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THE LINEAR MIXED MODEL

Definition

y = Xβ + Zu + ε

where

y is the n × 1 vector of responses

X is the n × p fixed-effects design matrix

β are the fixed effects

Z is the n × q random-effects design matrix

u are the random effects

ε is the n × 1 vector of errors such that

[

u

ε

]

∼ N

(

0,

[

G 0

0 σ2
ε In

])

Random effects are not directly estimated, but instead charac-
terized by the elements of G, known as variance components

As such, you fit a mixed model by estimating β, σ2
ε , and the

variance components.



Panel representation

Classical representation has roots in the design literature, but
can make it hard to specify the right model

When the data can be thought of as M independent panels,
it is more convenient to express the mixed model as (for i =
1, ..., M)

yi = Xiβ + Ziui + εi

where ui ∼ N(0,S), for q × q variance S, and

Z =


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

Z1 0 · · · 0
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... ... . . . ...

0 0 0 ZM


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; u =





u1
...

uM



 ; G = IM ⊗ S

For example, take a random intercept model. In the classical
framework, the random intercepts are random coefficients on
indicator variables identifying each panel

It is better to just think at the panel level and consider M

realizations of a random intercept

This generalizes to more than one level of nested panels

Issue of terminology for multi-level models



ONE-LEVEL MODELS

Data on math scores

Consider the Junior School Project data which compares math
scores of various schools in the third and fifth years

Data on n = 887 pupils in M = 48 schools

Let’s fit the model

math5ij = β0 + β1math3ij + ui + εij

for i = 1, ..., 48 schools and j = 1, ..., ni pupils. ui is a random
effect (intercept) at the school level

. xtmixed math5 math3 || school:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -2770.5233
Iteration 1: log restricted-likelihood = -2770.5233

Computing standard errors:

Mixed-effects REML regression Number of obs = 887
Group variable: school Number of groups = 48

Obs per group: min = 5
avg = 18.5
max = 62

Wald chi2(1) = 347.21
Log restricted-likelihood = -2770.5233 Prob > chi2 = 0.0000

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .6088557 .0326751 18.63 0.000 .5448137 .6728978
_cons 30.36506 .3531615 85.98 0.000 29.67287 31.05724

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

school: Identity
sd(_cons) 2.038896 .3017985 1.525456 2.72515

sd(Residual) 5.306476 .1295751 5.058495 5.566614

LR test vs. linear regression: chibar2(01) = 57.59 Prob >= chibar2 = 0.0000

For the most part, this is the same as xtreg



Adding a random slope

Consider instead the model

math5ij = β0 + β1math3ij + u0i + u1imath3ij + εij

In essence, each school has its own random regression line such
that the intercept is N(β0, σ

2
0) and the slope on math3 is N(β1, σ

2
1)

. xtmixed math5 math3 || school: math3

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -2766.6463
Iteration 1: log restricted-likelihood = -2766.6442
Iteration 2: log restricted-likelihood = -2766.6442

Computing standard errors:

Mixed-effects REML regression Number of obs = 887
Group variable: school Number of groups = 48

Obs per group: min = 5
avg = 18.5
max = 62

Wald chi2(1) = 192.62
Log restricted-likelihood = -2766.6442 Prob > chi2 = 0.0000

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .6135888 .0442106 13.88 0.000 .5269377 .7002399
_cons 30.36542 .3596906 84.42 0.000 29.66044 31.0704

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

school: Independent
sd(math3) .1911842 .0509905 .113352 .3224593
sd(_cons) 2.073863 .3078237 1.550372 2.774112

sd(Residual) 5.203947 .1309477 4.953521 5.467034

LR test vs. linear regression: chi2(2) = 65.35 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

LR test is conservative. What does that mean?

lrtest can compare this model to the previous one



Predict

Random effects are not estimated, but they can be predicted
(BLUPs)

. predict r1 r0, reffects

. describe r*

storage display value
variable name type format label variable label

r1 float %9.0g BLUP r.e. for school: math3
r0 float %9.0g BLUP r.e. for school: _cons

. gen b0 = _b[_cons] + r0

. gen b1 = _b[math3] + r1

. bysort school: gen tolist = _n==1

. list school b0 b1 if school<=10 & tolist

school b0 b1

1. 1 27.52259 .5527437
26. 2 30.35573 .5036528
36. 3 31.49648 .5962557
44. 4 28.08686 .7505417
68. 5 30.29471 .5983001

93. 6 31.04652 .5532793
106. 7 31.93729 .6756551
116. 8 30.83009 .6885387
142. 9 27.90685 .6950143
163. 10 31.31212 .7024184

We could use these intercepts and slopes to plot the estimated
lines for each school. Equivalently, we could just plot the
“fitted” values

. predict math5hat, fitted

. sort school math3

. twoway connected math5hat math3 if school<=10, connect(L)
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Covariance structures

In our previous model, it was assumed that u0i and u1i are
independent. That is,

S =

[

σ2
0 0

0 σ2
1

]

What if we also wanted to estimate a covariance?
. xtmixed math5 math3 || school: math3, cov(unstructured) variance mle

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -2757.3228
Iteration 1: log likelihood = -2757.0812
Iteration 2: log likelihood = -2757.0803
Iteration 3: log likelihood = -2757.0803

Computing standard errors:

Mixed-effects ML regression Number of obs = 887
Group variable: school Number of groups = 48

Obs per group: min = 5
avg = 18.5
max = 62

Wald chi2(1) = 204.24
Log likelihood = -2757.0803 Prob > chi2 = 0.0000

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .6123977 .0428514 14.29 0.000 .5284104 .696385
_cons 30.34799 .374883 80.95 0.000 29.61323 31.08274

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

school: Unstructured
var(math3) .0343031 .0176068 .012544 .0938058
var(_cons) 4.872801 1.384916 2.791615 8.505537

cov(math3,_cons) -.3743092 .1273684 -.6239466 -.1246718

var(Residual) 26.96459 1.346082 24.45127 29.73624

LR test vs. linear regression: chi2(3) = 78.01 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

We also added options variance and mle to fully reproduce
the results found in the gllamm manual

Again, we can compare this model with previous using lrtest

Available covariance structures are Independent (default), Iden-
tity, Exchangeable, and Unstructured



ML or REML?

ML is based on standard normal theory

With REML, the likelihood is that of a set of linear constrasts
of y that do not depend on the fixed effects

REML variance components are less biased in small samples,
since they incorporate degrees of freedom used to estimated
fixed effects

REML estimates are unbiased in balanced data

LR tests are always valid with ML, not so with REML

Very much a matter of personal taste

The EM algorithm can be applied to maximize both ML and
REML criterions



TWO-LEVEL MODELS

Productivity Data

Baltagi et al. (2001) estimate a Cobb-Douglas production func-
tion examining the productivity of public capital in each state’s
private output.

For y equal to the log of the gross state product measured each
year from 1970-1986, the model is

yij = Xijβ + ui + vj(i) + εij

for j = 1, ..., Mi states nested within i = 1, ..., 9 regions. X

consists of various economic factors treated as fixed effects.

. xtmixed gsp private emp hwy water other unemp || region: || state:, nolog

Mixed-effects REML regression Number of obs = 816

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

region 9 51 90.7 136
state 48 17 17.0 17

Wald chi2(6) = 18382.39
Log restricted-likelihood = 1404.7101 Prob > chi2 = 0.0000

gsp Coef. Std. Err. z P>|z| [95% Conf. Interval]

private .2660308 .0215471 12.35 0.000 .2237993 .3082624
emp .7555059 .0264556 28.56 0.000 .7036539 .8073579
hwy .0718857 .0233478 3.08 0.002 .0261249 .1176464

water .0761552 .0139952 5.44 0.000 .0487251 .1035853
other -.1005396 .0170173 -5.91 0.000 -.1338929 -.0671862
unemp -.0058815 .0009093 -6.47 0.000 -.0076636 -.0040994
_cons 2.126995 .1574864 13.51 0.000 1.818327 2.435663

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Identity
sd(_cons) .0435471 .0186292 .0188287 .1007161

state: Identity
sd(_cons) .0802737 .0095512 .0635762 .1013567

sd(Residual) .0368008 .0009442 .034996 .0386987

LR test vs. linear regression: chi2(2) = 1162.40 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference



Constraints on variance components

We begin by adding some random coefficients at the region level
. xtmixed gsp private emp hwy water other unemp || region: hwy unemp || state:,
> nolog nogroup nofetable

Mixed-effects REML regression Number of obs = 816
Wald chi2(6) = 16803.51

Log restricted-likelihood = 1423.3455 Prob > chi2 = 0.0000

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Independent
sd(hwy) .0052752 .0108846 .0000925 .3009897

sd(unemp) .0052895 .001545 .002984 .0093764
sd(_cons) .0596008 .0758296 .0049235 .721487

state: Identity
sd(_cons) .0807543 .009887 .0635259 .1026551

sd(Residual) .0353932 .000914 .0336464 .0372307

LR test vs. linear regression: chi2(4) = 1199.67 Prob > chi2 = 0.0000

We can constrain the variance components on hwy and unemp

to be equal with

. xtmixed gsp private emp hwy water other unemp || region: hwy unemp,
> cov(identity) || region: || state:, nolog nogroup nofetable

Mixed-effects REML regression Number of obs = 816
Wald chi2(6) = 16803.41

Log restricted-likelihood = 1423.3455 Prob > chi2 = 0.0000

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Identity
sd(hwy unemp) .0052896 .0015446 .0029844 .0093752

region: Identity
sd(_cons) .0595029 .0318238 .0208589 .1697401

state: Identity
sd(_cons) .080752 .0097453 .0637425 .1023006

sd(Residual) .0353932 .0009139 .0336465 .0372306

LR test vs. linear regression: chi2(3) = 1199.67 Prob > chi2 = 0.0000

How does all this work? Blocked-diagonal covariance structures



FACTOR NOTATION

Motivation

Sometimes random effects are crossed rather than nested

Consider a dataset consisting of weight measurements on 48
pigs at each of 9 weeks. We wish to fit the following model

weightij = β0 + β1weekij + ui + vj + εij

for i = 1, ..., 48 pigs and j = 1, ..., 9 weeks

Note that the week random effects vj are not nested within
pigs, they are the same for each pig

One approach to fitting this model is to consider the data as
a whole and treat the random effects as random coefficients on
lots of indicator variables, that is

u =












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



u1
...

u48

v1
...

v9



















∼ N(0,G); G =

[

σ2
uI48 0

0 σ2
vI9

]



Fitting the model

Luckily there is a shorthand notation for this

. xtmixed weight week || _all: R.id || _all: R.week

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -1015.4214
Iteration 1: log restricted-likelihood = -1015.4214

Computing standard errors:

Mixed-effects REML regression Number of obs = 432
Group variable: _all Number of groups = 1

Obs per group: min = 432
avg = 432.0
max = 432

Wald chi2(1) = 11516.16
Log restricted-likelihood = -1015.4214 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0578669 107.31 0.000 6.096479 6.323313
_cons 19.35561 .6493996 29.81 0.000 18.08281 20.62841

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(R.id) 3.892648 .4141707 3.15994 4.795252

_all: Identity
sd(R.week) .3337581 .1611824 .1295268 .8600111

sd(Residual) 2.072917 .0755915 1.929931 2.226496

LR test vs. linear regression: chi2(2) = 476.10 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

all tells xtmixed to treat the whole data as one big panel

R.varname is the random-effects analog of xi. It creates an
(overparameterized) set of indicator variables, but unlike xi,
does this behind the scenes

When you use R.varname, covariance structure reverts to Iden-
tity.



Alternate ways to fit models

Consider

. xtmixed weight week || _all: R.id || week:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -1015.4214
Iteration 1: log restricted-likelihood = -1015.4214

Computing standard errors:

Mixed-effects REML regression Number of obs = 432

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 432 432.0 432
week 9 48 48.0 48

Wald chi2(1) = 11516.16
Log restricted-likelihood = -1015.4214 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0578669 107.31 0.000 6.096479 6.323313
_cons 19.35561 .6493996 29.81 0.000 18.08281 20.62841

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(R.id) 3.892648 .4141707 3.15994 4.795252

week: Identity
sd(_cons) .3337581 .1611824 .1295268 .8600112

sd(Residual) 2.072917 .0755915 1.929931 2.226496

LR test vs. linear regression: chi2(2) = 476.10 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference



or

. xtmixed weight week || _all: R.week || id:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -1015.4214
Iteration 1: log restricted-likelihood = -1015.4214

Computing standard errors:

Mixed-effects REML regression Number of obs = 432

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 432 432.0 432
id 48 9 9.0 9

Wald chi2(1) = 11516.16
Log restricted-likelihood = -1015.4214 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0578669 107.31 0.000 6.096479 6.323313
_cons 19.35561 .6493996 29.81 0.000 18.08281 20.62841

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(R.week) .3337581 .1611824 .1295268 .8600112

id: Identity
sd(_cons) 3.892648 .4141707 3.15994 4.795252

sd(Residual) 2.072917 .0755915 1.929931 2.226496

LR test vs. linear regression: chi2(2) = 476.10 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

Which is preferable? When it matters, the one with the smallest
“dimension”



A GLIMPSE AT THE FUTURE

You can welcome Stata to the game. We hope you like the
syntax and output

Correlated errors and heteroskedasticity

Exploiting matrix sparsity/very large problems

Factor variables

Degrees of freedom calculations

Generalized linear mixed models. Adding family() and link()
options to what we have here

Available as updates to Stata 9 or in a future version of Stata?
Too early to tell


