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The problem

Suppose we have a regression model like

ymt = xmtβ + νmt

where the indexes are
m = 1...M t = 1...Tm

The ms index “groups” of observations and the ts index individual observations
within groups. The t suggests multiple observations over time, but the t index
can represent any arbitrary index for observations grouped along two
dimensions. The m subscript in Tm denotes that we may have groups of
different sizes (“unbalanced” groups). It will also be convenient to have a
variable id that identifies groups.

We assume weak exogeneity, i.e., E(xmtνmt) = 0, so the OLS estimator is
consistent.

However, the classical assumption that νmt is iid (independently and identically
distributed) is clearly violated in many cases, making the classical OLS
covariance estimator inconsistent.
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Clustered Errors

Model:
ymt = xmtβ + νmt

A natural way of modeling the structure of the covariance of ν is to
assume “clustered errors”: observations within group m are correlated in
some unknown way, but groups m and j do not have correlated errors.

Thus
E (vmtνms) 6= 0

E (vmtνjs) = 0

and the variance-covariance matrix of ν is block-diagonal: zero across
groups, nonzero within groups.

This kind of problem arises all the time.
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Examples of Clustering

Example:

We have a survey in which blocks of observations are selected randomly,
but there is no reason to suppose that observations within block have
uncorrelated errors. For example, consider a random sample of schools
that contain students whose response to some policy X might be
correlated (in which case m indexes school and t indexes student within
school).

Example:
ymt = xmtβ + um + emt

where we decompose the error νmt = um + emt and the eim are iid .

This is the standard “error components” model in panel data. It is
traditionally addressed using the fixed or random effects estimators. If
the emt are iid , the standard variance-covariance estimator is consistent.
But....
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More Examples of Clustering

Example:
ymt = ymtβ + um + emt

where now the the emt may be serially correlated, E (emtems) 6= 0. If this
is the case, the fixed or random effects estimators will be consistent, but
the standard covariance estimators will not.

Example:

Observations are randomly sampled, but the explanatory variable X is
measured at a higher level (see Moulton 1990; Bertrand, Duflo, and
Mullainathan 2004). For example, students might be randomly sampled
to model test scores as a function of school characteristics, but this will
result in clustered errors at the school level. If students were randomly
sampled to model test scores as a function of classes taken (measured at
the individual level), but classes taken and their effects on test scores are
correlated within school, clustering of errors at the higher (school) level
may result.
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Still More Examples of Clustering

Example: Systems of equations

Say we have a two-equation model:

ym1 = xm1β1 + νm1

ym2 = xm2β2 + νm2

Say that νm1 and νm1 are both iid , so that each equation could be
estimated separately and the standard covariance estimator would be
consistent. However, we want to test cross-equation restrictions involving
both β1 and β2. If we “stack” the data and estimate as a
(seemingly-unrelated) system, the disturbances will be “clustered”:
E (νm1νm2) 6= 0 because the error for the mth observation in equation 1
will be correlated with the error for the mth observation in equation 2.
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Still More Examples of Clustering

Example: Spatial Autocorrelation

We have data on US counties or cities. We expect counties or cities that
are geographically close to each other will share some unobservable
heterogeneity, but localities that are far apart will be less correlated; that
is, our data are spatially autocorrelated. However, the nature of the
problem we are investigating is such that US states can be regarded as
essentially independent (e.g., they run separate legal, educational and tax
systems). Thus it is reasonable to assert that observations on localities
are independent across states but dependent within states, i.e., they are
clustered by state.

NB: This is why the number 50 is of particular interest. Thus the
cluster-robust covariance estimator relies on asymptotics where the
number of clusters goes off to infinity. Is 50 far enough on the way to
infinity?
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How to Deal with Clustered Errors?

Model: ymt = xmtβ + νmt

Structure of the disturbances is block-diagonal:

Var(ν) =


Σ1 0

. . .

Σm

. . .

0 ΣM


Two questions: (1) Efficiency of parameter estimates. (2) Consistency of
standard errors (var-cov matrix of β).

Two approaches: (1) GLS, generalized least squares. Model the
clustering. What is the structure of Σm, the within-group correlation?
(2) “Robust” formulation. Allow for arbitrary forms of clustering. Obtain
consistent standard errors for any structure of Σm.
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Example: Fixed Effects and Clusters

Example: The fixed effects panel data model

Decompose the error term νmt = um + emt so that the model is

ymt = xmtβ + ui + emt

and we assume the emt are iid . The structure of the within-group correlation is
very special: since all the observations in a group share the same um, every
observation within a group is equally-well correlated with every other
observation. The structure of Σm in the block-diagonal var(ν) is σ2

u everywhere
except the diagonal of the block, where it is σ2

u + σ2
e .

The GLS approach is to use this model of the error structure. With the FE
estimator, we partial-out the um by demeaning, and we’re left with an iid
idiosyncratic error emt . Note that this approach addresses both (1) efficiency of
the estimate of β and (2) consistency of the estimated standard errors.

What’s wrong with this approach? Nothing, if we’ve modeled the structure of
the disturbances correctly. But if we haven’t, then our estimated β isn’t
efficient – not such a problem – and our estimated standard errors are wrong –
big problem!
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The “Robust” Approach: Cluster-Robust Standard Errors

“Clustered errors” are an example of Eicker-Huber-White-“sandwich”-robust
treatment of errors, i.e., make as few assumptions as possible. We keep the
assumption of zero correlation across groups as with fixed effects, but allow the
within-group correlation to be anything at all.

Some notation:

E(x ′i yi ) ≡ Qxy Q̂xy =
1

N
X ′Y

E(x ′i xi ) ≡ Qxx Q̂xx =
1

N
X ′X

Covariance matrix of orthogonality conditions (“GMM-speak”):

S = AVar(g(β)) = lim
N→∞

1

N
E(X ′νν′X )

“Sandwich” variance matrix of β:

V = Q−1
xx SQ−1

xx
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The “Robust” Approach: Cluster-Robust Standard Errors

“Sandwich” variance matrix of β:

V = Q−1
xx SQ−1

xx

Qxx is estimated by Q̂xx . What will give V̂ its robustness is our choice of the
estimator Ŝ .

If errors are iid (no robustness), then S = σ2Qxx , we estimate Ŝ with σ̂2Q̂xx

where σ̂2 is simply the root mean squared residual ν̂, and our estimate of the
variance of β reduces to V̂ = σ̂2Q̂xx , which is the standard, “classical” OLS
variance estimator.
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The “Robust” Approach: Cluster-Robust Standard Errors

“Sandwich” variance matrix of β:

V = Q−1
xx SQ−1

xx

If errors are independent but heteroskedastic, we use the
Eicker-Huber-White-“robust” approach. Ŝ = 1

N

∑N
i=1 x ′i xi ν̂

2
i or, in matrix

notation, Ŝ = 1
N

X ′BX where B is a matrix with the squared residuals ν̂2
i

running down the diagonal and zeros elsewhere. This estimate of S is robust to
arbitrary heteroskedasticity, and therefore so is our estimate of V . The
intuition is that although B (which looks like the covariance of ν) is NxN, S is
KxK and fixed. We can’t get a consistent estimate of the covariance of ν – you
can’t estimate an nxn matrix with only n observations – but we don’t need it.
We need only a consistent estimate of S , and with the number of observations
N going off to infinity, the asymptotics give us this.
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The “Robust” Approach: Cluster-Robust Standard Errors

The cluster-robust approach is a generalization of the
Eicker-Huber-White-“robust” to the case of observations that are correlated
within but not across groups. Instead of just summing across observations, we
take the crossproducts of x and ν̂ for each group m to get what looks like (but
isn’t) a within-group correlation matrix, and sum these across all groups M:

ŜCR =
1

N

M∑
m=1

Tm∑
t=1

Tm∑
s=1

x ′mtxms ν̂mt ν̂ms
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The “Robust” Approach: Cluster-Robust Standard Errors

ŜCR =
1

N

M∑
m=1

Tm∑
t=1

Tm∑
s=1

x ′mtxms ν̂mt ν̂ms

The intuition is similar to the heteroskedasticity-robust case. Since the
within-group correlations are arbitrary and can vary from group to group, we
can’t estimate it with only one observation on each group. But we don’t need
this - we need only a consistent estimate of S , and if the number of groups M
goes off to infinity, the asymptotics give us this.

This ŜCR is consistent in the presence of arbitrary within-group correlation as
well as arbitrary heteroskedasticity. This is what “cluster-robust” means in this
context.
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The “Robust” Approach: Cluster-Robust Standard Errors

Here’s an alternative exposition that highlights the parallels with the standard
and heteroskedastic-robust covariance estimators.

General case: Covariance matrix of orthogonality conditions (“GMM-speak”):

S = AVar(g(β)) = lim
N→∞

1

N
E(X ′νν′X )

Independently-distributed observations means cov(νi , νj ) = 0, and S becomes
S = E(x ′i xiν

2
i ).
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The “Robust” Approach: Cluster-Robust Standard Errors

Homoskedasticity means observations are identically as well as independently
distributed (iid), and so S = E(x ′i xiν

2
i ) = E(x ′i xi )E(ν2

i ). The standard
estimator of S under the iid assumption is

Ŝhomo =
1

N

N∑
i=1

x ′i xi
1

N

N∑
i=1

ν̂2
i

where the second term is just the estimated error variance σ̂2 and the first term
is just Q̂xx .

Heteroskedasticity means observations are not identically distributed, and we
use instead the Eicker-Huber-White-robust estimator of S :

Ŝhet =
1

N

N∑
i=1

x ′i xi ν̂
2
i
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The “Robust” Approach: Cluster-Robust Standard Errors

Now we consider “clustered” data. Observations are independent across
clusters, but dependent within clusters. Denote by Xm. the TmxK matrix of
observations on X for the mth cluster, and νm. the Tmx1 vector of disturbances
for cluster m. Then we can write S as S = E(X ′m.νm.ν

′
m.Xm.), where E(νm.ν

′
m.)

is just Σm, the covariance matrix of the disturbance ν for cluster m.

The cluster-robust covariance estimator for S is

ŜCR =
1

M

M∑
m=1

X ′m.ν̂m.ν̂
′
m.Xm.

Note the parallels with Ŝhet . We are summing over clusters instead of individual
observations; the X s inside the summation are all the observations on a cluster
instead of a single row of data; the term inside the X s looks like (but isn’t) the
autocovariance of the disturbance for the cluster instead of what looks like (but
isn’t) the variance for the observation in the heteroskedastic-robust approach.
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The “Robust” Approach: Cluster-Robust Standard Errors

In fact, there is another covariance estimator due to Kiefer (1980) that is
robust to clustering but assumes homoskedasticity. To keep thing simple,
assume that the dataset is a balanced panel, so that Tm = T ∀ m. If the data
are homoskedastic, the TxT matrix Σm = Σ ∀ m and we can estimate Σ̂ by

Σ̂ =
1

M

M∑
m=1

ν̂m.ν̂
′
m.

The Kiefer covariance estimator is

ŜKiefer =
1

M

M∑
m=1

X ′m.Σ̂Xm.

Again, note the parallels, this time with the usual homoskedastic estimator
Ŝhomo . With Ŝhomo , we weight each observation with a scalar σ̂2, but since it’s a
scalar it can be pulled out of the summation; With ŜKiefer , we weight each
cluster with the matrix Σ̂.
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The “Robust” Approach: Cluster-Robust Standard Errors

What about efficiency of the OLS β̂?

If the model is just-identified, OLS is still the efficient estimator. Why? We’ve
assumed no structure at all for the intra-group correlations, and we have no
extra information to bring to the estimate of S . With no additional
assumptions or information, OLS is the best we can do.

If the model is overidentified, however, the cluster-robust approach can be used
to obtain more efficient estimates of β via two-step or CUE
(continuously-updated) GMM. This is the generalization of “heteroskedastic
OLS” (Cragg 1983) to the case of clustered errors. “Overidentified” means
that there are variables (instruments) that are not regressors, that are
uncorrelated with ν, but that are “correlated” with the form of within-group
clustering and/or heteroskedasticity in the data. The resulting β̂ will be both
consistent and efficient in the presence of arbitrary clustering and
heteroskedasticity. In Stata, use ivreg2 with the cluster(id) gmm2s options.
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Example: Estimation of a System of Equations

We have a system of T equations. For each equation, we have M observations.
Regressors are all exogenous. We want to be able to test cross-equation
restrictions. “Clustering” arises because we use the same dataset to estimate
all the equations, and the error νmt for the mth observation in equation t will
be correlated with the error νms for the mth observation in equation s.

The GLS approach is Zellner’s ”seemingly-unrelated regressions estimator”
(SURE). We model the covariances of the νmt , estimate them, and construct
the variance-covariance matrix that incorporates these off-diagonal elements.
This lets us perform tests across equations, and obtain more efficient estimates
of β in a second step. In Stata, this is the sureg command.

... but if we model the covariances incorrectly, all our inferences and testing
will be wrong.
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Example: Estimation of a System of Equations

The “robust” approach is to allow for arbitrary correlation of the νmt across
equations. This uses the cluster-robust covariance estimator, where each
observation m in the dataset defines a group or cluster. This is automated in
Stata with the suest (“seemingly-unrelated estimations”) command. It
generates standard errors that are robust to heteroskedasticity as well as
allowing cross-equation tests, but leaves the point estimates unchanged.

Alternatively, we can “stack” the equations “by hand” and use the
cluster-robust covariance estimator. Estimation with OLS generates the same
results as suest. However, if the model is overidentified (some regressors
appear in one equation and not in others), we can do two-step GMM with
ivreg2 and obtain efficiency gains in our estimate of β.

Austin Nichols and Mark Schaffer The Cluster-Robust Variance-Covariance Estimator: A (Stata) Practitioner’s Guide



Overview of Problem
Potential Problems with CR Standard Errors

Test for Clustering
Some Specific Examples with Simulations

References

Clustering of Errors
More Dimensions

Combining the GLS and Cluster-Robust Approaches

It is possible – and in some literatures, standard – to combine the GLS and
cluster-robust approaches.

Consider again the fixed effects model. Say we consider it to be a good first
approximation to within-group correlation, but there may be remaining
within-group correlation even after accounting for fixed effects. For example,
the emt could be serially correlated. One possibility would be to model the serial
correlation, GLS-style. This is possible with the Stata command xtregar.

Alternatively, we could partial out the fixed effects in the usual way, and then
use the cluster-robust covariance estimator. The only difference is that instead
of using ν̂mt as residuals, we are using êmt . In effect, we are using cluster-robust
to address any within-group correlation remaining after the fixed effects are
removed. In Stata, use xtreg,fe with cluster(id).
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Combining the GLS and Cluster-Robust Approaches

First-differencing (FD) can be similarly motivated. With lagged dependent
variables, we have to FD to get rid of the fixed effects (Arellano-Bond et al.).
We then use cluster-robust errors to mop up the remaining and/or introduced
serial correlation.

For some reason, combining the GLS and robust approaches is absolutely
standard in the panel/serial correlation literature, and almost completely
ignored in cross-section/heteroskedasticity practice. It’s perfectly reasonable to
do feasible GLS on a cross-section to get improvements in efficiency and then
use robust SEs to address any remaining heteroskedasticity, but nobody seems
to do this (GLS is too old-fashioned, perhaps).
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Number of Clusters

The cluster-robust standard error estimator converges to the true standard
error as the number of clusters M (not the number of observations N)
approaches infinity.

Kézdi (2003) shows that 50 clusters (with roughly equal cluster sizes) is often
close enough to infinity for accurate inference, and further that, even in the
absence of clustering, there is little to no cost of using the CR estimator, as
long as the number of clusters is large. 50 is an interesting number because of
the many studies that use US state-level data.

With a small number of clusters (M << 50), or very unbalanced cluster sizes,
the cure can be worse than the disease, i.e., inference using the cluster-robust
estimator may be incorrect more often than when using the classical covariance
estimator.
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Rank of VCV

The rank of the variance-covariance matrix produced by the cluster-robust
estimator has rank no greater than the number of clusters M, which means
that at most M linear constraints can appear in a hypothesis test (so we can
test for joint significance of at most M coefficients).

In a fixed-effect model, where there are a large number of parameters, this
often means that test of overall model significance is feasible. However, testing
fewer than M linear constraints is perfectly feasible in these models, though
when fixed effects and clustering are specified at the same level, tests that
involve the fixed effects themselves are inadvisable (the standard errors on fixed
effects are likely to be substantially underestimated, though this will not affect
the other variance estimates in general).

Austin Nichols and Mark Schaffer The Cluster-Robust Variance-Covariance Estimator: A (Stata) Practitioner’s Guide



Overview of Problem
Potential Problems with CR Standard Errors

Test for Clustering
Some Specific Examples with Simulations

References

Clustering of Errors
More Dimensions

Estimates and their VCV

Note that the heteroskedasticity-robust and cluster-robust estimators for
standard errors have no impact whatsoever on point estimates.

One could use information about the within-cluster correlation of errors to
obtain more efficient estimates in many cases (see e.g. Diggle et al. 2002).
There are also a variety of multi-level methods of parameterizing the
distribution of errors to obtain more efficient estimates (using e.g. xtmixed

and other model types—see Rabe-Hesketh and Skrondal 2005 for more). We
will focus however on models where the point estimates are unchanged and
only the estimated variance of our point estimates is affected by changing
assumptions about errors.

In addition to improving the efficiency of the point estimates in regressions,
modeling intra-cluster correlations can also result in improvements in
meta-analysis, both in correctly modeling the variance of individual estimates
and computing effect sizes. See Hedges (2006) for details.
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Sandwich Estimators and Other Robustifications

Eicker (1967) and Huber (1967) introduced these sandwich estimators, but White
(1980; 1982), Liang and Zeger (1986), Arellano (1987), Newey and West (1987),
Froot (1989), Gail, Tan, and Piantodosi (1988), Kent (1982), Royall (1986), and Lin
and Wei (1989), Rogers (1993), Williams (2000), and others explicated and extended
aspects of the method in a non-survey context, so these are often cited as sources in
specific applications. In the context of clustering induced by survey design, Kish and
Frankel (1974), Fuller (1975), and Binder (1983), and Binder and Patak (1994), also
derived results on cluster-robust estimators with broad applicability.

Stock and Watson (2006) point out that with fixed effects, both the standard
heteroskedasticity-robust and HAC-robust covariance estimators are inconsistent for T
fixed and T > 2, but the cluster-robust estimator does not suffer from this problem.
One of their conclusions is that if serial correlation is expected, the cluster-robust
estimator is the preferred choice.
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Finite-Sample Adjustments

The cluster-robust covariance estimator is often used with a finite-sample
adjustment qc . The most common three forms are:

qc = 1

qc =
N − 1

N − K

M

M − 1

qc =
M

M − 1

The Stata manual entry “Methods and Formulas” of [R] regress calls these
the regression-like formula and the asymptotic-like formula, respectively. Fuller
et al. (1986) and Mackinnon and White (1985) discuss finite-sample
adjustments in more detail.
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The Nature of the CR Correction

The heteroskedasticity-robust SE estimator scales not by the sum of squared
residuals, but by the sum of “squared” products of residuals and the X
variables, and the CR estimator further sums the products within cluster (if the
products are negatively correlated within cluster, the CR standard errors will be
smaller than the HR standard errors, and if positively correlated, larger). If the
traditional OLS model is true, the residuals should, of course, be uncorrelated
with the X variables, but this is rarely the case in practice.

The correlation may arise not from correlations in the residuals within a
correctly specified model, but from specification error (such as omitted
variables), so one should always be alert to that possibility.
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Misspecification and the CR Correction

As Sribney (1998) points out: When CR estimates are smaller than standard
SE estimates,

[S]ince what you are seeing is an effect due to (negative) correlation
of residuals, it is important to make sure that the model is
reasonably specified and that it includes suitable within-cluster
predictors. With the right predictors, the correlation of residuals
could disappear, and certainly this would be a better model.

...[S]uppose that you measured the number of times each month
that individuals took out the garbage, with the data clustered by
household. There should be a strong negative correlation here.
Adding a gender predictor to the model should reduce the residual
correlations.

The CR estimator will do nothing about bias in β̂ when E(X ′e) 6= 0.
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Approximating the CR Correction

As Cameron, Gelbach, and Miller (2006a, p.5) note, if the primary source of clustering is due to
group-level common shocks, a useful approximation is that for the kth regressor the default OLS
variance estimate based on s2(X ′X )−1 should be inflated by a factor of

1 + ρeρxk
(N̄g − 1)

where ρxk
is the intra-cluster correlation of xk , ρe is the intra-cluster correlation of residuals, and

N̄g is the average cluster size; in many settings the adjustment factor can be large even if ρe is
small.

This approximation is closely related to the approximation given in Kish (1965, p.162) for the
estimation of means in clustered data: he recommends inflating the variance estimate for the mean
by a factor (or the SE by the square root of the factor):

1 + r(N̄g − 1)

where r is the measure of intraclass correlation (ICC) known as roh [not rho]. The approximation
for regression with group-level common shocks is quite similar, with the adjustment that we now
want the mean of y conditional on X .
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Non-Nested and Nested Clusters

An extension of the basic one-dimensional case is to multiple levels of
clustering. For example, errors may be clustered by country and by city, or
errors may be clustered by country and by year. In the first case, the levels of
clustering are nested, but in the second case, the clustering is along two
dimensions and observations in each cluster along one dimension may appear in
multiple clusters along the other. The latter case of non-nested clusters is
discussed by Cameron, Gelbach, and Miller (2006a), who provide Stata code
for estimating cluster-robust standard errors in this case.

To estimate cluster-robust standard errors in the presence of nested multi-level
clustering, one can use the svy suite of commands.
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Nested Clusters Using svy

It is straightforward to compute cluster-robust estimates for multi-level
clustering with nested clusters using

svyset clevel1 || clevel2

(pweights are easily added as well) and then any command that allows the
svy: prefix. In general, however, the correction at the highest level is the
important one. Specifying clustering at the classroom level and clustering at
the school level is unlikely to result in any substantive differences in inference
relative to merely specifying clustering at the school level.

This argues for always specifying clustering at the highest of all nested levels at
which intra-cluster correlation in errors may be a problem, but there is a
tradeoff: at higher levels the number of clusters will be smaller, so the
asymptotic results for the estimator are less likely to hold.
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Problems with Cluster-Robust SEs

Why specify cluster (or use svy)?

I If the assumptions are satisfied, and errors are clustered, you’ll get much
better SE estimates.

I If the assumptions are satisfied, and errors aren’t clustered, you’ll get
roughly the same SE estimates as if you had not specified cluster (i.e.
no cost of robustness).

Why not always specify cluster (or use svy)?

I Convergence

I Bias

I Correlation across clusters

I Degrees of freedom
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Speed of Convergence

The CR estimator is asymptotic in the number of clusters M. If M is
small, there is no guarantee that the cluster-robust estimator will improve
your inference—the cluster-robust estimator may make matters worse.

Kézdi (2003) shows that 50 clusters is often close enough to infinity for
accurate inference, but these are simulations for a specific type of model.
You may want to do simulations for a model that fits your specific
application if you are worried about the convergence of the cluster-robust
estimator, and what it implies for the reliability of your inferences.
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Downward Bias

Rogers (1993) argues that “if no cluster is larger than 5 percent or so of
the total sample, the standard errors will not be too far off because each
term will be off by less than 1 in 400.” This implies that CR SEs with 20
equal-sized clusters would suffer from a very small bias.

With finite M, the cluster-robust estimator produces estimates of
standard errors that are too small on average (i.e. they are biased
downward). With M much less than 50, the bias can be substantial,
particularly with M < 10. Cameron, Gelbach, and Miller (2006b) report
that a “wild bootstrap” cluster-robust estimator performs well when
M < 50. See also Wooldridge (2003) for more discussion and suggestions.
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Degrees of freedom

Since the rank of the VCV matrix produced by the CR estimator is no
greater than the number of clusters M you may not be able to test as
many parameters as desired. For example, you could not cluster at the
panel level and test for panel-specific intercepts and trends, since you
would have at least twice as many parameters as degrees of freedom.

Given the limits on the number of parameters that may be tested in
theory, even asymptotically, one might be worried about the small-sample
properties of tests that involve nearly as many constraints as M. We will
present simulations for certain cases.
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A test for clustering

If you’re worried about potential problems when using CR estimates,
you’d like to test for the presence of clustering, to see whether you really
need to adjust for clustering. Kézdi (2003) provides a test for clustering
in the spirit of the White (1980) test for heteroskedasticity (see
hettest, whitetst, ivhettest in Stata)

The intuition behind the Kézdi test is the same as that for the White
test. The White general test for heteroskdesticity compares the
K (K + 1)/2 elements of the classical (unrobust) V with those of the
heteroskedastic-robust V . If the difference is “large”, the null of no
heteroskedasticity is rejected. Similarly, the Kézdi test compares the
elements of the classical V with the cluster-robust V . A “large”
difference indicates the presence of clustering. Note that the tests reject
when hypothesis testing involving β would be distorted, a very appealing
property.
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Balanced Panels, Equal Cluster Sizes, OLS-SE

Suppose we have the error components model

Yit = Xmtβ + um + emt

with β1 = 1 and we have M = 50 balanced clusters, and T = 20 observations
per cluster. Let the share of error variance due to the within-cluster component
vary from 0 to 1 (across rows) and the share of within-cluster variation in
regressors vary from 0 to 1 (across columns), and test H0 : β1 = 1 with
α = 0.05:

Rejection rates, nominal 5 percent level, OLS-SE
0 25 50 75 100

0 .048 .043 .049 .048 .065625
25 .054 .057 .113 .157 .3052959
50 .052 .153 .312 .455 .6832814
75 .054 .209 .468 .679 .876161

100 .056 .241 .503 .716
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Balanced Panels, Equal Cluster Sizes, HRSE

Rejection rates, nominal 5 percent level, Het-Robust SE
0 25 50 75 100

0 .049 .045 .05 .049 .0708333
25 .051 .057 .112 .154 .3094496
50 .054 .154 .321 .459 .6874351
75 .053 .202 .475 .679 .877193

100 .056 .242 .503 .715
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Balanced Panels, Equal Cluster Sizes, CR

Rejection rates, nominal 5 percent level, Clust-Robust SE
0 25 50 75 100

0 .054 .039 .06 .09
25 .053 .046 .107 .196
50 .052 .07 .139 .335
75 .056 .08 .179 .425

100 .054 .078 .189 .434
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Balanced Panels, Equal Cluster Sizes, FECR

Rejection rates, nominal 5 percent level, FE and Clust-Robust SE
0 25 50 75 100

0 .061 .038 .055 .055
25 .054 .04 .044 .042
50 .057 .054 .053 .062
75 .056 .047 .044 .058

100 .046 .047 .052 .042
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Unbalanced Panels and Unequal Cluster Sizes, OLS-SE

Now suppose we have 50 clusters and 1000 observations again, but 10
observations per cluster in 49 clusters and one cluster with 510 obs:

Rejection rates, nominal 5 percent level, OLS-SE
0 25 50 75 100

0 .047 .056 .053 .058 .0679916
25 .047 .071 .073 .1 .1753112
50 .05 .171 .223 .347 .5658996
75 .04 .221 .41 .589 .8569948

100 .044 .27 .452 .677
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Unbalanced Panels and Unequal Cluster Sizes, HRSE

0 25 50 75 100

0 .045 .053 .05 .059 .0700837
25 .048 .069 .077 .098 .1991701
50 .05 .166 .207 .34 .5774059
75 .047 .216 .388 .569 .8632124

100 .045 .271 .436 .654
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Unbalanced Panels and Unequal Cluster Sizes, CR

0 25 50 75 100

0 .113 .104 .106 .123
25 .105 .104 .095 .166
50 .071 .133 .106 .253
75 .031 .111 .096 .297

100 .024 .116 .092 .299
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Unbalanced Panels and Unequal Cluster Sizes, FECR

0 25 50 75 100

0 .119 .112 .115 .127
25 .134 .123 .097 .111
50 .106 .113 .103 .129
75 .118 .118 .123 .126

100 .088 .11 .078 .084
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Testing the Limits of df

Kézdi (2004) and our own simulations tell us that the CR estimator performs
extremely well in relation to the HR or OLS SE estimators with respect to
inference on a single parameter, as long as we have at least 50 clusters.

However, we know that we cannot test more than M coefficients. It makes
sense to question how well the CR estimator performs when testing M − 2 or
M − 1 coefficients.

Preliminary simulations show that the rejection rate rises from 5 percent to 100
percent as the number of coefficients increases from 1 to M. This needs
further investigation.
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Comparisons to a Parametric Correction

Suppose we have autocorrelated errors in a panel model:

Yit = Xitβ + ui + eit

with
eit = ρei(t−1) + zit

where zit is iid . We could use xtregar y x, fe, xtpcse y x, c(p), or
xtreg y x, fe cluster(). How do these compare in finite samples? We can
use MC simulation to evaluate the two approaches.

Additionally, Wooldridge (2002, pp.282-283) derives a simple test for
autocorrelation in panel-data models, and the user-written program xtserial

(Drukker 2003) performs this test in Stata. We can compare the performance
of xtserial and cltest using MC simulation.
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SE Estimates with Autocorrelation

Suppose t ∈ {1, 2, 3, 4, 5, 6, 7} and x = t − 4 with y = x + e and M = 100 (i.e. we
are estimating a trend line β = 1 and there are 100 clusters). Suppose ui is mean zero
and uniform on (−.5, .5). Here is a comparison of the reported and true SD of the
OLS estimates (see also Diggle et al. 2002 Figure 1.7):
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Rejection Rates, AR(1) Errors

Mean rejection rates of β = 1 with nominal size 0.05

rho reg xtreg, fe xtpcse xtregar reg, clust xtreg, fe clust
-.9 0 0 .15 0 .05 .05
-.5 .006 .006 .162 0 .039 .039
-.1 .033 .037 .184 .037 .055 .055
0 .043 .053 .194 .06 .054 .054
.1 .053 .065 .206 .054 .043 .043
.5 .095 .156 .192 .069 .052 .052
.9 .055 .243 .21 .094 .039 .039
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Rej Rates, AR(1) Errors
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Rej Rates, AR(1) Errors
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Tests for Clustering, AR(1) Errors

The test for clustering after reg is cltest, and the test for clustering after
xtreg, fe is xtcltest (to be available from SSC shortly). It performs nearly
as well as xtserial (which by construction is the correct test for this particular
variety of clustering):
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“Conclusions”

I Why not always use cluster?

I Small number of clusters

I Balanced vs unbalanced clusters

I Big clusters vs small clusters

I Number of hypotheses to test

I Testing for clustering (or heteroskedasticity)

I Efficiency gains by modeling the autocorrelation (GLS)

I Cluster AND GLS
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More Examples and Simulations?

We plan to turn this talk into a Stata Journal submission. Any suggestions on
additional topics that you feel should be included are welcomed— contact
Austin at austinnichols@gmail.com or Mark at M.E.Schaffer@hw.ac.uk if you
like.
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