Estimation of ordinal response models, accounting for sample selection bias.

Alfonso Miranda

SOPHIA RABE-HESKETH

University of Keele

University of California, Berkeley

Correspondence to: A.Miranda@econ.keele.ac.uk

11th UK Stata Users Group meeting, May 2005.

Ordered responses

- A limited number of H response categories $y_h, h = 1, 2, ..., H$.
- Categories are ordered,

$$y_1 < y_2 < ... < y_H$$

- Some examples:
 - Health condition status (excellent, good, regular, bad).
 - Opinions of a candidate in an election (strongly support, neutral, strongly opposed).
 - Job satisfaction (highly satisfied, satisfied, not satisfied).

LATENT REGRESSION MODELS

• The observed response for individual i, y_i is determined by a latent continuous variable process,

$$y_i^* = \mathbf{x_i}' \boldsymbol{\beta} + u_i \tag{1}$$

• A threshold model determines the observed response:

• No constant is included in the covariate vector $\mathbf{x_i}$.

THE SAMPLE SELECTION PROBLEM

- the response variable is only observed if a particular condition (sel = 1) is met.
- A latent regression model for the selection variable is specified,

$$sel_i^* = \mathbf{z_i}' \boldsymbol{\gamma} + v_i, \tag{2}$$

where v_i is assumed to be normally distributed (z_i should include some variables not in x_i to secure identification).

- If $Cov(u_i, v_i) \neq 0$, using the observed sample of y and ordered Probit (ordered Logit) to estimate β will deliver biased estimators.
- This is known as the 'sample selection bias' problem (Heckman 1979).

The sample selection problem (Cont.)

• Notice that the correlation coefficient, ρ , is the only aspect of the covariance matrix that is identified. We impose therefore,

$$\Sigma = \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array} \right].$$

Example

• Health condition only available for respondents who exercise at least twice a week. If healthier people exercise more, estimating a model for health condition on the basis of the observed sample will clearly deliver biased estimates.

GENERALISED LINEAR LATENT AND MIXED MODELS

• May use GLLAMMs to estimate the sample selection ordinal variable regression. We can write the ordinal variable model as,

$$y_i \sim multinomial (1, \{\pi_{hi}, h = 1, ..., H\});$$
 $g_1(\gamma_{hi}) = \eta_{1hi} = \mathbf{x_i}'\boldsymbol{\beta} - \kappa_h + \lambda \varepsilon_i;$
 $h = 1, ..., H - 1.$

where

$$\gamma_{hi} = \sum_{s=h+1}^{H} \pi_{si} = Pr(y > h),$$

GLLAMMs (Cont. 1)

And the selection model as,

$$sel_i \sim binomial(1, \pi_i)$$

$$g_2(\pi_i) = \eta_{2i} = \mathbf{z_i}' \boldsymbol{\gamma} + \varepsilon_i$$

where $\varepsilon_i \sim N(0,1)$ is a latent variable representing unobserved heterogeneity and λ is a factor loading. This reparametrization reduces the dimensions of integration from 2 to 1.

A mixed response model

- Stack y_i and sel_i into a single variable q_{ji} , j = 1, 2.
- Viewing the ordinal variable j = 1 and the selection status j = 2 as clustered within individuals i, define the dummies $d_{1ji} = 1$ for the ordinal variable and $d_{2ji} = 1$ for the selection.

GLLAMMs (Cont. 2)

• Now we can define a mixed response model for q_{ji}

$$q_{ji} \sim \begin{cases} multinomial & \text{if } d_{1ji} = 1\\ binomial & \text{if } d_{2ji} = 1 \end{cases}$$

$$\eta_{jhi} = d_{1ji} \left[\mathbf{x_i'} \boldsymbol{\beta} - \kappa_h + \lambda \varepsilon_i \right] + d_{2ji} \left[\mathbf{z_i'} \boldsymbol{\gamma} + \varepsilon_i \right];$$

$$j = 1, 2, \quad h = 1, \dots, H - 1; \tag{3}$$

• g_1 can be either the ordered Probit or the ordered Logit link. We use always a Probit link for g_2 .

GLLAMMs (Cont. 3)

- Due to the increase in the residual variance in (3) we expect β to increase by a factor of $\sqrt{1+\lambda^2}$ if g_1 is oprobit or $\sqrt{\frac{\pi^2}{3}+\lambda^2}$ if g_1 is ologit.
- Similarly, we expect γ to increase by a factor of $\sqrt{2}$.
- Hence, after estimation β and γ must be rescaled!!
- Notice finally that,

$$\rho = \begin{cases} \frac{\lambda}{\sqrt{2(1+\lambda^2)}} & \text{if } g_1 \text{ is oprobit} \\ \frac{\lambda}{\sqrt{2(\frac{\pi^2}{3}+\lambda^2)}} & \text{if } g_1 \text{ is ologit} \end{cases}$$

The osm command

- osm is a gllamm (Rabe-Hesketh, Skrondal & Pickles 2004) 'wrapper' program that fits endogenous switching and sample selection models for ordinal and count variables (endogenous switching is the default option).
- Accepts data in the usual wide format and then does the required changes to call **gllamm**.
- After estimation coefficients are rescaled and an output table that is easily interpretable is presented.
- **osm** exploits the adaptive quadrature capability of **gllamm**...one of the major **gllamm** strengths.

SYNTAX)

osm depvar [varlist] [if exp] [in range], i(varname)
switch(varname= varlist) switch(varlist) Family(familyname)
selection quadrature(#) Link(linkname) From(initial values)
Trace nolog Trace Eval Commands

Table 1: Avaibale Families and links

Family	Link
Poisson	log
Binomial	ordinal Probit
	ordinal Logit

Sample Selection Ordered Probit: An example

```
. osm ordvar x1 x2, id(id) s(sel = x1 x2 x3 x4) q(15) adapt family(bin) link(oprobit) sel
Running adaptive quadrature
               log likelihood = -5444.942
Iteration 0:
  (output omitted)
               log likelihood = -5175.5835
Iteration 4:
Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -5175.5835
  (output omitted)
Iteration 3: log likelihood = -5175.5765
Sample Selection Ordered Probit Regression
(Adaptive quadrature -- 15 points)
                                                 Number of obs =
                                                                     3500
                                                 Wald chi2(6) = 1114.42
Log likelihood = -5175.5765
                                                 Prob > chi2
                                                               = 0.0000
                Coef. Std. Err. z P>|z| [95% Conf. Interval]
ordvar
         x1 | .3154251 .0408026 7.73 0.000 .2354535
                                                                 .3953968
               .1470225
                           .026887
                                      5.47 0.000
                                                      .0943249
                                                                  .1997202
```

selection						
x1	.9573865	.0356374	26.86	0.000	.8875385	1.027234
x2	.4217439	.0286755	14.71	0.000	.365541	.4779468
x3	5968153	.0303954	-19.64	0.000	6563893	5372414
x4	.6372245	.0308598	20.65	0.000	.5767403	.6977087
_cons	.5448698	.0288654	18.88	0.000	.4882947	.601445
aux_ordvar						
_cut1	4012284	.0325979	-12.31	0.000	4651192	3373376
_cut2	.1583416	.048699	3.25	0.001	.0628932	.2537899
_cut3	.4265045	.0598836	7.12	0.000	.3091348	.5438743
_cut4	.7873888	.0763759	10.31	0.000	.6376948	.9370827
_cut5	1.229029	.0981156	12.53	0.000	1.036726	1.421332
rho	.2901614	.0654419	4.43	0.000	. 1458488	.4012554
				 -		

Likelihood ratio test for rho=0: chi2(1)= 21.32 Prob>=chi2 = 0.000

Sample Selection Ordered Logit: An example

```
. osm ordvar x1 x2, id(id) s(sel = x1 x2 x3 x4) q(15) adapt family(bin) link(ologit) sel
Running adaptive quadrature
               log likelihood = -5468.3146
Iteration 0:
  (output omitted)
               log likelihood = -5180.7342
Iteration 6:
Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -5180.7342
  (output omitted)
Iteration 3: log likelihood = -5180.7303
Sample Selection Ordered Logit Regression
(Adaptive quadrature -- 15 points)
                                                  Number of obs =
                                                                     3500
                                                 Wald chi2(6) = 1123.24
Log likelihood = -5180.7303
                                                 Prob > chi2
                                                                = 0.0000
                Coef. Std. Err. z P>|z| [95% Conf. Interval]
ordvar
         x1 | .3267404 .0369461
                                      8.84 0.000 .2543274
                                                                  .3991535
               .1510283 .0248903
                                      6.07 0.000
                                                      .1022441
                                                                  .1998125
```

selection						
x1	.9563906	.0356895	26.80	0.000	.8864404	1.026341
x2	.4199398	.0287014	14.63	0.000	.3636862	.4761935
x3	5964406	.0305075	-19.55	0.000	6562341	536647
x4	.6383798	.0309312	20.64	0.000	.5777557	.6990038
_cons	.5446456	.0288797	18.86	0.000	.4880425	.6012486
+-						
aux_ordvar						
_cut1	447559	.0312788	-14.31	0.000	5088643	3862536
_cut2	.0840034	.0416869	2.02	0.044	.0022986	.1657082
_cut3	.4016877	.0529198	7.59	0.000	.2979668	.5054085
_cut4	.7749008	.0673403	11.51	0.000	.6429162	.9068854
_cut5	1.123638	.0803356	13.99	0.000	.9661834	1.281093
+-						
rho	.1214521	.0392716	3.09	0.002	.0426992	.1958209

Likelihood ratio test for rho=0: chi2(1)= 11.43 Prob>=chi2 = 0.001

FINAL REMARKS

- Besides estimating sample selection models **osm** fits endogenous switching models (i.e., when an endogenous dummy is present in the main equation).
- Using the Poisson Family and the Log link **osm** can fit models for count data.
- In the near future **osm** will be extended to allow for:
 - Probit/Logit links.
 - Weights.