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Introduction
 The Least Square Dummy Variable (LSDV) estimator for dynamic

panel data models is not consistent for N large and finite T.
 Nickell (1981) derives an expression for the inconsistency for N → ,

which is OT−1 .
 IV-GMM estimators: Anderson-Hsiao (1982); Arellano-Bond (1991);

Blundell-Bond (1998)
 Kiviet (1995) uses asymptotic expansion techniques to approximate

the small sample bias of the LSDV estimator to also include terms of
at most order N−1T−1, so offering a method to correct the LSDV
estimator for samples where N is small or only moderately large.

 In Kiviet (1999) the bias approximation is more accurate, including
also terms of at most order N−1T−2. Bun and Kiviet (2003) analyze the
accuracy of Kiviet’s (1999) approximation using simpler formulas.

 Monte Carlo evidence in Judson and Owen (1999) strongly supports
the corrected LSDV estimator (LSDVC) compared to more traditional



GMM estimators when N is only moderately large. However “a
method for implementing LSDVC for an unbalanced panel has not yet
been implemented”

 Bruno (2004) extends the bias approximation formulas in Bun and
Kiviet (2003) to accommodate unbalanced panels with a strictly
exogenous selection rule, and carry out Monte Carlo experiments to
assess how unbalancedness affects the LSDV bias and the bias
approximations of various order.

 For this talk, I have gone a step forward, implementing a Stata code
for the LSDVC estimator. Its performance has been evaluated via
Monte Carlo experiments.

Bias approximations
Consider the standard autoregressive panel data model

yit  yi,t−1  xit
′    i   it, i  1, . . . ,N and t  1, . . . ,T.

where yit is the dependent variable; xit is the k − 1  1 vector of
strictly exogenous explanatory variables;  i is an unobserved



individual effect; and  it is an unobserved white noise disturbance.
Collecting observations over time and across individuals gives

y  D  W  ,
y is the NT  1 vector of obs. for the dependent variable;

D  IN ⊗ T is the NT  N matrix of individual dummies, with T
being the T  1 vector of all unity elements;

 is the N  1 vector of individual effects;

W  y−1X is the NT  k matrix of explanatory variables;

y−1 is y lagged one time;

X is the NT  k − 1 matrix of strictly exogenous explanatory
variables;

 is the NT  1 vector of white noise disturbances;

   ′  ′ is the k  1 vector of coefficients.

Kiviet (1995) obtains a bias approximation that contains terms of



higher order than T−1. In Kiviet (1999) a more accurate bias
approximation is derived. Bun and Kiviet (2003) reformulate the
approximation in Kiviet (1999) with simpler formulas for each term.

In Bruno (2004) I extend the autoregressive model to allow missing
observations. Define a selection indicator rit such that rit  1 if
yit,xit  is observed and rit  0 otherwise.

From this define the dynamic selection rule srit, ri,t−1  selecting only
the obs. for which both current values and one-time lagged values
are observable:

sit 
1 if ri,t, ri,t−1   1,1

0 otherwise
, i  1, . . . ,N and t  1, . . . ,T

For any i the number of usable observations is given by
Ti ∑

t1

T
sit .



The total number of usable observations is given by n ∑
i1

N
Ti,

T  n/N denotes the average group size.

The unbalanced dynamic model can then be written as
sityit  sityi,t−1  xit

′    i   it , i  1, . . . ,N and t  1, . . . ,T

To formulate this in matrix form,
 for each i define the T  1-vector si  si1. . . , siT  ′ and the T  T

diagonal matrix Si having the vector si on its diagonal; and
 define the NT  NT block-diagonal matrix S  diagSi .

Thus,

Sy  SD  SW  S.
The LSDV estimator is:

LSDV  W ′AsW−1W ′Asy,

where



As  S I − DD ′SD−1D ′ S

is the symmetric and idempotent NT  NT matrix wiping out
individual means and also selecting usable observations.

Considering all expectations below as conditional on X,S,,yt0 , the
LSDV bias is given by

ELSDV −   E W ′AsW−1W ′As .

If S is strictly exogenous, the same approach as in Kiviet (1995) and
(1999) can be followed to derive the bias approximations. These will
differ from the approximation formulas in Bun and Kiviet (2003) only
for As replacing the within operator:



c1 T
−1  2trq1;

c2 N−1 T
−1  −2

QW ′AsW  tr QW ′AsW Ik1 

22q11tr′Ik1 q1;

c3 N−1 T
−2  4tr 2q11QW ′′Wq1 

q1
′ W ′′Wq1  q11tr QW ′′W 

2tr′′q11
2 q1 ;

where Q  EW ′AsW−1  W ′AsW  2tr′e1e1
′ −1

; W  EW;
e1  1,0, . . . , 0 ′ is a k  1 vector; q1  Qe1; q11  e1

′ q1; LT is the
T  T matrix with unit first lower subdiagonal and all other elements
equal to zero;L  IN ⊗ LT; ΓT  IT − LT−1; Γ  IN ⊗ ΓT; and
  AsLΓ.



The following three possible bias approximations emerge

B1  c1 T
−1 ; B2  B1  c2 N−1 T

−1 ; B3  B2  c3 N−1 T
−2 .

The Stata program calculating the LSDVC estimator:
xtlsdvc
 The LSDV estimator may be corrected by subtracting the bias terms

from it.
 The foregoing bias approximations, however, depend on the unknown

population parameters  and 2.
 To make correction feasible, estimates from a consistent estimator

should replace  and 2 into the bias apprximation terms.
 Three natural options for the initial consistent estimator are:

Anderson-Hsiao (ah); Arellano-Bond (ab); and the Blundell-Bond
system estimator (bb)

There is a different corrected estimator for each order of bias
approximation and choice of initial estimator:



LSDVCi
j  LSDV − Bi

j
, i  1,2,3, j  ah, ab, bb.

LSDVCi
j is implemented by my Stata code -xtlsdvc-, for the three

levels of approximation accuracy and with three alternative initial
estimators: Anderson-Hsiao (option: initial(ah)); Arellano-Bond
(option: initial(ab)); Blundell-Bond, through David Doorman’s Stata
routine -xtabond2- (option: initial(bb)).
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help for xtlsdvc

 Corrected LSDV dynamic panel data estimator

        xtlsdvc depvar [varlist] [if exp] [in range] , initial(estimator) [bias(#)
                lsdv first]

    where estimator is

            ah                  Anderson−Hsiao
            ab                  Arellano−Bond
            bb                  Blundell−Bond

Options

    initial(estimator) specifies which consistent estimator among Anderson−Hsiao
        (ah), Arellano−Bond (ab), and Blundell−Bond (bb) is to initialize the bias
        correction.

    bias(#) determines the accuracy of the approximation:  up to O(1/T) (1); up to
        O(1/NT) (2); up to O(1/NT^2) (3).

    first requests that the first−stage regression results be displayed.

    lsdv requests that the lsdv regression results be displayed.



Monte Carlo Experiments
We follow Kiviet (1995) and Bun and Kiviet (2003), with the
difference that a strictly exogenous selection rule is included. Data
for yit are generated by the autoregressive model with k  2 and for
xit by

xit  xi,t−1   it,  it  N0,2 , i  1, . . . ,N and t  1, . . . ,T

Initial observations yi0 and xi0 are generated following a procedure
that avoids the waste of random numbers and small sample
non-stationary problems (see Kiviet (1986)) and are kept fixed
across replications. The long-run coefficient /1 −  is always kept
fixed to unity, so   1 − ; 2 is normalized to unity;  and 
alternate between 0.2 and 0.8 and the signal to noise ratio s

2

alternates between 2 and 9.

Two different sample sizes are considered, N, T   20,20 and
N, T   10,40. Then, following Baltagi and Chang (1994), I control



for the extent of unbalancedness as measured by the Ahrens and
Pincus (1981) index:

  N
T∑

i1
N 1/Ti 

with 0   ≤ 1 (  1 when the panel is balanced). For each sample
size I analyze a case of mild unbalancedness (  0.96) and a case
of severe unbalancedness (  0.32). My Stata code -xtdes2-
calculates  (along with T and Ti) for the relevant estimation
sample.

The details of the four panel designs are summarized in Table 1.



Table 1

Panel designs

N T T Ti ω

20 20 24 16 (i ≤ 10), 24 (i > 10) 0.96
36 4 (i ≤ 10), 36 (i > 10) 0.32

10 40 48 32 (i ≤ 5), 48 (i > 5) 0.96
72 8 (i ≤ 5), 72 (i > 5) 0.32

15



To carry out the Monte Carlo experiments and calculate the
theoretical bias approximations I have developed do files that
generates the data according to the DGP described above.

Table 2 presents the results of my simulations for the bias
approximations. Columns 1 to 5 show the various parametrizations
for each panel design. Columns 6 and 10 show the actual LSDV
biases for  and , respectively, as estimated by 20000 Monte Carlo
replications. The bias for both  and  is decreasing in T .
Interestingly, the bias for  is also decreasing in the degree of
unbalancedness for given sample size.

Columns 7 to 9 and 11 to 13 in Table 2 present bias approximations
for  and , respectively. Regardless of the degree of
unabalancedness, they are accurate, with higher order terms being
equal to the true bias in a vast majority of cases. In addition, as it
happens for the balanced designs studied by Bun and Kiviet (2003),
the leading term of the approximations already accounts, on



average, for 90% of the true bias.



Table 2

Actual LSDV bias and bias approximations for unbalanced panels

σ2s T γ ρ ω Bias γ B1,γ B2,γ B3,γ Bias β B1,β B2,β B3,β

2 20 0.2 0.2 0.96 -0.021 -0.020 -0.021 -0.021 0.002 0.002 0.002 0.002

0.36 -0.019 -0.018 -0.018 -0.018 0.003 0.003 0.003 0.003

0.8 0.96 -0.038 -0.036 -0.038 -0.038 0.026 0.024 0.025 0.025

0.36 -0.034 -0.032 -0.034 -0.034 0.024 0.022 0.023 0.024

0.8 0.2 0.96 -0.102 -0.098 -0.100 -0.102 0.003 0.002 0.003 0.003

0.36 -0.072 -0.067 -0.070 -0.072 0.001 0.001 0.001 0.001

0.8 0.96 -0.108 -0.101 -0.105 -0.108 0.022 0.021 0.022 0.022

0.36 -0.076 -0.069 -0.074 -0.076 0.020 0.018 0.020 0.020

40 0.2 0.2 0.96 -0.011 -0.010 -0.011 -0.011 0.002 0.001 0.001 0.001

0.36 -0.011 -0.010 -0.010 -0.010 0.002 0.002 0.002 0.002

0.8 0.96 -0.020 -0.018 -0.019 -0.020 0.014 0.012 0.013 0.013

0.36 -0.019 -0.017 -0.018 -0.019 0.014 0.012 0.014 0.014

0.8 0.2 0.96 -0.051 -0.046 -0.050 -0.051 0.001 0.001 0.001 0.001

0.36 -0.040 -0.036 -0.039 -0.040 0.001 0.000 0.001 0.001

0.8 0.96 -0.054 -0.048 -0.052 -0.054 0.015 0.013 0.015 0.015

0.36 -0.043 -0.036 -0.042 -0.043 0.011 0.010 0.012 0.012

σ2s T γ ρ ω Bias γ B1,γ B2,γ B3,γ Bias β B1,β B2,β B3,β

9 20 0.2 0.2 0.96 -0.004 -0.004 -0.004 -0.004 0.000 0.000 0.000 0.000

0.36 -0.004 -0.004 -0.004 -0.004 0.001 0.001 0.001 0.001

0.8 0.96 -0.013 -0.012 -0.013 -0.013 0.009 0.009 0.009 0.009

0.36 -0.012 -0.011 -0.012 -0.012 0.009 0.008 0.009 0.009

0.8 0.2 0.96 -0.006 -0.006 -0.006 -0.006 0.000 0.000 0.000 0.000

0.36 -0.004 -0.004 -0.004 -0.004 0.000 0.000 0.000 0.000

0.8 0.96 -0.034 -0.032 -0.033 -0.033 0.012 0.011 0.012 0.012

0.36 -0.019 -0.017 -0.019 -0.019 0.008 0.007 0.008 0.008

40 0.2 0.2 0.96 -0.003 -0.003 -0.003 -0.003 0.000 0.000 0.000 0.000

0.36 -0.003 -0.002 -0.002 -0.002 0.000 0.000 0.000 0.000

0.8 0.96 -0.008 -0.007 -0.008 -0.008 0.006 0.005 0.005 0.005

0.36 -0.007 -0.006 -0.007 -0.007 0.005 0.005 0.005 0.005

0.8 0.2 0.96 -0.007 -0.007 -0.007 -0.007 0.000 0.000 0.000 0.000

0.36 -0.004 -0.003 -0.004 -0.004 0.000 0.000 0.000 0.000

0.8 0.96 -0.020 -0.018 -0.020 -0.020 0.007 0.005 0.006 0.006

0.36 -0.014 -0.012 -0.013 -0.014 0.006 0.005 0.006 0.006

16



Monte Carlo experiments have been also carried out to compare the
performance of the LSDVC estimator (initialised by AH) against
Anderson-Hsiao, Arellano-Bond and the LSDV estimators. There
are the following results:

1) LSDVC estimators and AH have smaller bias than AB and LSDV,
with LSDVC3 performing slightly better than LSDVC1 and LSDVC2;

2) The LSDVC estimators have always the smallest RMSE (with
almost no difference among the three versions);

3) Similarly to what found for the LSDV estimator (Bruno 2004), the
AB bias for  is always negative, and it is increasing in absolute
value from severe unbalancedness to mild unbalancedness for
given sample size.



Conclusion
Based on the bias approximation formulas for the LSDV estimator, a
corrected LSDV estimator suitable for unbalanced panels has been
obtained and implemented through my Stata routine -xtlsdvc-.

Monte Carlo experiments show that the LSDVC estimator, in small
samples, outperforms consistent IV-GMM estimators such as
Anderson-Hsiao and Arellano-Bond. This occurs in terms of both
bias and RMSE and regardless of the degree of unbalancedness.
These results confirms the findings by Judson and Owen (1999).



Limits:

1) strict exogeneity of S and X;

2) white noise disturbances;

3) analytical standard errors for the LSDVC estimator break down
quite often. Solution: bootstrap.
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