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Population Based Cancer Studies

Using data from cancer registries.

Attempt to obtain all diagnosed cancers.

Information used for incidence and survival.

Large sample sizes.

Relative Survival methods used for survival analysis.

Five year relative survival often reported.
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Relative Survival

Relative Survival =
Observed Survival

Expected Survival
R(t) = S(t)/S∗(t)

Expected survival obtained from national population life tables
stratified by age, sex, year of diagnosis, other covariates.

Estimate of mortality associated with a disease without requiring
information on cause of death.

On hazard scale

h(t) = h∗(t) + λ(t)

Observed
Mortality Rate

=
Expected

Mortality Rate
+

Excess

Mortality Rate
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Relative Survival Models

Usually model on the log excess hazard (mortality) scale[3].

h(t) = h∗(t) + exp(βX )

Parameters are (log) excess hazard ratios.

Models have proportional excess hazards as a special case, but often
non-proportional excess hazards are observed.

Non-proportionality modelled piecewise[3], using fractional
polynomials[6], or splines[4].

The models do not assume that a proportion of patients may be
‘cured’ of their disease.

For details of Stata command strs for estimation and modelling of
relative survival using piecewise methods see
http://www.pauldickman.com/rsmodel/stata_colon/
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Definition of Cure (1)

For many cancers the hazard (mortality) rate returns to the same
level as that in the general population.

When this occurs the relative survival curve is seen to reach a plateau
(or the excess hazard rate approaches zero).

This is Population or Statististical Cure.

Information of cure at the individual level not available.
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Definition of Cure (2)

0.0

0.2

0.4

0.6

0.8

1.0
R

el
at

iv
e 

S
ur

vi
va

l

0 2 4 6 8 10
Time from Diagnosis (Years)

Paul C Lambert Cure Models and Relative Survival 12th UK Stata Users Group 6/27



Definition of Cure (2)
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Relative Survival for Cancer of the Colon in Finland
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Mixture and Non-Mixture Models

Relative Survival Models

S(t) = S∗(t)R(t)

h(t) = h∗(t) + λ(t)

When modelling cure we define an asymptote at the cure fraction, π,
for the relative survival function, R(t).

The excess hazard rate, λ(t), has an asymptote at zero.

Two main approaches

Mixture Model
Non-Mixture Model
Both of these models have been used in ‘standard’ survival analysis [9],
i.e. not incorporating background mortality. Some of these models are
implemented in Stata using the cureregr command.
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Mixture Model

Mixture Model

S(t) = S∗(t)(π + (1 − π)Su(t)) h(t) = h∗(t) + (1−π)fu(t)
π+(1−π)Su(t)

S∗(t) is the expected survival.

π is the proportion cured (the cure fraction).

(1 − π) is the proportion ‘uncured’ (those ‘bound to die’).

Su(t) is the survival for the ‘uncured’ group.

See De Angelis [2] and Verdecchia [10] for more details.
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Non-Mixture Model

Non Mixture Model

S(t) = S∗(t)πFz (t) h(t) = h∗(t) − ln(π)fz(t)

We have extended the non-mixture model to relative survival[7].
If parameters in fz(t) do not vary by covariates then this is a
proportional excess hazards model.
The mixture model does not have proportional excess hazards as a
special case.
The non-mixture model can also be written as;

S(t) = S∗(t)

(

π + (1 − π)

(

πFz (t)
− π)

1 − π

))

This is a mixture cure fraction model and thus the survival function of
‘uncured’ patients can also be obtained from a non-mixture model by
a simple transformation of the model parameters.
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Likelihood

Relative Survival Models

Li = di ln(h∗(ti )+λ(ti ))+ ln(S∗(ti ))+ ln(R(ti ))− ln(S∗(t0i ))− ln(R(t0i ))

S∗(ti ) and S∗(t0i ) do not depend on the model parameters and can
be excluded from the likelihood.

Merge in expected mortality rate at time of death, h∗(ti ).

Newton-Raphson algorithm implemented using Stata ml command
(method lf).

Incorporating delayed entry allows period analysis models to be
fitted[8]. This is a method used to obtain up-to-date estimates of
(relative) survival. Application in the cure models allows up-to-date

estimates of cure to be obtained.
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strsmix and strsnmix commands

strsmix
[

varlist
] [

if
] [

in
]

, distribution(distribution) link(link

function) bhazard(varname)
[

k1(varlist) k2(varlist) k3(varlist)

k4(varlist) pmix(varlist) noconstant noconsk1 noconsk2 noconsk3

noconsk4 noconspmix init(matrix name) skip inititer(#)

stopconstraint valconstraint(#) eform
]

strsnmix
[

varlist
] [

if
] [

in
]

, distribution(distribution)

link(link function) bhazard(varname)
[

k1(varlist) k2(varlist)

k3(varlist) k4(varlist) pmix(varlist) split(#) earlyk1(varlist)

earlyk2(varlist) noconstant noconsk1 noconsk2 noconsk3

noconsk4 noconspmix earlynoconsk1 earlynoconsk2 init(matrix

name) skip inititer(#) stopconstraint valconstraint(#)

eform
]

Stata
net from http://www.hs.le.ac.uk/personal/pl4/Software/Stata/strsnmix

install strsnmix
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Some options for strsnmix and strsmix

distribution(distribution) specifies the parametric distribution.
Arguments for both strsmix and strsnmix are weibull, lognomal
and gamma, weibexp and weibweib.

link(link function) specifies the link function for the cure fraction.
Options are identity, logistic and loglog. Note that loglog is
ln(− ln(π)).

bhazard(varname) gives the variable name for the baseline hazard at
death/censoring. This option is compulsory, but standard cure models
can be estimated by making varname a column of zeros.

k1-k4(varlist) gives any covariates for the auxillary parameter. E.g.
for the Weibull distribution k1 refers to ln(λ) and k2 refers to ln(γ).

Commands submitted to The Stata Journal[5].
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Cancer of the Colon in Finland

Data from the Finnish Cancer Registry.

27,754 men and women diagnosed 1953-2003 with follow-up to 2004.

Covariates age group and year of diagnosis.

Exclude those aged 80 years and over.

Use a mixture cure model with Weibull distribution for the ‘uncured’.

Year of diagnosis modelled using restricted cubic splines for cure
fraction and both Weibull parameters.

Stata Code
strsmix rcs1-rcs4 agegrp2 agegp3 agegrp4 age2rcs1 age3rcs1 age4rcs1, ///

dist(weibull) link(identity) bhazard(brate) ///

k1(rcs1-rcs4 agegrp2 agegrp3 agegrp4 age2rcs1 age3rcs1 age4rcs1) ///

k2(rcs1-rcs4 agegrp2 agegrp3 agegrp4 age2rcs1 age3rcs1 age4rcs1)

predict cure, cure ci

predict rs, survival ci

predict rsu, survival uncured ci

predict exhaz, hazard ci

predict median, centile ci
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Time Trends for Cancer of the Colon Age <50
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Time Trends for Cancer of the Colon
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Quantifying Differences
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Period Analysis

Long-term estimates of survival may be out-of-date.

Period Analysis estimates (relative) survival by only incorporating
survival experience in a recent time window[1].

Period Analysis generally estimated in lifetables, but simple to
incorporate in to modelling environment[8].

In survival models period analysis can be incorporated using delayed
entry techniques.
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Period Analysis
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Period Analysis: Cancer of the Colon
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More Flexible Models

In some situations the Weibull distribution is not flexible enough and
results in a poor fit.

Usually when very high excess mortality rate in first few weeks after
diagnosis.

Other, more flexible, distributions can be considered

LogNormal and Generalized Gamma are implemented
LogNormal fits poorly due to Long tail
Some Convergence problems with Generalized Gamma

Two Extensions

Split-time models. These split the time scale into two. Within the first
time interval (up to time k) use simple parametic model for the relative
survival and then fit a cure fraction model condition on survival to time
k.
Use a Finite Mixture of Distributions.
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Mixture of Distributions

Non-Mixture Model

h(t) = h∗(t) − ln(π) (pfz1(t) + (1 − p)fz2(t))

This allows a much more flexible shape for the excess hazard and
relative survival function[11].

Mixture of two Weibull distributions generally works well.

Can also think of two groups of individuals, those who die after a
short time and those who die after a longer time.

Mixture Model

S(t) = S∗(t) (π + (1 − π) (pSu1(t) + (1 − p)Su2(t)))

For mixture models on relative survival scale.

Mixture of two Weibull distributions generally works well.
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Cancer of the Colon: Weibull and Mixture of Weibulls
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Cancer of the Colon: Excess Hazard Rate
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Cancer of the Colon: Excess Hazard Rate
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Summary

In population based cancer studies ‘cure’ is often observed.

Relative survival models that explicitly allow for ‘cure’ are useful for
monitoring trends and differences in (relative) survival.

strsnmix and strsmix fit a wide range of models.

Incorporation of delayed entry models allows up-to-date estimates of
cure to be obtained.

Still needs to be a degree of caution

When ‘cure’ is not a reasonable assumption.
Follow-up not long enough.
Simple models may not fit the data well, but alternatives are available.
When the cure fraction is high (over 75-80%).
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