current dataset (which perhaps make them easier to include in
computations, or in graphical presentations à la tsgraph or tsline)? The latter, on balance, seems
handier, despite the necessity to avoid namespace collisions with new variable names (and Stata
will ensure that any potential collisions are prevented).

Although I cannot present a full–fledged Stata command ready for distribution at this time, I have a
pre–beta version of rollreg which illustrates some of these features, and points to the potential of
having such a command readily available (through ssc) in the Stata environment. I will be working
further to develop this facility, and welcome suggestions on features and appropriate syntax that

9

would make a moving–window regression estimator most useful. (There is also no reason to confine
such a facility to regress, of course, and one possible extension would be to make rollreg (or
perhaps rollest) usable with a variety of estimation commands).

References

[1] Andrews, Donald and Eric Zivot, 1992. Further evidence on the Great Crash, the oil price
shock, and the unit-root hypothesis. Journal of Business and Economic Statistics 10, 251–70.

[2] Baum, Christopher F., Barkoulas, John T. and Mustafa Caglayan, 1999. Long memory or
structural breaks: Can either explain nonstationary exchange rates under the current float?
Journal of International Financial Markets, Institutions and Money, 9, 359–76. Available as
Boston College Economics Working Paper No. 380, http://fmwww.bc.edu/ec-p/wp380.pdf.

[3] Baum, Christopher F., 2000. Tests for stationarity of a time series. Stata Technical Bulletin
57, sts15.

[4] Baum, Christopher F., 2004. A review of Stata 8.1 and its time series capabilities. International
Journal of Forecasting, 20, 151–161. Available as Boston College Economics Working Paper
No. 581, http://fmwww.bc.edu/ec-p/wp581.pdf.

[5] Baum, Christopher F., Mark E. Schaffer, and Steven Stillman, 2003. Instrumental variables and
GMM: Estimation and testing. Stata Journal, 3, 1–31. Available as Boston College Economics
Working Paper No. 545, http://fmwww.bc.edu/ec-p/wp545.pdf.

[6] Baum, Christopher F. and Richard Sperling, 2000. Tests for stationarity of a time series. Stata
Technical Bulletin 58, sts15.1.

[7] Baum, Christopher F. and Vince Wiggins, 2000a. Tests for long memory in a time series. Stata
Technical Bulletin 57, sts16.

[8] Baum, Christopher F. and Vince Wiggins, 2000b. Utility for time series data. Stata Technical
Bulletin 57, dm81.

[9] Clemente, J., Montañés, A. and M. Reyes, 1998. Testing for a unit root in variables with a
double change in the mean. Economics Letters 59, 175–182.

[10] Kwiatkowski, D., Phillips, P.C.B., Schmidt, P. and Y. Shin, 1992. Testing the null hypothesis
of stationarity against the alternative of a unit root: How sure are we that economic time
series have a unit root? Journal of Econometrics, 54, 159-178.

[11] Perron, Pierre and Tim Vogelsang, 1992. Nonstationarity and level shifts with an application
to purchasing power parity. Journal of Business and Economic Statistics 10, 301–20.

10

