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Visualising and analysing time-to-
event data: lifting the veil of 
censoring

Patrick Royston
Cancer Group, MRC Clinical 

Trials Unit, London
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A poet writes about censored observations:

Last night I saw upon the stair
A little man who wasn't there
He wasn't there again today
Oh, how I wish he'd go away!

From Antigonish (1899) 

Hughes Mearns (1875-1965)



12th UK Stata Users’ meeting, September 2006 3 Patrick Royston

Outline

• Why is censoring of time-to-event data an 
issue?

• Example in breast cancer
• Visualisation of censored data using 

model-based imputation
• Multiple imputation and analysis of 

survival data with missing covariate 
observations

• Demonstration with Stata
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Why is censoring an issue?

• You can’t picture the raw data easily
• Reliance on Kaplan-Meier plots

Exaggerates differences between groups
Attracts attention to unreliable survival 
estimates at extreme times

• Data will be analysed using Cox model
Still the almost-automatic choice – although 
decent alternatives exist

• Time is “forgotten about” in the Cox model
Analysis is based on the ranks of failure times
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• Results of Cox regression models are 
usually expressed as (log) hazard ratios

Indirect – not dealing directly with time
Can be hard to interpret – different effect on 
survival curves at high and low survival probs
Particularly difficult for interactions – ‘ratio of 
hazard ratios’

• Non-proportional hazards
Data with long-term follow-up typically have it
Modelling and interpretation may be complex
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Example: Primary node-
positive breast cancer

• GBSG trial BMFT-2
• 686 patients, 299 events for recurrence-

free survival (RFS)
• Patients assigned to hormonal therapy 

(TAM) or not
• Visualise the effect of TAM on RFS
• Visualise interaction between TAM and ER 

(estrogen receptor status)
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Traditional visualisation: 
Kaplan-Meier by TAM group
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Dot plot by TAM therapy –
unhelpful with censored data
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How better to visualise 
survival times?

• To make progress with visualisation, aim to 
impute the “missing” part of censored times

• Assume a parametric distribution of survival time
• Survival times are sometimes approximately 

lognormally distributed (Royston 2001a)
Can check by using modified Normal Q-Q plot

• If lognormal approximation is not good, can 
consider Box-Cox transformation of time

Or another transformation towards normality
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Assessing lognormality: 
modified Normal Q-Q plot
• Simple transformation of Kaplan-Meier survival curve
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Normal Q-Q plot by TAM group
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Visualisation of censored data 
using imputation

• Create m (≥ 1) copies of the data with 
censored survival times imputed

• Need an imputation model to reflect
Distribution of times (e.g. lognormal)
Effects of covariates (prognostic factors)

• Creating an imputation model:
Use mfp with cnreg (censored normal regrn.) 
to model poss. non-linear effects of covariates
E.g. mfp cnreg lnt x1 x2 x3 x4a x4b x5 x6 
x7 hormone, censored(c) select(1) 
dfdefault(2)
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Creating the imputed 
dataset(s)

• Can use the ice multiple imputation 
command to create the imputations

Royston (2004, 2005a, 2005b) Stata J
• ice varlist using filename[.dta]
[if exp] [in range] [weight],
[m(#) cmd(cmdlist) cycles(#) 
boot[(varlist)] seed(#) dryrun
eq(eqlist) passive(passivelist) 
substitute(sublist) dropmissing
interval(intlist) other_options]
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Interval censoring with ice

• gen ll = lnt

• gen ul = cond(_d==1, lnt, ln(50))
// chose upper limit of 50 years for 

RFS: can use . for +∞
• (generate FP transformations of x1, x5, x6)
• ice x1_1 x2 x3 x4a x4b x5_1 x6_1 x7 
hormone ll ul lnt using imputed.dta, 
interval(lnt:ll ul) m(10)
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How interval() works

Censored
obs

Upper
limit

Complete
obs

-4 -3 -2 -1 0 1 2 3 4

• Sample randomly from truncated normal distribution (shaded)
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Code fragment from uvis.ado

`cmd' `yvarlist' `xvars' `wgt',
`options'

...
if "`cmd'"=="intreg" {

tempvar PhiA PhiB
gen `PhiA‘ = cond(missing(`ll'), 0, 

norm((`ll'-`xb')/`rmsestar'))
gen `PhiB‘ = cond(missing(`ul'), 1, 

norm((`ul'-`xb')/`rmsestar'))
replace `yimp‘ = `xb‘

+`rmsestar'*invnorm(`u'*
(`PhiB'-`PhiA')+`PhiA')

}
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Uses of the interval() option

• Impute right-, left- or interval-censored 
outcomes

Response variable in time-to-event studies
• Impute when a covariate is sometimes 

partly observed, sometimes complete
Some observations recorded exactly
Others known to be below or above a cutoff
E.g. D-dimer in DVT, PgR/ER in breast cancer

• Interval censored covariates
Income in surveys recorded as ranges only
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Breast cancer data: visualisation 
of time to recurrence
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Visualisation: some plots using 
the first imputed sample
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Visualisation: treatment by 
covariate interaction
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Limitations

• Imputed times to event are helpful for 
visualisation, but less so for analysis

Effectively, such imputations are 
extrapolations into the future
We don’t know the future distribution
Estimates of means, SD’s, regression coeffs
etc. are heavily dependent on the distributional 
assumptions
Potential for bias if assumed distr’n is wrong

• Imputed times may be unrealistic
E.g. survival time 150 years!
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Other approaches

• A reasonably large literature exists
• Buckley-James estimation (Buckley & James 

1979)
Estimates the mean of the censored part
Not so good for visualisation

• Wei & Tanner (1991)
Two algorithms which give multiple imputations of the 
censored part
Relaxes the normality assumption – samples taken from 
the distribution of the residuals

• stpm (Royston 2001b, Royston & Parmar 2002)
More flexible distributions of survival time available
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Imputation of survival data with 
missing covariate observations

• So far, have assumed covariates have complete data
• If covariates have missing data, need a suitable algorithm 

for multiple imputation of all missing values
e.g. MICE (ice)

• To reduce bias, must include the response (time-to-event) 
in the imputation model

How?
• “Standard” approach is to include (censored) log time and 

the censoring indicator in the imputation model 
No theoretical justification

• May be better to
Include covariates as usual
Impute right-censored times using ice with interval() option

• Can also use imputed data for visualisation
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Analysis of survival data with 
missing covariate observations

• Disregard the imputed times in the MI 
dataset

Except for visualisation purposes

• Use original time and censoring indicator
• Can analyse the MI dataset using

stcox (Cox regression)
streg (several models available)
stpm (flexible parametric survival models)

• micombine supports such models
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Conclusions

• Use of familiar graphical tools with imputed times 
to event can give greater insight into censored 
survival data

Scatter plots, smoothers, etc

• Treatment or prognostic effects may be 
depressingly small when displayed as scatter 
plots of times

Much overlap between groups
Weak regression relationships

• Imputation of times may be helpful in multiple 
imputation with missing covariate values
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