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1 Interpretation

Biplots show the following quantities of a data matrix in one
display:

• the variance-covariance structure of the variables

• the values of observations on variables

• the euclidean distances between observations in the
multidimensional space

They are helpful to reveal clustering, multicollinearity and
multivariate outliers of a dataset, and they can be also used to
guide the interpretation of principal component analyses (PCA).
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Figure 1: GH-Biplot of planets.dta (Hamilton, 1992, 268)
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Figure 2: JK-Biplot of auto.dta
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2 The Math

Calculation of Coordinates

Let

Y = ULV′ ,

be the singular value decomposition (SVD) of the matrix Y, which
holds the data. From this SVD the coordinates of the observations
and variables are calculated by

G = ULc and (1)

H′ = L1−cV′ , (2)

whereby c = (0, 1).
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Selection of Dimensions

The coordinates in G and H have k dimensions. To plot these
coordinates in a two dimensional space, one has to select two of
them. Usually this is done by choosing the columns of G and H,
which correspondent to the highest Eigenvalues in L.

Using less than k dimensions lead to a loss of information, so that

GH′ = ULcL1−cV′ = ULV′ = Y (3)

will only hold approximately. To indicate the quality of the
approximation, the default axis-titles of biplot mention the
amount of explained variances by the selected dimensions. Unless
the sum of these explained variances is sufficiently large, “the
interpretation of the plot is suspect” (Jackson, 1991, 199)
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Biplot-Types

Choosing a value for c define different types of biplots:

• c = 0, the GH-, or column-metric preserving biplot optimally
approximates the variance-covariance-structure.

• c = 1, the JK-, or row-metric preserving biplot optimally
approximates the euclidean distances.

• c = .5 the SQ-, or symmetric biplot, optimally approximates
the observational values.
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3 Computational Issues

Maximum Numbers of Observations

The Stata-command to calculate a singular value decomposition

. matrix svd U L V = Y

requires that the dataset is stored in a matrix. This restricts the
maximum number of observations to be used on 800 in Intercooled
Stata and 11000 in Stata/SE.

For the JK-biplot (c = 1) the restriction can be circumvented, since
G and H are equal to the scores and coefficients of a PCA. The
JK-biplot is therefore calculated from a PCA, bypassing the SVD.
Hence, there is no restriction for the maximum numbers of
observations for the JK-biplot.
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Calculation of other Biplots without a SVD?

The JK-biplot can be transformed into the GH-biplot with

GGH = GJKL−1 (4)

H′
GH = LH′

JK . (5)

However, the SVD of Y is needed to obtain L.

The Eigenvalues (LJK) of a PCA can be transformed into L with:

L = U′YSS−1USLJK , (6)

where S is the covariance-matrix of the data, and US are the
PCA-coefficients. However this requires the SVD of Y, to obtain U
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The Practical View

It might be worthwhile for StataCorp to program the calculation of
the Eigenvalues from the dataset, without storing the dataset in a
matrix beforehand. In this case, at least the GH-biplot could be
easily derived from a PCA with (4) and (5).

However, one should keep in mind that the interpretation of the
biplot will be suspect, if the variance explained by the dimensions
of the biplot are small. Small explained variances are common for
datasets with many observations. In so far, the biplot has its
strength mainly for datasets with small to moderate number of
observations.
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4 The biplot command

Syntax

biplot varlist
[
weight

] [
if exp

] [
in range

] [
,[

jk|sq|gh|mixed(jk|sq|gh jk|sq|gh)
]
covariance

mahalanobis rv obsonly varonly dimensions(##)

subpop(varname
[
, scatter options

]
) stretch(#)

flip(x|y|xy) scatter options line options

twoway options
]
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Default-Setting

Invoking the command biplot with a varlist and no other options
brings up a JK-biplot, which superimposes two of the most often
described plots for principal component analysis: the component
score plot and the plot of PCA-coefficients (loadings).

. biplot sepallen-petalwid
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Figure 3: The standard JK-Biplot of iris.dta
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Biplots and common Plots for the PCA

It is possible to use biplot to produce the common PCA plots.

. biplot sepallen-petalwid, stretch(1) varonly

. biplot sepallen-petalwid, obsonly

Note: To interpret the square of the plotted PCA-coefficients, it is
necessary to “stretch” the variable-lines to their original length.
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Figure 4: Plot of PCA-coefficients and Component Score Plot
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Controlling Dimensions

By default the coordinates which refer to the two highest
Eigenvalues are selected for the plot. The option dimensions(##)

allows to change this. This is useful for JK-biplots, since one might
be interested in a display of the PCA-coefficients for arbitrary
principal components. Moreover, the component score plot in the
space of the two last principal components show a special kind of
outlier (Gnanadesikan, 1977, 261).

. biplot sepallen-petalwid, dim(3 4)
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Figure 5: JK-Biplot in the space of the last two principal components
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Biplot Types

The JK, GH- and the SQ-biplot can be displayed by using the
options jk, gh or sq respectively. It is possible in any case to
calculate the coordinates from a standardized or a
non-standardized data-matrix. Standardization is the default,
which is why the variable-lines tend to have the same length. To
get length for the variable-lines according to variances of the
variables the option covariance has to be used.

. biplot sepallen-petalwid, gh cov

. biplot sepallen-petalwid, gh

Slide 20

'

&

$

%

sepallensepalwid

petallenpetalwid

−
.2

−
.1

0
.1

.2

−.2 −.1 0 .1 .2

D
IM

 2
 (

5 
%

 o
f V

ar
)

DIM 1 (92 % of Var)

sepallen

sepalwid

petallenpetalwid

−
.2

−
.1

0
.1

.2

−.2 −.1 0 .1 .2

D
IM

 2
 (

23
 %

 o
f V

ar
)

DIM 1 (73 % of Var)

Figure 6: GH-Biplot for Unstandardized and Standardized Data
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The mixed()-option

Biplot-types differ in the quality of their approximations of the
key-quantities shown in a biplot. It seems therefore straightforward
to mix the different biplot-types. Gabriel (2002), for example,
proposed a “correspondence analysis” which uses the coordinates of
a GH-biplot for the variables and the coordinates of a JK-biplot for
the observations. Such mixed biplots can be produced with the
option mixed().

. biplot sepallen-petalwid, mixed(jk gh)
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Figure 7: Gabriel’s Correspondence Analysis

Biplots, revisited 12

Slide 23

'

&

$

%

Other variants

• Option rv for biplots for compositional data (Aitchison, 1990).

• Option mahalanobis rescales GH-biplot to reflect mahalanobis
distances.
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Options to control the graph appearance

scatter options allow up to two arguments, whereby the first
argument refers to the observations (the dots) and the second refers
to the points at the end of the variable-lines (which are invisible by
default). The line options refer to the variable lines.

The option subpop() is used to distinguish observations from
different subgroups.

. biplot sepallen-petalwid, subpop(species, msymbol(Oh X Th)) legend(ring(0) po

> s(4))

Note: The scatter options for the observations are ignored if you
specify subpop(). However one can use the complete set of
scatter options as sub-option within subpop() to control the
appearance of the observations.
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Figure 8: Illustrative example of representation options
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