

1 Interpretation

Biplots show the following quantities of a data matrix in one display:

- the variance-covariance structure of the variables
- the values of observations on variables
- the euclidean distances between observations in the multidimensional space

They are helpful to reveal clustering, multicollinearity and multivariate outliers of a dataset, and they can be also used to guide the interpretation of principal component analyses (PCA).

Figure 1: GH-Biplot of planets.dta Hamilton 1992, 268)

Slide 5

Figure 2: JK-Biplot of auto.dta

2 The Math

Calculation of Coordinates

Let

$$
\mathbf{Y}=\mathbf{U L V}^{\prime},
$$

Slide 6
be the singular value decomposition (SVD) of the matrix \mathbf{Y}, which holds the data. From this SVD the coordinates of the observations and variables are calculated by

$$
\begin{align*}
\mathbf{G} & =\mathbf{U L}^{c} \quad \text { and } \tag{1}\\
\mathbf{H}^{\prime} & =\mathbf{L}^{1-c} \mathbf{V}^{\prime}, \tag{2}
\end{align*}
$$

whereby $c=(0,1)$.

Selection of Dimensions

The coordinates in \mathbf{G} and \mathbf{H} have k dimensions. To plot these coordinates in a two dimensional space, one has to select two of them. Usually this is done by choosing the columns of \mathbf{G} and \mathbf{H}, which correspondent to the highest Eigenvalues in \mathbf{L}.

Using less than k dimensions lead to a loss of information, so that

$$
\mathbf{G H}^{\prime}=\mathbf{U L}^{c} \mathbf{L}^{1-c} \mathbf{V}^{\prime}=\mathbf{U L V}^{\prime}=\mathbf{Y}
$$

will only hold approximately. To indicate the quality of the approximation, the default axis-titles of biplot mention the amount of explained variances by the selected dimensions. Unless the sum of these explained variances is sufficiently large, "the interpretation of the plot is suspect" (Jackson, 1991, 199)

Biplot-Types

Choosing a value for c define different types of biplots:

- $c=0$, the GH-, or column-metric preserving biplot optimally approximates the variance-covariance-structure.
- $c=1$, the JK-, or row-metric preserving biplot optimally approximates the euclidean distances.
- $c=.5$ the SQ-, or symmetric biplot, optimally approximates the observational values.

3 Computational Issues

Maximum Numbers of Observations

The Stata-command to calculate a singular value decomposition . matrix svd U L V = Y
requires that the dataset is stored in a matrix. This restricts the maximum number of observations to be used on 800 in Intercooled Stata and 11000 in Stata/SE.

For the JK-biplot $(c=1)$ the restriction can be circumvented, since \mathbf{G} and \mathbf{H} are equal to the scores and coefficients of a PCA. The
JK-biplot is therefore calculated from a PCA, bypassing the SVD.
Hence, there is no restriction for the maximum numbers of observations for the JK-biplot.

Calculation of other Biplots without a SVD?

The JK-biplot can be transformed into the GH-biplot with

$$
\begin{align*}
\mathbf{G}_{\mathrm{GH}} & =\mathbf{G}_{\mathrm{JK}} \mathbf{L}^{-1} \tag{4}\\
\mathbf{H}_{\mathrm{GH}}^{\prime} & =\mathbf{L H}_{\mathrm{JK}}^{\prime} . \tag{5}
\end{align*}
$$

Slide 10

However, the SVD of \mathbf{Y} is needed to obtain \mathbf{L}.
The Eigenvalues $\left(\mathbf{L}_{\mathrm{JK}}\right)$ of a PCA can be transformed into \mathbf{L} with

$$
\begin{equation*}
\mathbf{L}=\mathbf{U}^{\prime} \mathbf{Y}_{\mathrm{S}} \mathbf{S}^{-1} \mathbf{U}_{\mathrm{S}} \mathbf{L}_{\mathrm{JK}} \tag{6}
\end{equation*}
$$

where \mathbf{S} is the covariance-matrix of the data, and \mathbf{U}_{S} are the PCA-coefficients. However this requires the SVD of \mathbf{Y}, to obtain \mathbf{U}

The Practical View

It might be worthwhile for StataCorp to program the calculation of the Eigenvalues from the dataset, without storing the dataset in a matrix beforehand. In this case, at least the GH-biplot could be easily derived from a PCA with (4) and (5).
However, one should keep in mind that the interpretation of the biplot will be suspect, if the variance explained by the dimensions of the biplot are small. Small explained variances are common for datasets with many observations. In so far, the biplot has its strength mainly for datasets with small to moderate number of observations.

4 The biplot command

Syntax

biplot varlist [weight] [if exp] [in range] [,
[jk|sq|gh|mixed(jk|sq|gh jk|sq|gh)] covariance mahalanobis rv obsonly varonly dimensions(\#\#) subpop(varname[, scatter_options]) stretch(\#)
flip(x|y|xy) scatter_options line_options twoway_options]

Slide 13
Invoking the command biplot with a varlist and no other options brings up a JK-biplot, which superimposes two of the most often described plots for principal component analysis: the component score plot and the plot of PCA-coefficients (loadings).
. biplot sepallen-petalwid

Figure 3: The standard JK-Biplot of iris.dta

Biplots and common Plots for the PCA
It is possible to use biplot to produce the common PCA plots.

Slide 15
biplot sepallen-petalwid, stretch(1) varonly
biplot sepallen-petalwid, obsonly

Note: To interpret the square of the plotted PCA-coefficients, it is necessary to "stretch" the variable-lines to their original length.

Figure 4: Plot of PCA-coefficients and Component Score Plot

Slide 17

Controlling Dimensions

By default the coordinates which refer to the two highest Eigenvalues are selected for the plot. The option dimensions (\#\#) allows to change this. This is useful for JK-biplots, since one might be interested in a display of the PCA-coefficients for arbitrary principal components. Moreover, the component score plot in the space of the two last principal components show a special kind of outlier (Gnanadesikan, 1977, 261).
. biplot sepallen-petalwid, $\operatorname{dim}(34)$

Figure 5: JK-Biplot in the space of the last two principal components

Biplot Types

The JK, GH- and the SQ-biplot can be displayed by using the options $j k$, gh or sq respectively. It is possible in any case to calculate the coordinates from a standardized or a
non-standardized data-matrix. Standardization is the default, which is why the variable-lines tend to have the same length. To get length for the variable-lines according to variances of the variables the option covariance has to be used.

```
biplot sepallen-petalwid, gh cov
```

biplot sepallen-petalwid, gh

Figure 6: GH-Biplot for Unstandardized and Standardized Data

The mixed()-option

Biplot-types differ in the quality of their approximations of the key-quantities shown in a biplot. It seems therefore straightforward to mix the different biplot-types. Gabriel (2002), for example, proposed a "correspondence analysis" which uses the coordinates of a GH-biplot for the variables and the coordinates of a JK-biplot for the observations. Such mixed biplots can be produced with the option mixed ().
. biplot sepallen-petalwid, mixed(jk gh)

Figure 7: Gabriel's Correspondence Analysis

Options to control the graph appearance

scatter_options allow up to two arguments, whereby the first argument refers to the observations (the dots) and the second refers to the points at the end of the variable-lines (which are invisible by default). The line_options refer to the variable lines.

The option subpop() is used to distinguish observations from different subgroups.
. biplot sepallen-petalwid, subpop(species, msymbol(Oh X Th)) legend(ring(0) po > $\mathrm{s}(4))$

Note: The scatter_options for the observations are ignored if you specify subpop(). However one can use the complete set of scatter_options as sub-option within subpop() to control the appearance of the observations.

Figure 8: Illustrative example of representation options

Jackson, J. E. 1991. A User's Guide to Principal Components. New York: Wiley.

Jolliffe, I. 2002. Principal Components Analysis. 2nd. Edition. New York and Heidelberg: Springer.

References

Aitchison, J. 1990. Relative Variation Diagrams for Describing Patterns of Compositional Variablity. Mathematical Geology 22: 487-512.

Blasius, J. and M. Greenacre. 1998. Visualization of Categorical Data. London: Academic Press.

Gabriel, K. 1971. The Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika 58(3): 453-467.
-. 2002. Goodness of Fit of Biplots and Correspondence Analysis. Biometrica 89(2): 423-436.

Gnanadesikan, R. 1977. Methods for Statistical Data Analysis of Multivariate Observations. New York: Wiley.

Gower, J. and D. Hand. 1996. Biplots. London: Chapman and Hall.
Hamilton, L. C. 1992. Regression with Graphics. A Second Course in Applied Statistics. Belmont: Duxburry Press.

