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Abstract 
 
Health scientists often use observational data to estimate treatment effects when controlled 
experiments are not feasible.  A limitation of observational research is non-random selection of subjects 
into different treatments, potentially leading to selection bias.  The 2 commonly used solutions to this 
problem – covariate adjustment and fully parametric models – are limited by strong and untestable 
assumptions.  Instrumental variables estimation can be a viable alternative.  In this paper, I review 
examples of the application of IV in the health sciences, I show how the IV estimator works, I discuss the 
factors that affect its performance, I review how the interpretation of the IV estimator changes when 
treatment effects vary by individual, and consider the application of IV to nonlinear models. 
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Background 
 
Much of the empirical research in the applied health sciences attempts to address questions of the sort: 
what is the effect of 𝑥 on 𝑦?  The variable 𝑦 is typically a dimension of health, such as blood pressure or 
some other clinical endpoint; the incidence of diabetes or some other disease; health related quality of 
life or mortality, while 𝑥 could be some health-related behavior, such as cigarette smoking; an 
individual’s socio-economic or demographic characteristic, such as income, education or age; the use of 
health care, such as a new pharmaceutical drug; or exposure to an environmental toxin, such as second-
hand smoke.  The variable 𝑥 is generically referred to as a ‘treatment’ and the effect of 𝑥 on 𝑦 a 
‘treatment effect’.   
 
Much of this work relies on observational data, owing to the practical, budgetary and ethical limitations 
on the use of controlled experiments in this area.  A widely recognized problem in observational 
research is that, because individuals can sometimes ‘choose’ different values of 𝑥 (for instance, the 
decision to smoke or not, or the decision to use a new or old drug), it is unclear to what extent 
differences in 𝑦 reflect differences in the level of 𝑥 and to what extent differences in 𝑦 reflect 
differences in the unobserved characteristics of those who choose different levels of 𝑥.  The recent 
controversy over the deleterious effects of hormone replacement therapy (HRT) among post-
menopausal women illustrates this attribution problem.  The observational data clearly indicate that 
HRT and cardiovascular disease (CVD) risk are negatively correlated – HRT users tend to have better 
heart health than non-users.  Recent experimental evidence, however, indicates that the causal impact 
of HRT is to increase the risk of heart attack and stroke.  The negative correlation between HRT use and 
CVD risk was entirely due to the fact that generally healthy women tended to initiate HRT.  (Women 
with more education and more income, who were typically healthy, were the ones initiating HRT so as 
to prevent heart disease.)  In effect, HRT users had lower rates of CVD than non-users despite the 
deleterious effects of HRT.   
 
Several solutions to this problem have been proposed, but none are entirely satisfactory.  The most 
commonly used of these is to identify, measure and adjust for the behavioural and other factors 𝑤 that 
are correlated with both 𝑥 and 𝑦 – the so-called ‘covariate adjustment’ approach.  If ones goal is to 
assess the causal effect of HRT on CVD, for instance, one might adjust for various dimensions of socio-
economic status and other potential ‘confounding’ factors correlated with HRT use that independently 
affect CVD risk; one could adjust for these confounding factors using either regression or matching.   
 
Regression amounts to imposing restrictions on how 𝑤 and 𝑥 affect the mean of 𝑦; a common 
restriction is that the conditional mean of 𝑦 is linear in a vector of unknown parameters 𝛼, 𝛽, 𝛾: 
𝐸[𝑦|𝑥, 𝑤] = 𝛼 + 𝑥𝛽 + 𝑤´𝛾.  These unknown parameters can be estimated using ordinary least squares 
(OLS).  The estimate of 𝛽 is of primary interest – it reflects the impact of a one unit change in 𝑥 on the 
mean of 𝑦, holding constant the influence of 𝑤.  Matching compares the values of 𝑦 among subjects 
with different levels of 𝑥 but who share common values of all of the variables in 𝑤.  A defect of both 
these techniques is that the analyst might fail to adjust for pertinent confounding variables, because 
they are either unknown or not readily quantifiable.  Conventional regression comes with an additional 
liability – it requires that one correctly specify a model of the conditional mean of 𝑦 and it is unclear 
how specification error affects ones estimate of the impact of 𝑥 on 𝑦.  (That being said, in some 
circumstances one can estimate a regression model with minimal functional form restrictions using the 
methods described in Li and Racine (2007).) 
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An alternative to covariate adjustment is to model the correlations between unobserved confounders 
and outcomes; these are commonly referred to as ‘fully parametric’ models.  The leading example is 
Heckman’s parametric sample selection model.  The assumptions embedded in these models are quite 
restrictive: one needs to specify functional forms for both the conditional mean of 𝑦 and the joint 
distribution of the unobserved factors affecting 𝑥 and 𝑦.  It is well known that results can be highly 
sensitive to these assumptions, yet these assumptions cannot be directly verified.   
 
‘Instrumental variables’ (IV) estimation can be a useful alternative to the covariate adjustment and fully 
parametric approaches.  IV requires one or more instruments 𝑧 – variables strongly correlated with 𝑥 
but uncorrelated with the unobserved determinants of 𝑦.  IV isolates the variation in 𝑥 which is due to 
variation in 𝑧 and assesses how this exogenous variation in 𝑥 is correlated with 𝑦.  The coin toss in the 
context of a randomized controlled trial (RCT) on fully compliant subjects is the ideal instrument – the 
outcome of the coin toss completely determines treatment assignment (𝑥 = treatment, control) yet does 
not directly affect the outcome 𝑦.  The treatment effect in this case is estimated by comparing values of 
𝑦 among individuals randomized to different treatment groups.  In an observational study assessing the 
effects of HRT on CVD, one might use the consumer price of HRT as an instrument, assuming that the 
consumer price of HRT affects its use but is uncorrelated with unobserved determinants of CVD.  The 
latter assumption would rule out, for instance, healthier women having particularly generous drug 
insurance while less healthy women remaining uninsured.   Alternative instruments for HRT use could 
include regional or time based variation in physician practice styles.   
 
In this paper, I review examples of the application of IV in the health sciences, I show how the IV 
estimator works, I discuss the factors that affect its performance, I review how to interpret the IV 
estimator when treatment effects vary by individual, and consider the application of IV to nonlinear 
models. 
 

Applications of IV estimation 
 
Central to the use of IV estimation is the identification of good instruments.  Good instruments are both 
powerful (i.e. they induce marked variation in treatments) and valid (i.e. they are unrelated to the 
unmeasured determinants of health outcomes).  Here are several examples of the creative application 
of IV in the health sciences: 

Cholera transmission 
 
Although IV theory has been developed primarily by economists, the method originated in 
epidemiology.  IV was used to investigate the route of cholera transmission during the London cholera 
epidemic of 1853-54.  A scientist from that era, John Snow, hypothesized that cholera was waterborne.  
To test this, he could have tested whether those who drank purer water had lower risk of contracting 
cholera.  In other words, he could have assessed the correlation between water purity (𝑥) and cholera 
incidence (𝑦).  Yet, as Deaton (1997) notes, this would not have been convincing: “The people who 
drank impure water were also more likely to be poor, and to live in an environment contaminated in 
many ways, not least by the ‘poison miasmas’ that were then thought to be the cause of cholera.”  Snow 
instead identified an instrument that was strongly correlated with water purity yet uncorrelated with 
other determinants of cholera incidence, both observed and unobserved.  This instrument was the 
identity of the company supplying households with drinking water.  At the time, Londoners received 
drinking water directly from the Thames River.  One company, the Lambeth water company, drew water 
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at a point in the Thames above the main sewage discharge; another, the Southwark and Vauxhall 
company, took water below the discharge.  Hence the instrument 𝑧 was strongly correlated with water 
purity 𝑥.  The instrument was also uncorrelated with the unobserved determinants of cholera incidence 
(𝑦).  According to Snow (1855, pages 74-75), the households served by the two companies were quite 
similar; indeed: 
 
 “the mixing of the supply is of the most intimate kind. The pipes of each Company go down all the 
streets, and into nearly all the courts and alleys. . . . The experiment, too, is on the grandest scale.  No 
fewer than three hundred thousand people of both sexes, of every age and occupation, and of every 
rank and station, from gentlefolks down to the very poor, were divided into two groups without their 
choice, and in most cases, without their knowledge; one group supplied with water containing the 
sewage of London, and amongst it, whatever might have come from the cholera patients, the other 
group having water quite free from such impurity.”  

Is waiting for surgery hazardous? 
 
This is a tricky question to answer.  Ones position in the queue for surgery is often influenced by ones 
disease severity.  If disease severity is imperfectly observed and controlled for, then conventional 
estimators of the impact of waiting time on outcomes will be biased.  If more severely compromised 
patients are given priority access to surgery, for instance, then one might conclude that waiting is not 
only innocuous, it is beneficial!  IV is useful if one can find good instruments for waiting time.  Ho and 
colleagues (2000) used day of admission as an instrument for waiting time for hip fracture surgery given 
that hospitals perform fewer operations on weekends.  Those admitted to hospital immediately prior to 
a weekend will therefore tend to wait longer for surgery than those admitted on other days; moreover, 
day of admission is likely unrelated to disease severity.   Howard (2000) used the blood type of 
recipients of donor livers as an instrument for waiting time for liver transplants.  He notes: “A person 
with type A blood may receive an organ from a type O donor but not a type B donor.  Type O recipients 
are compatible only with type O donors, and type AB recipients may receive livers from any donor.  Due 
to mismatches in the population distributions of donors’ and recipients’ blood types and the problems 
of blood type compatibility, persons with type O blood have the longest waiting times for organs and 
persons with type AB blood have the shortest.”  Organ recipient blood type appears to be a very good 
instrument.  First, it appears to be highly predictive of waiting times for transplant surgery: holding 
constant patient age, sex, a battery of clinical markers and other variables, patients with type O blood 
waited on average 3 months longer than type AB patients.  Second, it appeared to be uncorrelated with 
the unobserved determinants of health outcomes: after reviewing the biomedical and physiological 
literature, Howard could find no evidence that blood type has a direct effect on the study endpoints, 
graft failure at 3 months and 1 year post transplant.  

Is more healthcare better? 
 
There are marked regional variations in the healthcare services provided to Medicare beneficiaries.  
Fisher et al (2003a, b) assessed whether Medicare beneficiaries treated for hip fracture, colorectal 
cancer, or acute myocardial infarction (MI, heart attack) residing in high spending regions of the US – 
those who receive above-average quantities of inpatient and ambulatory care services – receive higher 
quality care, are more satisfied with their care and are healthier as a result.  If not, spending on these 
beneficiaries could be safely reduced and deployed elsewhere.  To address this question, the 
investigators could have assessed the correlation between patient-specific health care spending and 
health outcomes.  The problem with this approach is that sicker patients need more health care; in 
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other words health care use both causes and is caused by patient health needs.  To overcome this 
simultaneity problem, they used average beneficiary end-of-life (EOL) medical spending in the region as 
an instrument for individual beneficiary healthcare services use.  This is a good instrument: Fisher and 
colleagues report that average baseline health status of study subjects was similar across regions of 
differing EOL spending levels (suggesting that the EOL does not directly affect health outcomes), but 
patients in higher-spending regions received approximately 60% more care (suggesting that EOL 
spending is highly predictive of the amount of care each beneficiary receives). 

Effectiveness of cardiac catheterization  
 
Newhouse and McClellan (1998) assessed the impact of cardiac catheterization (i.e. bypass surgery or 
angioplasty) on post MI survival rates.  Comparing the health outcomes of those who do and do not get 
cardiac catheterization is problematic if individuals are selected for the procedure on the basis of 
disease severity.  Instead Newhouse and McClellan used variation in distance between a patient’s home 
and the nearest hospital with cardiac catheterization facilities as an instrument for whether the patient 
received cardiac catheterization after an MI.  After an MI, the patient is typically rushed by ambulance to 
the nearest hospital, irrespective of whether or not the hospital has catheterization facilities.  Hence the 
catheterization capability status of the hospital closest to the patient’s home is a good instrument – it is 
a strong predictor of whether or not the patient gets the procedure and should be uncorrelated with 
health outcome (unless those who are more likely to suffer from severe heart attacks move to a home in 
close proximity to a hospital with catheterization facilities, something that the authors thought was 
unlikely).   
 
Stukel et al (2007) also assessed the impact of cardiac catheterization on post MI survival rates using IV.  
In their study, they used the regional cardiac catheterization rate as an instrument for whether or not a 
particular patient received the procedure.  This instrument was found to be highly predictive of the 
receipt of the procedure, more so than the differential distance instrument used by Newhouse and 
McClellan.  One concern with this instrument, however, is that regional catheterization rates might be 
higher where patient needs for the procedure are greater.  But Stukel and colleagues controlled for a 
battery of risk factors that are strongly prognostic of post-MI mortality.  Hence they thought it highly 
unlikely that the instrument would be correlated with the residual, unobserved component of post MI 
mortality.   
 

The effects of environmental exposure on future health outcomes 
 
Jones (2007) discusses three recent studies that have followed cohorts of individuals who faced 
different environmental conditions in their early years to assess how nutritional and socio-economic 
conditions at young ages affect subsequent morbidity and mortality.  Almond (2006) assessed how in 
utero fetal environment affects subsequent socio-economic status and disability.  Variation in the 
prevalence of influenza across the United States during the flu pandemic in the fall of 1918 was used as 
an instrument for the in utero environment of those born shortly thereafter.  Berg et al. (2006) assessed 
how socio-economic conditions during infancy affect life expectancy.  They used macroeconomic 
conditions during infancy of those born in the 19th century Netherlands as an instrument for 
socioeconomic conditions.  Lleras-Muney (2005) assessed how years of schooling affects life expectancy.  
Because both years of schooling and health are probably correlated with motivation and other latent 
factors, Lleras-Muney used as an instrument for years of educational attainment changes across the 
United States in compulsory schooling and child labour laws between 1915 and 1939.  All three studies 
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are convincing because they used good instruments.  In each case, the instrument was valid: the change 
in the environment exposure was due to developments, such as the onset of the flu pandemic or State 
policy changes, that were likely unanticipated by most individuals and hence should have affected 
health outcomes only through their effect on environmental exposure.  Moreover, these developments 
preceded subsequent health outcomes.  The instruments were also powerful, causing marked variation 
in environmental exposure. 

 

The IV estimator 
 
The following example illustrates how the IV estimator adjusts for the influence of confounders.  
Suppose that we wish to compare the effect on some continuous measure of patient health 𝐻 of two 
types of health care, a new type of care and an existing standard.  Let the variable 𝐷 represent the type 
of care used, with 𝐷 = 1 if the patient uses new care and 𝐷 = 0 if the patients uses standard care.  
Suppose that, unbeknownst to the investigator, the value of 𝐷 is assigned on the basis of patient frailty 
𝐹 – more frail patients are more likely to receive the new care and also have worse health.  Finally, 
suppose that treatment 𝐷 affects health 𝐻 as follows: 
 
𝐻 = 𝛽0 + 𝛽1𝐷 + 𝜀           (H1) 
 
where 𝛽0 and 𝛽1 are unknown parameters and the ‘error’ 𝜀 represents the combined influence of all 
determinants of 𝐻 that are not explicitly modeled; one such determinant is 𝐹.  Interest centers on 
generating consistent estimates of the treatment effect parameter 𝛽1, the difference in effectiveness of 
new care and standard care.  Note that I assume that treatment effectiveness is the same for everyone.  
Below I discuss the consequences for IV estimation when treatment effects differ by individual. 
 
Conventional estimators of 𝛽1 will be biased downwards.  Consider, for instance, the difference in 
means (DIM) estimator, which is the sample average 𝐻 of new care users less the sample average 𝐻 of 

standard care users. The expected value of the DIM estimator, 𝑏1
𝑑𝑚 , is: 

 

𝐸 𝑏1
𝑑𝑚  = 𝐸 𝐻 𝐷 = 1 − 𝐸 𝐻 𝐷 = 0         (2) 

 
where 𝐸 𝐻 𝐷 = 1  denotes the expectation of 𝐻 for those assigned new care.  The term 𝐸 𝐻 𝐷 = 1  
can be evaluated by computing the expected value of the health outcomes process (H1) conditional on 
𝐷: 
 
𝐸[𝐻|𝐷] = 𝛽0 + 𝛽1𝐷 + 𝐸[𝜀|𝐷]         (3) 
 
The expected value of 𝐻 of new care users is: 
 
𝐸[𝐻|𝐷 = 1] = 𝛽0 + 𝛽1 + 𝐸[𝜀|𝐷 = 1]        (4) 
 
and the expected value of 𝐻 of standard care users is: 
 
𝐸[𝐻|𝐷 = 0] = 𝛽0 + 𝐸[𝜀|𝐷 = 0]        (5) 
 
Subbing (4) and (5) into (2) yields: 
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𝐸 𝑏1
𝑑𝑚  = 𝛽1 + 𝐸 𝜀 𝐷 = 1 − 𝐸 𝜀 𝐷 = 0        (6) 

 

It is clear that the DIM estimator will be unbiased (i.e. 𝐸 𝑏1
𝑑𝑚  = 𝛽1) if and only if the expected errors 

are the same in both treatment groups:  
 
𝐸 𝜀 𝐷 = 1 = 𝐸 𝜀 𝐷 = 0          (7)   
 
In an RCT with fully compliant patients, random allocation of patients to treatments will ensure that (7) 
is satisfied.  But if allocation is not controlled by the investigator, the condition might not be satisfied.  If 
frailer patients tend to get new care and be in worse health, then 𝐸 𝜀 𝐷 = 1 < 𝐸 𝜀 𝐷 = 0 .  In this 

case, the DIM estimator will systematically underestimate treatment effectiveness: 𝐸 𝑏1
𝑑𝑚  < 𝛽1.   

 
As I just demonstrated, condition (7) can be violated when there are confounding variables.  Condition 
(7) can also be violated if there is ‘reverse causality’, i.e., if health outcomes 𝐻 directly affect treatment 
choice 𝐷, or if there is measurement error in 𝐷.   
 
An IV estimator for 𝛽1 might work if 𝐷, the treatment provided to the patient, depends in part on a 
variable that is independent of 𝜀.  Suppose, for instance, that there are two types of physicians, labeled 
𝐶 (for conservative) and 𝐿 (for liberal).  Suppose that 𝐶 physicians tend to use standard care whereas 𝐿 
physicians tend to use new care.  The physician’s practice style, described by 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = {𝐶, 𝐿}, is a 
valid instrument if 2 conditions hold.  First, there needs to be pronounced differences in physician 
practice styles.  This means that:  

 
𝐸 𝐷 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝑃𝑟𝑜𝑏 𝐷 = 1 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 × 1 + 𝑃𝑟𝑜𝑏 𝐷 = 0 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 × 0 

= 𝑃𝑟𝑜𝑏 𝐷 = 1 𝐷𝑜𝑐𝑇𝑦𝑝𝑒  
 
varies with different values of 𝐷𝑜𝑐𝑇𝑦𝑝𝑒.  I have assumed that it does; in particular, I have assumed that:  
 
𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐿) > 𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐶)     (8) 
 
Second, for 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 to be a valid instrument, it needs to be uncorrelated with the error 𝜀, the 
unmodelled determinants of the health outcome:  
 
𝐸(𝜀|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐿) = 𝐸(𝜀|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐶)       (9) 
 
This condition implies that there are no differences in the quality of care provided by 𝐿 and 𝐶-type 
physicians that would result in differences in patient health outcomes, nor do sicker patients gravitate 
selectively towards 𝐿 or 𝐶 physicians.  A stronger condition required to estimate consistently both 𝛽0 
and 𝛽1 is that:  
 
𝐸 𝜀 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐿 = 𝐸 𝜀 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐶 = 0       (10) 
 
Conditions (8) and (9) mean that 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 is a valid instrument if it affects health outcomes only 
through its impact on the likelihood that new care is provided. 
 
To understand how 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 can be used to consistently estimate the treatment effect, take the 
expectation of 𝐻 conditional on 𝐷𝑜𝑐𝑇𝑦𝑝𝑒: 
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𝐸 𝐻 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝛽0 + 𝛽1𝐸 𝐷 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 + 𝐸 𝜀 𝐷𝑜𝑐𝑇𝑦𝑝𝑒      (11) 

If 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 is indeed a good instrument, then conditions (8) and (10) hold.  Subbing conditions (8) and 
(10) into (11) yields: 
 
𝐸 𝐻 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝛽0 + 𝛽1𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒) + 0       (12) 
 
Evaluating (12) under the two values of 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 yields: 
 
𝐸(𝐻|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐿) = 𝛽0 + 𝛽1𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐿) 
𝐸(𝐻|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐶) = 𝛽0 + 𝛽1𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐶) 
 
These two equations can be solved for 𝛽1: 
 

𝛽1 =
E 𝐻 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 =𝐿 −E 𝐻 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 =𝐶 

Prob (𝐷=1 | 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 =𝐿)−Prob (𝐷=1 | 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 =𝐶)
       (13) 

 
The IV estimator is operationalized by replacing the unknown quantities by sample estimates.  Hence, 
for example, 𝐸(𝐻|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐿) is replaced by the sample average health of those patients treated by 
𝐿-type physicians.  𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐶) is replaced by the sample proportion of patients 
treated by 𝐶-type physicians who are given new care.   
 
This formula can be adapted to handle binary outcome variables.  For instance, suppose that 𝐻𝑖 = 1 if 
subject 𝑖 has an MI and 𝐻𝑖 = 0 otherwise.  The treatment effect, 𝛽1, in this case, the effect of treatment 
type on the probability of MI, can be written:   
 

𝛽1 =
Prob (𝐻=1 | 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 =𝐿)−Prob (𝐻=1 | 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 =𝐶)

Prob (𝐷=1 | 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 =𝐿)−Prob (𝐷=1 | 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 =𝐶)
      (13A) 

 
As before, the estimator is operationalized by replacing unknown quantities with sample estimates.  
 
The coin toss used to assign subjects into the two treatment groups in the context of a RCT is a special 
case of IV estimation.  Suppose treatments are assigned according to process (T1): 
 

𝐷 =  
1 𝑖𝑓 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝐻𝑒𝑎𝑑𝑠
0 𝑖𝑓 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝑇𝑎𝑖𝑙𝑠

          (T1) 

 
In an RCT, the outcome of the coin toss – not 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 or 𝐹 – assigns subjects to treatments.  According 
to (T1), if 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =  𝐻𝑒𝑎𝑑𝑠 then the subject gets the new care (𝐷 = 1), and if 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =  𝑇𝑎𝑖𝑙𝑠 
then the subject gets standard care (𝐷 = 0).  Then the estimator of the treatment effect is: 
 

𝛽1 =
E 𝐻 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =𝐻𝑒𝑎𝑑𝑠  −E 𝐻 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =𝑇𝑎𝑖𝑙𝑠  

Prob (𝐷=1 | 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =𝐻𝑒𝑎𝑑𝑠 )−Prob (𝐷=1 | 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =𝑇𝑎𝑖𝑙𝑠 )
     (14) 

 
If all subjects who get 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =  𝐻𝑒𝑎𝑑𝑠 use new care, then 𝑃𝑟𝑜𝑏(𝐷 = 1 | 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝐻𝑒𝑎𝑑𝑠) =
1.  Similarly, if all subjects who get 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =  𝑇𝑎𝑖𝑙𝑠 use standard care, then 
𝑃𝑟𝑜𝑏(𝐷 = 1 | 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝑇𝑎𝑖𝑙𝑠) = 0.  In this case, the IV estimator simplifies to: 
 
𝛽1 = E 𝐻 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝐻𝑒𝑎𝑑𝑠 − E 𝐻 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝑇𝑎𝑖𝑙𝑠      (15) 
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Replacing the expected values with the sample means gives the standard DIM estimator of the 
treatment effect.  Of course, it is entirely possible that some subjects assigned to use new care will use 
standard care and likewise, some subjects assigned to standard care will use new.  Such non-compliance 
can be handled by replacing 𝑃𝑟𝑜𝑏(𝐷 = 1 | 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝐻𝑒𝑎𝑑𝑠) and 𝑃𝑟𝑜𝑏(𝐷 = 1 | 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝑇𝑎𝑖𝑙𝑠) 
with the proportions in each group who use the new care.   
 

The generalized IV estimator 
 
The IV estimator can be generalized to allow for multiple instruments and explicit modeling of the 
impact of additional determinants of 𝐻 that are known to be uncorrelated with the error.  The 
generalized IV estimator is necessary when one’s instrument is a categorical variable, in which case it 
needs to be represented using a set of binary ‘indicator’ variables.  Fisher et al (2003), for instance, used 
indicator variables to assign subjects to one of five quintiles of regional average end of life expenditure.  
Even if one uses a single binary instrument, so that the simple estimator (13) could be used, exploiting 
multiple sources of independent variation in 𝐷 can improve the precision of the IV estimator.   
 
Modeling the impact of additional determinants of 𝐻 will reduce the error (i.e. the amount of 
unmodelled variation in 𝐻) and hence make it easier to satisfy the requirement that the instrument(s) 
be independent of the error.  This is what Stukel et al (2007) did when they assessed the mortality 
outcomes of cardiac catheterization.  Specifically, they used regression methods to control for a variety 
of patient-level factors that are predictive of mortality risk in their sample of acute MI patients.  The 
instrument that they used – regional cardiac catheterization rates – is likely correlated with individual 
patients’ mortality risk; but this instrument is likely uncorrelated with the portion of the mortality risk 
that remains after regression adjustment for the prognostic factors.  Note, however, that the use of 
regression adjustments incurs the risk of specifying an inaccurate model of the determinants of 𝐻.  (This 
is the same risk that one incurs when using conventional linear regression models.)   
 

The generalized IV estimator can be implemented in two steps.1  First, using OLS one estimates 𝐷 , the 
predicted values from the linear regression of 𝐷 on the instruments and the additional determinants of 

𝐻 that are explicitly controlled for.  𝐷  essentially combines the different instruments into a single 

summary instrument.  Then one estimates (again using OLS) the linear regression of 𝐻 on 𝐷  and the 
additional determinants of 𝐻 that are explicitly modelled.  The IV treatment effect estimate is the 

coefficient on 𝐷 .   The treatment 𝐷 can be either binary (treated, non-treated), or continuous.  The 
outcome 𝐻 can also be binary (such as an indicator of whether the subject experienced an MI or not) or 
continuous.  The generalized IV estimator of the effect of a treatment on a binary outcome can be quite 
imprecise, however.   Moreover, this estimator can yield predictions that fall outside of the range 0 to 1 
and hence cannot be directly interpreted as probabilities.  For these reasons, it might be preferable to 
use an IV estimator, discussed in the section ‘IV estimation of treatment effects in binary outcome 
models’, which specifically accommodates the binary nature of the outcome.   
 
Technical Presentation 
 

                                                 
1
 The generalized IV model can be estimated using the ivregress command in the statistical software program 

Stata (StataCorp, 2007). 
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In this section, I present the details of the generalized IV estimator for those who are comfortable with 
matrix algebra.  Suppose that the error term 𝜀 in (H1) can be decomposed as 
 
𝜀 = 𝑾′𝜸 +  
 
where 𝑾 is a set of observed determinants of 𝐻, 𝜸 is a conformable vector of unknown parameters and 
 represents the influence of the remaining latent, unmodelled determinants of 𝐻.  𝑾 is assumed to be 
uncorrelated with .  Then 𝐻 is determined by the linear equation: 
 
𝐻 = 𝛽0 + 𝛽1𝐷 + 𝑾′𝜸 +           (H2) 
 
If 𝐸[|𝐷 = 1] = 𝐸[|𝐷 = 0], then given a set of 𝑛 observations on 𝐻, 𝐷 and 𝑾, the parameters of (H2) 
can be estimated using ordinary least squares (OLS).  If this condition is not satisfied, then OLS is 
inconsistent.  But if one had access to a set of instruments 𝒁 which satisfy the conditions  
 
𝐸[|𝑾, 𝒁] = 0  
 
plim
𝑛→∞

𝑛−1𝒁′𝐷 ≠ 0 

 
where 𝑛 is the sample size and plim denotes the probability limit operator, then one can use the 
generalized IV estimator.  This estimator of the parameters 𝛽0 , 𝛽1and 𝜸 solves the sample moment 
condition: 
 
𝑿′𝑷𝒁∗(𝑯 − 𝛽0 + 𝛽1𝑫 + 𝑾𝜸) = 𝟎        (16) 
 
where 𝑿 = [𝟏 𝑫 𝑾] is a matrix consisting of 𝑛 observations on a constant 1, the treatment indicator 𝐷 
and 𝑾; (the 𝑖𝑡𝑕 observation of 𝑿 is denoted 𝑿𝑖); 𝑯 − 𝛽0 + 𝛽1𝑫 + 𝑾𝜸 =  is a vector consisting of 𝑛 
error terms; 𝑯 is the vector of 𝑛 observations on the health outcome, and 𝑷𝒁∗  is the so-called projection 
matrix: 
 

𝑷𝒁∗ = 𝒁∗ 𝒁∗′𝒁∗ −𝟏𝒁∗′  
 
where 𝒁∗ =  𝟏 𝒁 𝑾  is a matrix consisting of 𝑛 observations on the constant, the instruments 𝒁 and the 
exogenous or predetermined variables 𝑾.  𝑿′𝑷𝒁∗ consists of the predicted values from regressions of 
each of the columns in 𝑿 on 𝒁∗.  (Note that the predicted values from the regressions of 𝟏 and 𝑾 on 𝒁∗ 
are the observed values 𝟏 and 𝑾.)  Hence (16) generalizes condition (10), encountered earlier, that the 
instruments be orthogonal to the error.  Solving the sample moment condition for the unknown 
parameters yields the generalized IV estimator: 
 

 

𝑏0
𝑖𝑣

𝑏1
𝑖𝑣

𝒈𝒊𝒗

 =  𝑿′𝑷𝒁∗𝑿 −1𝑿′𝑷𝒁∗𝑯          (17) 

 

This estimator can be implemented in two steps.  First, one estimates 𝐷 , the predicted values from the 
regression of 𝐷 on 𝒁∗.  This summary instrument is orthogonal to the error.  Then one estimates the 

regression of 𝐻 on 𝐷  and 𝑾.  The IV treatment effect estimate is the coefficient on 𝐷 .     
 



11 

 

Behaviour of the IV estimator with weak instruments and small 
samples 
 
IV is not a panacea – to use it you need instruments that are both powerful and valid.  Moreover, the 
desirable properties of the IV estimator are guaranteed to hold only as the sample size grows very large.  
In samples of only modest size, estimates can be highly inaccurate.  In this section, I review the 
behaviour of the IV estimator when these requirements are not satisfied.   
 
In general, to get precise estimates of the impact of 𝑥 on 𝑦, one needs to have either large sample sizes 
so as to reduce sampling error (so that the atypically large errors of sample observations in one 
treatment group are balanced by large errors in other treatment groups) or large variation in the values 
of 𝑥 (so that if there is a treatment effect, the resulting variation in 𝑦 can be more easily distinguished 
from variation in 𝑦 caused by sampling error).  When one uses IV, one uses the portion of the variation 
in 𝑥 due to variation in the instrument(s).  When the instrument is weak, there isn’t a lot of variation in 𝑥 
to work with and estimates will be imprecise. 
 
The consequences of weak instruments are also apparent from equation (13).  It is clear that the 
treatment effect parameter 𝛽1 is in fact a ratio of two unknown quantities: the numerator is the 
correlation between the instrument and 𝐻, the denominator is the correlation between the instrument 
and 𝐷.  The weak instrument problem adversely affects this denominator.  When the correlation 
approaches zero, meaning that the instrument explains none of the variation in 𝐷, the estimator is 
undefined.  Even when the instrument and 𝐷 are highly correlated, if the sample size is small then 
estimates of both correlations can be imprecise, rendering the ratio of these estimated correlations 
highly imprecise.   
 
The degree of imprecision of the IV estimator can be illustrated via Monte Carlo simulation.  Suppose 
that health outcomes 𝐻 are determined according to the process: 
 
𝐻 = 100 + 25𝐷 − 0.50𝐹 − 0.75𝑎𝑔𝑒 + , ~ 𝑈[−10,10]     (H3) 
 
where 𝐷 indicates which form of care is used, 𝐹 is an index of patient frailty, where a larger value of 𝐹 
means greater frailty, 𝑎𝑔𝑒 is patient age in years, and  is a random variable, representing idiosyncratic 

factors that affect health, or perhaps measurement error in 𝐻.   can take on any integer value in the 
interval [−10,10], each with equal probability.  The shorthand way of writing this is  ~ 𝑈[−10,10], 
where ‘~’ means ‘distributed as’, ‘𝑈’ means the uniform distribution, and [−10,10] defines the range of 

values  can assume.2  Hence 𝐻 is lower for older, more frail subjects and is 25 units higher for those 
using new care  𝐷 = 1  compared to those using standard care  𝐷 = 0 . 
 
What remains is to describe how patients are assigned to new and old care.  I consider two alternatives: 
 
Randomization with full compliance 
Here 𝐷 is determined by the outcome of a coin toss (T1). 
 
Patients assigned to 𝑫 on the basis of 𝑭 and 𝑫𝒐𝒄𝑻𝒚𝒑𝒆. 

                                                 
2
 Errors drawn from 𝑈[−10,10] can take on any one of 21 different integer values: -10, -9, -8, …, -1, 0, 1, …, 8, 9, 

10, each occurring with equal probability (=1/21).  Subjects with the same values of 𝐷, 𝐹 and 𝑎𝑔𝑒 can therefore 
have health outcomes that differ by as much as 20 units. 
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In this case clinical factors, not a coin toss, determine 𝐷. 
 

𝐷 =  
1 𝑖𝑓 𝐼𝑛𝑑𝑒𝑥 > 0
0 𝑖𝑓 𝐼𝑛𝑑𝑒𝑥 ≤ 0

  

𝐼𝑛𝑑𝑒𝑥 = −40 + 0.5𝑎𝑔𝑒 + 0.5𝐹 − 20𝑑𝐶 + , ~ 𝑈 −10,10      (T2) 
 
New care is given only if a patient’s 𝐼𝑛𝑑𝑒𝑥 value exceeds some threshold level, arbitrarily set equal to 
zero.  𝐼𝑛𝑑𝑒𝑥 is greater, the older is the patient (i.e. the greater is 𝑎𝑔𝑒), the more frail is the patient (i.e. 
the greater is 𝐹), and the greater is the patient-specific idiosyncratic factor (i.e. the greater is the 
random variable , where  ~ 𝑈[−10,10]).  High values of  could reflect other factors that influence 
treatment assignment, such as a strong patient preference for the new type of care.  𝐼𝑛𝑑𝑒𝑥 is 20 points 
lower if the patient is treated by a 𝐶-type (conservative) doctor, identified by 𝑑𝐶 = 1, instead of a 𝐿-
type (liberal) doctor (𝑑𝐶 = 0).   Hence under (T2), sicker patients and those treated by liberal doctors 
are more likely to receive new care.   
 
I first demonstrate the behavior of the IV estimator as the sample size increase.  To do so, I used health 
outcome process (H3) and treatment assignment process (T2) to generate a sample of size 𝑛 
observations.  For each subject in my sample, I arbitrarily assigned values of 𝑑𝐶 (0 or 1), 𝑎𝑔𝑒 (between 
25 and 73 years), 𝐹 (between 1 and 100), and randomly drawn values of  and .  I generated 𝑅 = 1000 
of such samples, taking independent draws of  and   for each sample.  I used various values of 
𝑛 =  100, 1000, 2500, 25000 .  For each of the 𝑅 samples of size 𝑛 observations, I used the generalized 
IV estimator that controls for 𝑎𝑔𝑒, and uses 𝑑𝐶 as an instrument to estimate the treatment effect 
parameter 𝛽1 (which is equal to 25). 
 
The kernel-smoothed histograms of the 𝑅 treatment effect estimates are displayed in Figure 1.  When 
𝑛 = 100 the sampling distribution of the estimator is rather wide (estimates varied from about 10 to 28) 
and is centered over 18.  Increasing 𝑛 to 1000 decreased the variability of estimates but did not 
materially improve the bias.  The IV estimator is approximately unbiased when the sample size is in the 
order of 𝑛 = 25000 observations. 
 

Figure 1 Histogram of 1000 treatment effect estimates generated from IV estimator using various 
sample sizes.   
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How do the other estimators compare?  Using health outcome process (H3) and one of the treatment 
assignment processes (T1) and (T2), I generated 𝑅 = 1000 samples of size 𝑛 = 100 observations and, 
for each sample, used several different estimators to produce estimates of the treatment effect.  I 

considered the difference in means estimator, 𝑏1
𝑑𝑚 ,  applied to both treatment assignment process (T2) 

(i.e., observational data) and treatment assignment (T1)  (experimental data).  I also reproduced the 
results for the generalized IV estimator that controls for 𝑎𝑔𝑒, and uses 𝑑𝐶 as an instrument, shown in 
Figure 1.   
 
The kernel-smoothed histograms of the 𝑅 treatment effect estimates are displayed in Figure 2.  As 

expected, the sampling distribution of the DIM estimator, 𝑏1
𝑑𝑚 , estimated using the observational data 

(labeled as DIM OBS in the figure) is well to the left of 25, indicating that 𝑏1
𝑑𝑚  is severely downwards 

biased.  Conversely, the DIM estimator estimated using the experimental data, DIM RCT in the figure, is 

centered over 25, indicating that 𝑏1
𝑑𝑚  is unbiased in this context.  The IV estimator, IV OBS in the figure, 

is downwards biased, but not to the same degree as DIM OBS. 
 

Figure 2 Histogram of 1000 treatment effect estimates generated from various estimators.  Sample 
size of 100 in each case.   

 
Note: DIM OBS: difference in means estimator using observational data.  IV OBS: instrumental variables estimator 
using observational data (instrument is DocType).  DIM RCT: difference in means estimator where treatments 
randomly assigned.  Sample size = 100 in each case. 

 
I next examined the properties of the IV estimator using observational data with different values of 𝑛 
and different degrees of correlation between the instrument and treatment assignment.  First, I 
considered the IV estimator using a smaller sample size (𝑛 = 50).  This case is denoted “IV n=50”.  Then I 
considered the behavior of the IV estimator where 𝑛 = 100 as before, but where the correlation 
between 𝑑𝐶 and 𝐷 was weakened.  Specifically, I modified (T2) so that the coefficient on 𝑑𝐶 was half as 
large in absolute value as before:  
 
𝐼𝑛𝑑𝑒𝑥 = −40 + 0.5𝑎𝑔𝑒 + 0.5𝐹 − 𝟏𝟎𝑑𝐶 + , ~ 𝑈[−10,10]     (T3) 
 
This case was denoted as “IV n=100 weak instrument”.  Next, I further weakened the influence of 𝑑𝐶 
and 𝐷 by modifying (T2) so that the coefficient on 𝑑𝐶 was even smaller:  
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𝐼𝑛𝑑𝑒𝑥 = −40 + 0.5𝑎𝑔𝑒 + 0.5𝐹 − 𝟔𝑑𝐶 + , ~ 𝑈[−10,10]     (T4) 
 
but compensated by increasing the sample size from 𝑛 = 100 to 𝑛 = 2500.  This case was denoted as 
“IV n=2500 very weak instrument”.   
 
The resulting sampling distributions are displayed in Figure 3.  The IV estimator using 𝑛 = 50 is 
compared to the IV estimator using 𝑛 = 100 (which appears as “IV OBS” in the previous figure).  Note 
the smaller sample size decreases the precision of the estimator but, ironically, reduces the bias.  
Weakening the correlation between 𝐷 and 𝑑𝐶 while using 𝑛 = 100 resulted in a marked decrease in 
estimator precision – estimates ranged from less than 0 to over 80.  Weakening the correlation even 
further while using 𝑛 = 2500 produced an IV estimator with roughly the same precision as the “IV 
n=50” case, but with a marked increase in bias. 
 

Figure 3 Histogram of 1000 treatment effect estimates generated from instrumental variables 
estimators.     

 
Note: IV n=100: instrumental variables estimator with sample size (n) = 100.  IV n=50: instrumental variables 
estimator with n = 50.  IV n=100: instrumental variables estimator with n = 100 and correlation between DocType 
and D weakened.  IV n=2500: instrumental variables estimator with n = 2500 and correlation between DocType and 
D weakened further.  In each case instrument is DocType. 

 
The take home message is that small sample sizes or weak correlation between instrument and 
treatment can adversely affect the performance of the IV estimator.  The IV estimator can also behave 
poorly when an invalid instrument is used, i.e. when there is some correlation between the instrument 
and the unmodelled determinants of 𝐻.  Indeed, Bound and colleagues (1995) demonstrate that the 
adverse effects of weak instruments on IV performance are exacerbated when there is even weak 
correlation between the instruments and the error.  A final determinant of the finite sample 
performance of the IV estimator is the number of instruments chosen.  More instruments are better, 
but only up to a point.  As Kennedy (2003, page 175) notes, as more instruments are added, in small 

samples, 𝐷  becomes closer and closer to 𝐷 “and so begins to introduce the bias that the IV procedure is 
trying to eliminate.  This bias is proportional to the inverse of the F test statistic for testing the 
significance of the instrumental variables in explaining the explanatory variable for which it is to serve as 
an instrument.”    
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For further discussions of weak instruments and the generalized IV estimator see Staiger and Stock 
(1997), Hahn and Hausman (2002), and Stock, Wright and Yogo (2002). 
 

Are the instruments powerful and valid? 
 
The preceding discussion suggests that it is important to assess whether the two requirements of one’s 
instruments are satisfied.   
 
Assumption 1: The instruments are correlated with the treatment 
 
If they are, then the instruments should have good predictive power in the first stage regression of the 
generalized IV estimator, i.e. the linear regression of 𝐷 on the instruments and the additional 
determinants of 𝐻 that are explicitly controlled for.  This can be tested using an F test of the restriction 
that the instruments are jointly insignificant.  Small values of this F statistic (typically a value of less than 
10) indicate a violation of Assumption 1. 
 
Assumption 2: The instruments are uncorrelated with the error 
 
This is technically untestable as the error is unobserved.  One can get a handle on this, however, by 
following a practice used by experimentalists.  Specifically one should ensure that the average values of 
the observed determinants of 𝐻 are approximately equal across the different categories of the 
instrument (or the predicted instrument if generalized IV is used).   The intuition is that if the 
instrument is correlated with observables that affect 𝐻, it is likely also correlated with the 
unobservables that enter the error term. 
 
Assumption 2 can be formally tested if one has two or more instruments, under the assumptions that 
one of the instruments is valid and the treatment effect does not vary by individual.  One estimates the 
error term using the residuals from the IV-estimated model: 
 

𝝊𝒊𝒗 = 𝑯 − {𝑏0
𝑖𝑣 + 𝑏1

𝑖𝑣𝑫 + 𝑾′𝒈𝒊𝒗} 
 

where 𝑏0
𝑖𝑣 , 𝑏1

𝑖𝑣  and 𝒈𝒊𝒗 denote the IV estimates of the parameters in equation (H2).  One then estimates 

a regression of 𝝊𝒊𝒗 on (𝑾, 𝒁).  Large values of 𝑛 × 𝑅2 from this regression indicates that the 

instruments in 𝒁 explain some of the variation in 𝝊𝒊𝒗, which is a violation of Assumption 2.  If the 
assumption is satisfied, this test statistic is distributed 𝜒2 with the number of degrees of freedom equal 
to the number of instruments minus one.  See Davidson and MacKinnon (2003) for details. 
 

Is IV necessary? 
 
If OLS can be used, it should be used because OLS has a much smaller variance than IV and is easier to 
use.  OLS can be used under any of the following circumstances: 
 

1. if one can sign the bias associated with OLS.  Suppose, for instance, that OLS is known to 
underestimate a treatment effect.  Then if the treatment effect estimate is positive despite this 
bias, one has good evidence that the treatment effect really is positive. 
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2. if the sample size is small or the instruments are only weakly correlated with the treatment 𝐷.  
In this case IV could be wildly inaccurate and it might be better to use OLS and accept its bias. 

3. if, after controlling for observable determinants of 𝐻, the error term is not correlated with the 
treatment (i.e. if the expected error is same across the different treatment groups: 𝐸[|𝐷 =
1] = 𝐸[|𝐷 = 0]).  If this condition is satisfied then IV and OLS should give similar estimates – 
they should differ only by chance.  A chi-squared based test of the difference in parameter 
estimates can be used to verify this.  An equivalent test is to estimate the residuals, 𝑒 , from the 
regression of 𝐷 on  𝑾, 𝒁 .  Then one estimates the regression of 𝐻 on 𝑫, 𝑾 and 𝑒 .  If IV and 
OLS give similar estimates, the variable 𝑒  will not be statistically different from zero.  Johnson 
and DiNardo (1997, page 339) provide the intuition behind this test.  The regression of 𝐷 on 
 𝑾, 𝒁  splits the variation in 𝐷 into two parts.  One part, the predicted values from this 
regression (each of which is a linear combination of the variables in  𝑾, 𝒁 ), is uncorrelated with 
, assuming that the instruments are valid.  The other part, the residuals, is uncorrelated with  
if the condition is satisfied.  If the condition is not satisfied, then these residuals will explain 
successfully some of the variation in , (or, equivalently, some of the variation in 𝐻 that remains 
after conditioning on  𝑾, 𝒁 ) and IV estimation may be warranted. 

 

The reduced form model 
 
Even if the IV estimator performs poorly, one can learn about the treatment effect by estimating via OLS 
what is known as the ‘reduced form’ model – the linear regression of the health outcome 𝐻 on the 
instruments and any health determinants that are explicitly modeled (Angrist and Krueger 2001).  The 
estimated effect of the instrument on 𝐻 (i.e. the ‘reduced form’ estimate or 𝑅𝐹𝐸) represents the ‘net’ 
effect of the instrument on 𝐻.  As I demonstrate formally below, 𝑅𝐹𝐸 is the product of the effect of the 
instrument on treatment choice 𝐷 (which reflects the strength of the instrument or 𝐼𝑆) and the effect of 
𝐷 on 𝐻 (i.e. the treatment effect or 𝑇𝐸).  Algebraically, this can be expressed as   
 
𝑅𝐹𝐸 =  𝐼𝑆 × 𝑇𝐸          (18) 
 
If 𝑅𝐹𝐸 is close to 0, then either 𝐼𝑆 is close to 0 (the instruments are weak) or 𝑇𝐸 is close to 0 (the 
treatment effect is negligible) or both of these are true.  If one can rule out the former using the results 
of the first stage regression of the generalized IV estimator, then there is evidence that 𝑇𝐸 is 0 – new 
treatment does not work better than the standard.  If 𝑅𝐹𝐸 is appreciably different from 0, then 𝑅𝐹𝐸, 
combined with the estimates of 𝐼𝑆 from the first stage regression of the impact of the instrument on 𝐷, 
can be used to deduce the magnitude and direction of the treatment effect.  Specifically, rearranging 
(18), 𝑇𝐸 can be expressed as the ratio of 𝑅𝐹𝐸 to 𝐼𝑆: 
 

𝑇𝐸 =  
𝑅𝐹𝐸

𝐼𝑆
           (19) 

 
The reduced form model is analogous to ‘intention to treat’ analysis of RCT data, wherein one compares 
the average 𝐻 of subjects grouped by the treatment type that they were randomly assigned to (i.e. the 
value of the instrument), irrespective of the treatment actually used.  Equation (19) suggests that the 
treatment effect can be derived from intention to treat estimates (𝑅𝐹𝐸) and estimates of 𝐼𝑆.  Indeed, it 
is instructive to note that (19) simply restates equation (13).    
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As an example Evans and Ringel (1999) assess the effect of state cigarette taxes on infant low birth 
weight; infant birth weight is a strong predictor of infant mortality and, among surviving infants, health 
in later years.  Cigarette taxes, of course, do not affect birth weight directly; they affect birth weight only 
through their impact on maternal smoking.  Hence Evans and Ringel could have used cigarette taxes as 
an instrument for maternal smoking participation in a model of infant low birth weight status.  This 
approach is problematic, however, for several reasons.  One reason is that binary outcome models can 
be imprecisely estimated using IV.  Instead, they estimated using probit regression the impact of 
cigarette taxes on infant low birth weight status (the reduced form estimate) and divided this by the 
estimated impact of cigarette taxes on maternal smoking participation (the first stage model) to derive 
an estimate of the impact of maternal smoking participation on infant low birth weight status. 
 
To illustrate more formally, suppose that 𝐻 is determined by the equation: 
 
𝐻 = 𝑓 𝐷, 𝑾,            (18) 
 
where, as before, 𝑾 are the known exogenous health determinants and  is a variable reflecting the 
influence of all other health determinants.  And suppose that treatment assignment 𝐷 is determined by 
the equation: 
 
𝐷 = 𝑔 𝒁, 𝑾,             (19) 
 
where 𝒁 are the instruments, and is a variable reflecting the influence of all other determinants of 
treatment choice.  The reduced form equation is derived by substituting (19) into (18): 
 
𝐻 = 𝑓 𝑔 𝒁, 𝑾,  ,𝑾,           (20) 
 
The net effect of instrument 𝑍𝑗  on 𝐻 is found by differentiating (20) w.r.t. 𝑍𝑗 : 

 
𝜕𝐻

𝜕𝑍𝑗
=

𝜕𝑓 𝐷, 𝑾,  

𝜕𝐷

𝜕𝑔 𝒁, 𝑾,  

𝜕𝑍𝑗
 

 

To learn about 
𝜕𝑓 𝐷,𝑾,  

𝜕𝐷
, one can estimate 

𝜕𝑔 𝒁,𝑾, 

𝜕𝑍𝑗
 (from the first stage regression) and 

𝜕𝐻

𝜕𝑍𝑗
 from the 

reduced form regression model.  The reduced form regression model:  
 
𝐻 = 𝛼0 + 𝒁′𝜶𝟏 + 𝑾′𝜶𝟐 + 𝜔 
 
is an approximation to equation (20).  The 𝛼’s are unknown parameters that can be estimated using OLS 
and 𝜔 is the composite error term derived from and .  The estimates of 𝜶𝟏 are the reduced form 
estimates.   

IV estimation of variable treatment effects 
 
The effect of some treatment 𝑥 on a health outcome 𝑦 might vary between individuals.  For instance, 
some medications are less effective among ‘poor metabolizers’.  Some individuals apparently do not 
seem to suffer any adverse consequences from cigarette smoking, while others do.  A recent literature 
has analyzed the properties of the IV estimator when treatment effects vary by individual and 
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individuals choose the best treatment option using private information (information not observed by 
the researcher).   
 
An illustrative example is Newhouse and McClellan’s analysis of the impact of post-MI cardiac 
revascularization on mortality rates.  Recall that they used as an instrument the ‘differential distance’, 
the additional distance (if any) between the hospital closest to the patient’s residence and a hospital 
with revascularization capacity.   While this instrument was highly correlated with the receipt of 
revascularization, it was the not the only determining factor.  Another, unobserved, factor, the patient’s 
suitability for revascularization, was also likely important.  Indeed patients who were ill suited for 
revascularization would almost certainly not undergo the procedure, no matter how close they lived to a 
hospital which could perform the procedure.  Other patients who were ideal candidates for the 
procedure would eventually likely receive it, again, irrespective of their proximity to a hospital.  So the IV 
estimator in this case tells us about the impact of revascularization on the subset of patients occupying 
the middle ground between being ideal candidates and being ill-suited for the procedure.  For such 
patients, the effectiveness of the procedure is unclear and factors such as geographic proximity to a 
revascularization facility could be deciding factors in treatment decisions.  Note that in this case, the IV 
treatment effect estimate underestimates the effectiveness of treatment for ideal candidates and 
overestimates the effectiveness of the treatment among those ill suited for the procedure. 
 
To obtain more precise results about the behavior of the IV treatment effect estimator when treatment 
effects vary, let us modify the health outcome model (H1) slightly: 
 
𝐻𝑖 = 𝛽0 + 𝛽1𝑖𝐷𝑖 + 𝜀𝑖             
 
where 𝑖 indexes subjects.  Hence 𝛽1𝑖  reflects the treatment effect specific to subject 𝑖.  Imbens and 
Angrist (1994) demonstrate that the IV estimator converges to a weighted average of treatment effects 
where the weights are largest for subjects who vary their treatment choice 𝐷𝑖  by the greatest degree in 
response to changes in the instruments.  In particular, following the nomenclature of Auld (2006), if the 
instrument 𝑍 takes 𝐺 different values, then under fairly general conditions the IV estimate of ‘the’ 
causal effect of 𝐷 on 𝐻 using 𝑍 as an instrument converges to: 
 

𝑏1
𝑖𝑣 →  𝜆𝑔𝛽1𝑔

𝐺

𝑔=1
 

 
where 𝛽1𝑔  is the average effect of 𝐷 on 𝐻 in subpopulation 𝑔 and the 𝜆𝑔 ’s are weights that depend on 

how much 𝐷 varies with 𝑍 in subpopulation 𝑔.  Imbens and Angrist call 𝑏1
𝑖𝑣  the ‘local average treatment 

effect’ (LATE).  Recalling our previous example, one could imagine there being just two values of 𝑔: 
those who live near (𝑔 = 1) and those who live far away  𝑔 = 2  from a catheterization hospital.  In 
both groups, those whose catheterization treatment decision does not depend on distance will 
contribute nothing to the treatment effect estimate.  Hence the IV estimate reflects the average of the 
treatment effects in the remaining patients – those whose catheterization treatment decision depends 
on distance.   
 
The lesson is that when treatment effects vary, IV estimates will tend to reflect the treatment effects of 
those whose treatment decision varies the most with variation in the instrument.  One implication is 
that the interpretation of the IV estimator can depend on the instrument used.  Two analysts, each using 
valid instruments, can legitimately produce different LATE estimates.  To illustrate, suppose that 
catheterization treatments were assigned using a coin toss, not differential distance.  Hence there would 



19 

 

again be two values of 𝑔: those randomized to receive catheterization treatment (𝑔 = 1) and those 
randomized to standard care (𝑔 = 2).  If subjects were compliant, then the mix of patient types should 
be the same in both groups, implying that the weights 𝜆𝑔and the average treatment effect 𝛽1𝑔  should 

be the same in both groups as well.  Moreover because each patient’s treatment alllocation is equally 
dependent on the outcome of the coin toss, each patient will have an identical weight and the IV 
estimator will converge to a simple average of the 𝛽1𝑖 .  Note that the interpretation of the IV estimator 
in this context is different than the interpretation when distance was used as an instrument.  Another 
implication of the LATE framework is that when several instruments are used, it can be difficult to 
understand whose treatment decisions are being most affected by variation in the instruments 
(Heckman 1997). 

IV estimation of treatment effects in nonlinear models 
 
The models consider so far have been linear in parameters.  Some models, however, are nonlinear.  Of 
these nonlinear models, some can be rendered linear via a suitable transformation.   For instance, if 
health outcomes are determined by the process:  
 

𝐻 = 𝑒𝛽0𝑒𝛽1𝐷𝑤𝛽2𝑒           (H4) 
 
Then, as Davidson and MacKinnon (2003, page 22) note, the model can be rendered linear in the 
parameters by taking the logarithm of both sides: 
 
ln 𝐻 = 𝛽0 + 𝛽1𝐷 + 𝛽2ln𝑤 +          (H5) 
 
IV estimation of intrinsically nonlinear models can be handled using nonlinear IV estimation.  Nonlinear 
IV estimation is suitable when one can formulate one’s model in the form of a nonlinear regression: 
 
𝐻𝑖 = 𝒙𝑖(𝜷) + 𝜀𝑖            (21) 
 
where 𝒙𝑖 𝜷  is a nonlinear regression function that depends on 𝜷, a vector of 𝐾 unknown parameters, 
the treatment indicator 𝐷𝑖  and any other covariates included in the model.  As before, 𝜀𝑖  represents the 
influence of all other determinants of 𝐻𝑖  that are not explicitly modeled, some of which may be 
associated with 𝐷𝑖 .   
 
This framework can accommodate a variety of models.  Suppose, for example, that 𝐻𝑖  is a count 
variable; perhaps 𝐻𝑖  is the number of chronic health problems afflicting subject 𝑖.  The Poisson model of 
𝐻𝑖  can be written as: 
 
𝐻𝑖 = exp(𝛽0 + 𝛽1𝐷𝑖 + 𝑾𝒊′𝜸) + 𝜀𝑖          (22) 
 
Conversely 𝐻𝑖  might be a binary outcome; it could be the case that 𝐻𝑖 = 1 if subject 𝑖 has high blood 
pressure and 𝐻𝑖 = 0 otherwise.  The logit model of the probability that 𝐻𝑖 = 1 can be written as:3  

                                                 
3
 As Davidson and MacKinnon (2003, page 456, 476) note, one could improve estimator precision by dividing 

observations on 𝐻𝑖  and 𝒙𝑖 𝜷  by the square root of the observation’s error variance.  The error variance in the 
Poisson case is equal to its conditional mean, while the error variance in the logit case is simply the variance of a 

Bernoulli distributed random variable: 𝑝𝑖(1 − 𝑝𝑖) where 𝑝𝑖 =
exp (𝛽0+𝛽1𝐷𝑖+𝑾𝒊′𝜸)

1+exp (𝛽0+𝛽1𝐷𝑖+𝑾𝒊′𝜸)
. 
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𝐻𝑖 =
exp (𝛽0+𝛽1𝐷𝑖+𝑾𝒊′𝜸)

1+exp (𝛽0+𝛽1𝐷𝑖+𝑾𝒊′𝜸)
+ 𝜀𝑖           (23) 

 
Nonlinear IV models are somewhat controversial.  Terza (2006) is skeptical about the realism of models 
of the form (21) because they treat observed and latent determinants of health outcomes 
asymmetrically.  While observed determinants are modeled using the nonlinear function 𝒙𝑖 𝜷 , latent 
determinants are relegated to the additive error term.  Hence the marginal effects of observed and 
unobserved covariates on 𝐻 can be quite different, with no apparent justification.  The one exception is 
the exponential model (22); Terza demonstrates that this model treats observed and unobserved health 
determinants symmetrically.  
 

Consistent estimation of the parameters of nonlinear regression models requires that 𝜷 , the estimated 
values of 𝜷, satisfy the following ‘moment conditions’: 
   

𝑿 𝜷  ′  𝑯 − 𝒙 𝜷   = 𝟎          (24) 

 

where 𝑿 𝜷 ≡
𝜕𝒙 𝜷 

𝜕𝜷
 is the matrix of 𝑛 observations on the 𝐾 partial derivatives of the regression 

function with respect to each of the 𝐾 parameters in 𝜷.  These moment conditions are the 
generalization to the nonlinear regression context of the condition in the linear context that the errors 
be independent of the treatment.  For instance, if the 𝑖𝑡𝑕 observation on 𝒙𝑖 𝜷  is  
 
𝒙𝑖 𝜷 = 𝛽0 + 𝛽1𝐷𝑖  

 
Then  

𝑿𝑖 𝜷 ′ ≡  
𝜕𝒙𝑖 𝜷 

𝜕𝛽0

𝜕𝒙𝑖 𝜷 

𝜕𝛽1
 =  1 𝐷𝑖  

 
Hence (24) would require that 𝐷 and 𝜀 be orthogonal (i.e. the errors do not vary with values of 𝐷). 
When the errors are not orthogonal to 𝑿𝑖 𝜷  then one can use nonlinear IV provided that one has a set 
of instruments 𝒁 that satisfy the condition that:  
 

𝑿 𝜷  ′𝑷𝒁∗  𝑯 − 𝒙 𝜷   = 𝟎         (25) 

 

where 𝑷𝒁∗  was previously defined and 𝑿 𝜷  ′𝑷𝒁∗ are the predicted values from regressions of the 

columns of 𝑿 𝜷   on 𝒁∗.  Hence condition (22) states that the summary instruments be independent of 

the error terms.  The nonlinear IV estimator is the estimate of 𝜷 that solves (25); this estimator is 
equivalent to the estimate of 𝜷 that minimizes the criterion function: 
 

𝑄 𝜷, 𝑯 =  𝑯 − 𝒙 𝜷  ′𝑷𝒁∗ 𝑯 − 𝒙 𝜷         (26) 
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IV estimation of treatment effects in binary outcome models 
 
How can one use IV to estimate treatment effects on binary health outcomes?  If there is a binary 
treatment and one binary instrument, then one can use equation (13A).  In more general settings, with 
multiple instruments, and explicit controls for observed health determinants, one has the following 
options: 
 

1. One could model the binary outcome using logit or probit regression and use the nonlinear IV 
estimator if one can find instruments satisfying (25).  Note that this estimator is sometimes 
misused.  Recall that IV estimation of the parameters of the linear model can be performed in 

two steps, wherein 𝐷 is replaced by 𝐷 , the predicted values from the regression of 𝐷 on 𝒁∗, and 
this modified model estimated by OLS as per usual.  When the model is nonlinear, IV estimates 

minimize the criterion function (26); replacing 𝐷 with 𝐷  and estimating the modified model by 
nonlinear least squares will not yield consistent estimates (Davidson and MacKinnon, 1993, page 
225; Gail et al 1984).  Hence the methods used in Howard (2000) are questionable.  The author 
estimated a probit regression of waiting time for organ transplant on the probability of graft 
failure.  In this regression, data on actual waiting time was replaced with the predicted values 
from a regression of waiting time on indicators of recipient blood type and various predictors of 
graft success.  This is technically incorrect. 

 
2. Another option would be to estimate the reduced form model and the first stage model and, 

using these estimates, infer the treatment effect.  For instance, Howard could have estimated 
the probit model for graft success on the indicators of recipient blood type and various 
predictors of graft success.  This estimate, combined with an estimate of the impact of recipient 
blood type on transplant wait times, could have been used to infer the impact of waiting on the 
probability of graft success.  

 
3. The generalized IV estimator could be applied to binary outcomes, but as was discussed earlier, 

this method can yield imprecise estimates and nonsensical predictions. 
 

4. A ‘fully parametric’ model could be used.  These methods require that the analyst specify the 
joint distribution of the unobserved determinants of treatment choice and the likelihood that 
the binary outcome is equal to one.  The Stata command ivprobit implements this method.  
Another approach, useful if the effect of a binary treatment varies across individuals and 
individuals choose the best treatment option using private information, is to implement the 
methods used by Auld (2005).  This approach requires that one specify the joint distribution for 
three unobserved factors: the determinants of the propensity to choose one treatment over the 
other, the determinants of outcomes when the new treatment is chosen and the determinants 
of outcomes when the standard treatment is chosen. 

 

Concluding Remarks 
 
Instrumental variables estimation can be a useful alternative to conventional covariate adjustment 
approaches.  Finding good instruments, however, is not easy.  Successful application of IV requires 
either experimental variation in treatment assignment or a source of quasi-experimental variation that 
is incidental to the outcome being analysed.  Furthermore, the desirable properties of IV are guaranteed 
to hold only as the sample size grows very large.  In samples of modest size, IV estimates can be wildly 
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inaccurate if instruments have only a modest effect on treatment or if there is even a weak correlation 
between instrument and the outcome being modeled.  Finally, IV estimation when treatment effects are 
heterogenous requires careful consideration of the subjects whose treatment status is affected by 
variation in the instruments.  IV reveals nothing about treatment effectiveness among subjects whose 
treatment status is non-responsive to variation in the instrument. 
 

References 
 
Almond D. Is the 1918 influenza pandemic over? Long term effects of in utero influence influenza 
exposure in the post 1940 US. Journal of Political Economy 2006; 114:672-712. 

Angrist J, Krueger A. Instrumental variables and the search for identification: from supply and demand to 
natural experiments. Journal of Economic Perspectives 2001; 15(4):69-85. 

Auld MC. Causal effect of early initiation on adolescent smoking patterns. Canadian Journal of 
Economics 2005; 38:709–734. 

Auld MC. Using observational data to identify the effects of health-related behavior. In Andrew Jones 
(ed) Elgar Companion to Health Economics, Elgar, 2006. 

Berg GJVD, Lindeboom M, Portrait F. Economic conditions early in life and individual mortality. American 
Economic Review 2006; 96:290-302.  

Bound J, Jaeger DA, Baker RM. Problems with instrumental variables estimation when the correlation 
between the instruments and the endogenous explanatory variable is weak. Journal of the American 
Statistical Association 1995; 90:443– 450. 

Davidson R, MacKinnon JG. Econometric Theory and Methods. New York: Oxford University Press, 2004. 

Davidson R, MacKinnon JG. Estimation and Inference in Econometrics. New York: Oxford University 
Press, 1993. 

Deaton A. The Analysis of Household Surveys: A Microeconometric Approach to Development Policy. 
Johns Hopkins University Press, 1997 

Evans WN, Ringel JS. Can higher cigarette taxes improve birth outcomes? Journal of Public Economics 
1999; 72:135–54.   

Fisher ES, Wennberg D, Stukel T, Gottlieb D, Lucas FL, Pinder EL. The implications of regional variations 
in Medicare spending. Part 1: the content, quality, and accessibility of care. Annals of Internal Medicine 
2003a; 138(4):283-287. 

Fisher ES, Wennberg D, Stukel T, Gottlieb D, Lucas FL, Pinder EL. The implications of regional variations 
in Medicare spending. Part 2: health outcomes and satisfaction with care. Annals of Internal Medicine 
2003b; 138(4):288-299. 

Gail MH, Wieand S, Piantadosi S. Biased estimates of treatment effect in randomized experiments with 
nonlinear regressions and omitted covariates. Biometrika 1984; 71:431-444 



23 

 

Hahn J, Hausman J. A new specification test for the validity of instrumental variables. Econometrica 
2002; 70(1):163–189. 

Heckman J. Instrumental variables: a study of implicit behavioral assumptions used in making program 
evaluation. The Journal of Human Resources 1997; 32: 441-462. 

Ho V, Hamilton B, Roos L.  Multiple approaches to assessing the effects of delays for hip fracture 
patients in the U.S. and Canada. Health Services Research 2000; 34:1499-1518. 

Howard D. The impact of waiting time on liver transplant outcomes. Health Services Research 2000; 35: 
1117–1134.  

Imbens G, Angrist J. Identification and estimation of local average treatment effects. Econometrica 1994; 
62(2):467-76. 

Johnson J, DiNardo J. Econometric Methods, 4th edition. McGraw Hill, 1997. 

Jones AM. Panel data methods and applications to health economics. University of York Health 
Econometrics and Data Group Working Paper 07/18, 2007. 

Kennedy P. A Guide to Econometrics, 5th edition. Cambridge MA: MIT Press, 2003. 

Li Q, Racine JS. Nonparametric Econometrics: Theory and Practice. Princeton University Press, 2007. 

Lleras-Muney A. The relationship between education and adult mortality in the United States. Review of 
Economic Studies 2005; 72:189-221. 

Newhouse J, McClellan M. Econometrics in outcomes research: The use of instrumental variables. 
Annual Review of Public Health 1998; 19:17-34. 

Snow J. On the Mode of Communication of Cholera. London: Churchill, 1855. [Reprinted (1965) by 
Hafner, New York.] 

Staiger D, Stock JH. Instrumental variables regression with weak instruments. Econometrica 1997; 
65:557–586. 

StataCorp. Stata Statistical Software: Release 10. College Station, TX: StataCorp LP, 2007. 

Stock JH, Wright JH, Yogo M. A survey of weak instruments and weak identification in generalized 
method of moments. Journal of Business and Economic Statistics 2002; 20(4): 518-529. 

Stukel TA, Fisher ES, Wennberg DE, Alter DA, Gottlieb DJ, Vermeulen MJ. Analysis of observational 
studies in the presence of treatment selection bias: effects of invasive cardiac management on AMI 
survival using propensity score and instrumental variable methods. Journal of the American Medical 
Association 2007;297:278-285. 

Terza JV. Estimation of policy effects using parametric nonlinear models: a contextual critique of the 
generalized method of moments. Journal of Health Services and Outcomes Research Methodology 2006; 
6:177-198. 

http://www.hret.org/hret/publications/hsr.html

