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Abstract:  
Health scientists often use observational data to estimate treatment effects when controlled 
experiments are not feasible. A limitation of observational research is non-random selection of 
subjects into different treatments, potentially leading to selection bias. The 2 commonly used 
solutions to this problem – covariate adjustment and fully parametric models – are limited by 
strong and untestable assumptions. Instrumental variables estimation can be a viable alternative. 
In this paper, I review examples of the application of IV in the health and social sciences, I show 
how the IV estimator works, I discuss the factors that affect its performance, I review how the 
interpretation of the IV estimator changes when treatment effects vary by individual, and 
consider the application of IV to nonlinear models.  
 
Keywords: instrumental variables, treatment effects, health outcomes 
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Résumé :  
 
Quand les expériences contrôlées ne sont pas possibles, les chercheurs du domaine de la santé ont 
souvent recours à des données d’observation afin d’évaluer les effets de traitement. Une des 
restrictions de la recherche dépendant de données d’observation est l’affectation non-aléatoire des 
sujets à divers groupes de programme, ce qui a le potentiel de causer un biais de sélection.  Les deux 
solutions habituelles à ce problème — l’ajustement covarié et les modèles complètement 
paramétriques — reposent sur des hypothèses fortes et invérifiables. Un estimateur à variables 
instrumentales (VI) peut représenter une alternative viable. Dans cette étude, je passe en revue des 
exemples de l’application des VI dans les sciences de la santé et les sciences sociales, je présente le 
mécanisme de l’estimateur par VI, je discute les facteurs qui affectent sa performance, je résume 
comment l’interprétation de l’estimateur VI diffère quand l’effet de traitement varie selon les  sujets, 
et je considère l’application de la méthode des VI aux modèles non linéaires. 
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that is primarily funded by the Social Sciences and Humanities Research Council of Canada (SSHRC) and 
which has received additional support from Statistics Canada.  
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Background 
 
Much of the empirical work in the applied health sciences attempts to address questions of the sort: 
what is the effect of 𝑥 on 𝑦?  The variable 𝑦 is typically a dimension of health, such as disease incidence, 
health related quality of life or mortality, while 𝑥 could be some health-related behavior, such as 
cigarette smoking; an individual characteristic, such as income, education or age; the use of health care, 
such as a new pharmaceutical drug; or exposure to an environmental toxin, such as second-hand smoke.  
Much of this work relies on observational data, owing to the practical and ethical limitations on the use 
of controlled experiments in this area.  A widely recognized problem in observational research is that, 
because individuals can sometimes ‘choose’ different values of 𝑥 (for instance, the decision to smoke or 
not), it is unclear to what extent differences in 𝑦 reflect differences in the level of 𝑥 and to what extent 
differences in 𝑦 reflect differences in the unobserved characteristics of those who choose different 
levels of 𝑥.  The recent controversy over the deleterious effects of hormone replacement therapy (HRT) 
among post-menopausal women illustrates this attribution problem.  The observational data clearly 
indicate that HRT and cardiovascular disease (CVD) are negatively correlated – HRT users have better 
heart health than non-users.  These correlations lead some women, typically those with more education 
and more income, to initiate HRT as prevention against heart disease.  Subsequent experimental 
evidence, however, indicated that this correlation is entirely due to decisions of healthier women to 
initiate HRT.  Indeed, the causal impact of HRT is to increase the risk of heart attack and stroke.  In other 
words, HRT users were healthier than non-users despite the deleterious effects of HRT.   
 
Several solutions to this problem have been proposed, but none are entirely satisfactory.  The most 
commonly used of these is to identify, measure and adjust for the behavioural and other factors 𝑤 that 
are correlated with both 𝑥 and 𝑦 – the so-called ‘covariate adjustment’ approach.  If ones goal is to 
assess the causal effect of HRT on CVD, for instance, one might adjust for various dimensions of socio-
economic status and other potential ‘confounding’ factors correlated with HRT use that independently 
affect CVD; one could adjust for these confounding factors using either regression or matching.  
Regression amounts to imposing a restriction on how 𝑤 and 𝑥 affect the mean of 𝑦; the most commonly 
imposed restriction is that the mean of 𝑦 is linear in a vector of unknown parameters 𝛼, 𝛽, 𝛾: 
𝐸[𝑦|𝑥, 𝑤] = 𝛼 + 𝑥𝛽 + 𝑤´𝛾.  Matching compares the values of 𝑦 among subjects with different levels of 
𝑥 but who share common values of all of the variables in 𝑤.  A defect of both these techniques is that 
the analyst might fail to adjust for pertinent confounding variables, because they are either unknown or 
not readily quantifiable.  Regression comes with an additional liability – it requires that one correctly 
specify a model of the conditional mean of 𝑦 and it is unclear how specification error affects ones 
estimate of the impact of 𝑥 on 𝑦. 
 
An alternative to covariate adjustment is to model the correlations between unobserved confounders 
and outcomes; these are commonly referred to as ‘fully parametric’ models.  The leading example is 
Heckman’s parametric sample selection model.  The assumptions embedded in these models are quite 
restrictive: one needs to specify functional forms for both the conditional mean of 𝑦 and the joint 
distribution of the unobserved factors affecting 𝑥 and 𝑦.  It is well known that results can be highly 
sensitive to these assumptions, yet these assumptions cannot be directly verified.   
 
‘Instrumental variables’ (IV) estimation might be a useful alternative to the covariate adjustment and 
fully parametric approaches.  IV requires one or more instruments 𝑧 – variables strongly correlated with 
𝑥 but uncorrelated with the unobserved determinants of 𝑦.  The coin toss in the context of a 
randomized controlled trial (RCT) on fully compliant subjects is the ideal instrument – the outcome of 
the coin toss completely determines treatment assignment (𝑥 = treatment, control) yet does not directly 
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affect the outcome 𝑦.  In an observational study assessing the effects of HRT on CVD, one might use the 
consumer price of HRT as an instrument, assuming that the consumer price of HRT affects its use but is 
uncorrelated with unobserved dimensions of CVD.  (The latter assumption would rule out, for instance, 
healthier women having particularly generous drug insurance while less healthy women remaining 
uninsured.)    
 
In this paper, I review examples of the application of IV in the health and social sciences, I show how the 
IV estimator works, I discuss the factors that affect its performance, I review how the interpretation of 
the IV estimator changes when treatment effects vary by individual, and consider the application of IV to 
nonlinear models. 
 

Applications of IV estimation 
 
Central to the use of IV estimation is the identification of good instruments.  Good instruments induce 
marked variation in exposure to treatments that is incidental to the health outcome under investigation.   
This variation might be caused by regional differences in health care reimbursement, or regional or time 
based variation in physician practice styles, or variation in health care spending due to the timing of the 
business or electoral cycle.  Here are several interesting applications of IV in the health and social 
sciences: 

Cholera transmission 
 
Although IV theory has been developed primarily by econometricians, the method originated in 
epidemiology.  IV was used to investigate the route of cholera transmission during the London cholera 
epidemic of 1853-54.  A scientist from that era, John Snow, hypothesized that cholera was waterborne.  
To test this, he could have tested whether those who drank purer water had lower risk of contracting 
cholera.  In other words, he could have assessed the correlation between water purity (𝑥) and cholera 
incidence (𝑦).  Yet, as Deaton (1997) notes this would not have been convincing: “The people who drank 
impure water were also more likely to be poor, and to live in an environment contaminated in many 
ways, not least by the ‘poison miasmas’ that were then thought to be the cause of cholera.”  Snow 
instead identified an instrument that was strongly correlated with water purity yet uncorrelated with 
other determinants of cholera incidence.  This instrument was the identity of the company supplying 
households with drinking water.  At the time, Londoners received drinking water directly from the 
Thames River.  One company, the Lambeth water company, drew water at a point in the Thames above 
the main sewage discharge; another, the Southwark and Vauxhall company, took water below the 
discharge.  Hence the instrument 𝑧 was strongly correlated with water purity 𝑥.  The instrument was 
also uncorrelated with the other determinants of cholera incidence (𝑦).  According to Snow (1855, pages 
74-75), the households served by the two companies were quite similar, indeed: 
 
 “the mixing of the supply is of the most intimate kind. The pipes of each Company go down all the 
streets, and into nearly all the courts and alleys. . . . The experiment, too, is on the grandest scale.  No 
fewer than three hundred thousand people of both sexes, of every age and occupation, and of every 
rank and station, from gentlefolks down to the very poor, were divided into two groups without their 
choice, and in most cases, without their knowledge; one group supplied with water containing the 
sewage of London, and amongst it, whatever might have come from the cholera patients, the other 
group having water quite free from such impurity.”  
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Effectiveness of cardiac catheterization  
 
Newhouse and McClellan (1998) assessed the impact of cardiac catheterization (i.e. bypass surgery or 
angioplasty) on post myocardial infarction (MI) survival rates.  Comparing the health outcomes of those 
who do and do not get cardiac catheterization is problematic if individuals are selected for the 
procedure on the basis of disease severity.  Instead, Newhouse and colleagues compared the health 
outcomes of heart attack patients who lived near a hospital with catheterization facilities to outcomes 
of patients living farther away.  After an MI, the patient is typically rushed by ambulance to the nearest 
hospital, irrespective of whether or not the hospital has catheterization facilities.  Hence the 
catheterization capability status of the hospital closest to the patient’s home is a good instrument – it is 
a strong predictor of whether or not the patient gets the procedure and should be uncorrelated with 
health outcome (unless those who are more likely to suffer from severe heart attacks move to a home in 
close proximity to a hospital with catheterization facilities, something that the authors thought was 
unlikely.) 

Effectiveness of health care service use 
 
Fisher et al (2003a, b) assessed the impact of the overall level of health care resource use in a region on 
health outcomes.  To do so they could have assessed the correlation between regional health care 
spending and the average health outcomes of patients in the region.  The problem with this approach is 
that health care spending could be higher in regions in which patient health outcomes are lower (i.e. 
resources are allocated to regions where needs are greatest).  To overcome this problem, they used as 
an instrument the average end-of-life medical spending in the region.  This is a good instrument: it was 
found to be highly correlated with overall health care use but had no direct effect on patient health 
outcomes. 

Education and earnings 
 
Economists have exploited a variety of sources of quasi-experimental variation in treatment variables.  
Angrist and Krueger (1991), for example, assessed the role of years of secondary school education on 
subsequent earnings.  Because both years of schooling and earnings are probably correlated with ability 
or motivation, both of which are latent, the authors compared the earnings of students born in different 
quarters of the year.  Those born earlier in the year have slightly less schooling than those born later in 
the year due to school start age policies and compulsory schooling laws.  Children born in the same 
calendar year generally are required start school at the same time, i.e., in September of the year they 
turn 6.  Hence school entry age depends on quarter of birth: children born in the fourth quarter enter 
school at age 5¾ while children born in the first quarter enter school at age 6 ¾.  As well, compulsory 
schooling laws typically require students to stay in school until their 16th birthday, so that the length of 
schooling varies by up to 12 months with date of birth.  Date of birth should therefore be a good 
instrument, provided that it is uncorrelated with ability.  In related research, Oreopoulos (2006) finds 
that extension of compulsory schooling laws in Canada had marked effects on educational attainment. 
 

The IV estimator 
 
The following example illustrates how the IV estimator adjusts for the influence of confounders.  
Suppose that we wish to compare the effect on some continuous measure of patient health 𝐻 of two 
types of health care, a new type of care and an existing standard type.  Let the variable 𝐷 represent the 
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type of care used, with 𝐷 = 1 if the patient uses new care and 𝐷 = 0 if the patients uses standard care.  
Suppose that, unbeknownst to the investigator, the value of 𝐷 is assigned on the basis of patient frailty 
𝐹 – more frail patients are more likely to receive the new care and also have worse health.   
Suppose that treatment 𝐷 affects health 𝐻 as follows: 
 
𝐻 = 𝛽0 + 𝛽1𝐷 + 𝜀           (H1) 
 
where 𝛽0 and 𝛽1 are unknown parameters and the ‘error’ 𝜀 represents the combined influence of all 
determinants of 𝐻 that are not explicitly modeled; one such determinant is 𝐹.  Interest centers on 
generating consistent estimates of the treatment effect parameter 𝛽1, the difference in effectiveness of 
new care and standard care.   
 
Conventional estimators of 𝛽1 will be biased downwards.  Consider, for instance, the difference in 
means (DIM) estimator, which is the sample average 𝐻 of new care users less the sample average 𝐻 of 

standard care users. The expected value of the DIM estimator, 𝑏1
𝑑𝑚 , is: 

 

𝐸 𝑏1
𝑑𝑚  = 𝐸 𝐻 𝐷 = 1 − 𝐸 𝐻 𝐷 = 0         (2) 

 
where 𝐸 𝐻 𝐷 = 1  denotes the expectation of 𝐻 for those assigned new care.  The term 𝐸 𝐻 𝐷 = 1  
can be evaluated by computing the expected value of the health outcomes model (H1) conditional on 𝐷. 
 
𝐸[𝐻|𝐷] = 𝛽0 + 𝛽1𝐷 + 𝐸[𝜀|𝐷]         (3) 
 
The expected value of 𝐻 of new care users is: 
 
𝐸[𝐻|𝐷 = 1] = 𝛽0 + 𝛽1 + 𝐸[𝜀|𝐷 = 1]        (4) 
 
and the expected value of 𝐻 of standard care users is: 
 
𝐸[𝐻|𝐷 = 0] = 𝛽0 + 𝐸[𝜀|𝐷 = 0]        (5) 
 
Subbing (4) and (5) into (2) yields: 
 

𝐸 𝑏1
𝑑𝑚  = 𝛽1 + 𝐸 𝜀 𝐷 = 1 − 𝐸 𝜀 𝐷 = 0        (6) 

 

It is clear that the DIM estimator will be unbiased (i.e. 𝐸 𝑏1
𝑑𝑚  = 𝛽1) if and only if the expected errors 

are the same in both treatment groups:  
 
𝐸 𝜀 𝐷 = 1 = 𝐸 𝜀 𝐷 = 0          (7)   
 
But if frailer patients tend to get new care and be in worse health, then 𝐸 𝜀 𝐷 = 1 < 𝐸 𝜀 𝐷 = 0  and 

𝐸 𝑏1
𝑑𝑚  < 𝛽1.  Hence condition (7) can be violated when there are confounding variables.  Condition (7) 

can also be violated if there is ‘reverse causality’, i.e., if health outcomes 𝐻 directly affect treatment 
choice 𝐷, or if there is measurement error in 𝐷.   
 
An IV estimator for 𝛽1 might work if 𝐷, the treatment provided to the patient, depends in part on a 
variable that is independent of 𝜀.  Suppose, for instance, that there are two types of physicians, labeled 



6 

 

𝐶 (for conservative) and 𝐿 (for liberal).  Suppose that 𝐶 physicians tend to use standard care whereas 𝐿 
physicians tend to use new care.  The physician’s practice style, described by 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = {𝐶, 𝐿}, is a 
valid instrument if 2 conditions hold.  First, there needs to be pronounced differences in physician 
practice styles.  This means that:  

 
𝐸(𝐷|𝐷𝑜𝑐𝑇𝑦𝑝𝑒) = 𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒) × 1 + 𝑃𝑟𝑜𝑏(𝐷 = 0|𝐷𝑜𝑐𝑇𝑦𝑝𝑒) × 0 

= 𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒) 
 
varies with different values of 𝐷𝑜𝑐𝑇𝑦𝑝𝑒.  I have assumed that it does; in particular, I have assumed that:  
 
𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐿) > 𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐶)     (8) 
 
Second, for 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 to be a valid instrument, it needs to be uncorrelated with the error 𝜀, the 
unexplained determinants of the health outcome:  
 
𝐸(𝜀|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐿) = 𝐸(𝜀|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐶)       (9) 
 
This condition implies that there are no differences in the quality of care provided by 𝐿 and 𝐶-type 
physicians that would result in differences in patient health outcomes, nor do sicker patients gravitate 
selectively towards 𝐿 or 𝐶 physicians.  A stronger condition required to estimate consistently both 𝛽0 
and 𝛽1 is that:  
 
𝐸 𝜀 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 0          (10)  
 
Conditions (8) and (9) mean that 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 is a valid instrument if it affects health outcomes only 
through its impact on the likelihood that new care is provided. 
 
To understand how 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 can be used to consistently estimate the treatment effect, take the 
expectation of 𝐻 conditional on 𝐷𝑜𝑐𝑇𝑦𝑝𝑒: 

𝐸 𝐻 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝛽0 + 𝛽1𝐸 𝐷 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 + 𝐸 𝜀 𝐷𝑜𝑐𝑇𝑦𝑝𝑒      (11) 

Sub (8) and (10) into (11): 
 
𝐸 𝐻 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝛽0 + 𝛽1𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒) + 0       (12) 
 
Evaluating (12) under the two values of 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 yields: 
 
𝐸(𝐻|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐿) = 𝛽0 + 𝛽1𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐿) 
𝐸(𝐻|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐶) = 𝛽0 + 𝛽1𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐶) 
 
These two equations can be solved for 𝛽1: 
 

𝛽1 =
E 𝐻 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 =𝐿 −E 𝐻 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 =𝐶 

Prob (𝐷=1 | 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 =𝐿)−Prob (𝐷=1 | 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 =𝐶)
       (13) 

 
The IV estimator is operationalized by replacing the unknown quantities by sample estimates.  Hence, 
for example, 𝐸(𝐻|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐿) is replaced by the sample average health of those patients treated by 
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𝐿-type physicians.  𝑃𝑟𝑜𝑏(𝐷 = 1|𝐷𝑜𝑐𝑇𝑦𝑝𝑒 = 𝐿) is replaced by the sample proportion of patients treated 
by 𝐿-type physicians who are given new care. 
 
As was mentioned, the coin toss used to assign subjects into the two treatment groups in the context of 
a RCT is a special case of IV estimation.  Suppose treatments are assigned according to process (T1): 
 

𝐷 =  
1 𝑖𝑓 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝐻𝑒𝑎𝑑𝑠
0 𝑖𝑓 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝑇𝑎𝑖𝑙𝑠

          (T1) 

 
In an RCT, the outcome of the coin toss – not 𝐷𝑜𝑐𝑇𝑦𝑝𝑒 or 𝐹 – assigns individuals to treatments.  
According to (T1), if 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =  𝐻𝑒𝑎𝑑𝑠 then the subject gets the new care (𝐷 = 1), and if 
𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =  𝑇𝑎𝑖𝑙𝑠 then the subject gets the old care (𝐷 = 0).  Then the estimator of the treatment 
effect is: 
 

𝛽1 =
E 𝐻 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =𝐻𝑒𝑎𝑑𝑠  −E 𝐻 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =𝑇𝑎𝑖𝑙𝑠  

Prob (𝐷=1 | 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =𝐻𝑒𝑎𝑑𝑠 )−Prob (𝐷=1 | 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =𝑇𝑎𝑖𝑙𝑠 )
     (14) 

 
If all subjects who get 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =  𝐻𝑒𝑎𝑑𝑠 use new care, then 𝑃𝑟𝑜𝑏(𝐷 = 1 | 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝐻𝑒𝑎𝑑𝑠) =
1.  Similarly, if all subjects who get 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 =  𝑇𝑎𝑖𝑙𝑠 use standard care, then 
𝑃𝑟𝑜𝑏(𝐷 = 1 | 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝑇𝑎𝑖𝑙𝑠) = 0.  In this case, the IV estimator simplifies to: 
 
𝛽1 = E 𝐻 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝐻𝑒𝑎𝑑𝑠 − E 𝐻 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝑇𝑎𝑖𝑙𝑠      (15) 
 
Replacing the expected values with the sample means gives the standard DIM estimator of the 
treatment effect.  Of course, it is entirely possible that some subjects assigned to use new care will use 
standard care and likewise, some subjects assigned to standard care will use new.  Such non-compliance 
can be handled by replacing 𝑃𝑟𝑜𝑏(𝐷 = 1 | 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝐻𝑒𝑎𝑑𝑠) and 𝑃𝑟𝑜𝑏(𝐷 = 1 | 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠 = 𝑇𝑎𝑖𝑙𝑠) 
with the proportions in each group who use the new care.   
 

The generalized IV estimator 
 
The IV estimator can be generalized to allow for multiple instruments and explicit modeling of the 
impact of additional determinants of 𝐻.  Exploiting multiple sources of independent variation in 𝐷 can 
improve the precision of the IV estimator.  Moreover, modeling the impact of additional determinants of 
𝐻 will reduce the error (i.e. the amount of unmodelled variation in 𝐻) and hence make it easier to 
satisfy the requirement that the instrument(s) be independent of the error.  But by doing so, one incurs 
the risk of specifying an inaccurate model of the determinants of 𝐻.  (This is the same risk that one 
incurs when using regression models.) 
 
Suppose that the error term 𝜀 in (H1) can be decomposed as 
 
𝜀 = 𝑾′𝜸 +  
 
where 𝑾 is a set of observed determinants of 𝐻, 𝜸 is a conformable vector of unknown parameters and 
 represents the influence of the remaining latent, unmodelled determinants of 𝐻.  𝑾 is assumed to be 
uncorrelated with .  Then 𝐻 is determined by the linear equation: 
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𝐻 = 𝛽0 + 𝛽1𝐷 + 𝑾′𝜸 +           (H2) 
 
If 𝐸[|𝐷 = 1] = 𝐸[|𝐷 = 0], then given a set of 𝑛 observations on 𝐻, 𝐷 and 𝑾, the parameters of (H2) 
can be estimated using ordinary least squares (OLS).  If this condition is not satisfied, then OLS is 
inconsistent.  But if one had access to a set of instruments 𝒁 which satisfy the conditions  
 
𝐸[|𝑾, 𝒁] = 0  
 
plim
𝑛→∞

𝑛−1𝒁′𝐷 ≠ 0 

 
where 𝑛 is the sample size and plim denotes the probability limit operator, then one can use the 
generalized IV estimator.  This estimator of the parameters 𝛽0 , 𝛽1and 𝜸 solves the sample moment 
condition: 
 
𝑿′𝑷𝒁∗(𝑯 − 𝛽0 + 𝛽1𝑫 + 𝑾𝜸) = 𝟎        (16) 
 
where 𝑿 = [𝟏 𝑫 𝑾] is a matrix consisting of 𝑛 observations on a constant 1, the treatment indicator 𝐷 
and 𝑾; (the 𝑖𝑡𝑕 observation of 𝑿 is denoted 𝑿𝑖); 𝑯 − 𝛽0 + 𝛽1𝑫 + 𝑾𝜸 =  is a vector consisting of 𝑛 
error terms; 𝑯 is the vector of 𝑛 observations on the health outcome, and 𝑷𝒁∗  is the so-called projection 
matrix: 
 

𝑷𝒁∗ = 𝒁∗ 𝒁∗′𝒁∗ −𝟏𝒁∗′  
 
where 𝒁∗ =  𝟏 𝒁 𝑾  is a matrix consisting of 𝑛 observations on the constant, the instruments 𝒁 and the 
exogenous or predetermined variables 𝑾.  𝑿′𝑷𝒁∗ consists of the predicted values from regressions of 
each of the columns in 𝑿 on 𝒁∗.  (Note that the predicted values from the regressions of 𝟏 and 𝑾 on 𝒁∗ 
are the observed values 𝟏 and 𝑾.)  Hence (16) generalizes condition (10), encountered earlier, that the 
instruments be orthogonal to the error.  Solving the sample moment condition for the unknown 
parameters yields the generalized IV estimator: 
 

 

𝑏0
𝑖𝑣

𝑏1
𝑖𝑣

𝒈𝒊𝒗

 =  𝑿′𝑷𝒁∗𝑿 −1𝑿′𝑷𝒁∗𝑯          (17) 

 

This estimator can be implemented in two steps.  First, one estimates 𝐷 , the predicted values from the 

regression of 𝐷 on 𝒁∗.  𝐷  essentially combines the different instruments into a single summary 
instrument; this summary instrument is orthogonal to the error.  Then one estimates the regression of 

𝐻 on 𝐷  and 𝑾.  The IV treatment effect estimate is the coefficient on 𝐷 .     
 

Are the instruments valid? 
 
It is possible to check whether the two requirements of one’s instruments are satisfied.   
 
Assumption 1: The instruments are correlated with the treatment 
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If they are, then the instruments should have good predictive power in the first stage regression above, 
i.e. the regression of 𝑫 on (𝑾, 𝒁).  This can be tested using an F test of the restriction that the 
instruments are jointly insignificant.  Small values of this F statistic indicate a violation of Assumption 1. 
 
Assumption 2: The instruments are uncorrelated with the error 
 
This can be tested if there is more than one instrument.  One estimates the error term using the 
residuals from the IV-estimated model: 
 

𝝊𝒊𝒗 = 𝑯 − {𝑏0
𝑖𝑣 + 𝑏1

𝑖𝑣𝑫 + 𝑾′𝒈𝒊𝒗} 
 

where 𝑏0
𝑖𝑣 , 𝑏1

𝑖𝑣  and 𝒈𝒊𝒗 denote the IV estimates of the parameters in equation (H2).  One then estimates 

a regression of 𝝊𝒊𝒗 on (𝑾, 𝒁).  Large values of 𝑛 × 𝑅2 from this regression indicates that the 

instruments in 𝒁 explain some of the variation in 𝝊𝒊𝒗, which is a violation of Assumption 2.  If the 
assumption is satisfied, this test statistic is distributed 𝜒2 with the number of degrees of freedom equal 
to the number of instruments minus one.  See Davidson and MacKinnon (2003) for details. 
 

Is IV necessary? 
 
If OLS can be used, it should be used because OLS has a much smaller variance than IV and is easier to 
use.  OLS can be used under any of the following circumstances: 
 

1. if 𝐸[|𝑫 = 1] = 𝐸[|𝑫 = 0].  If this condition is satisfied then IV and OLS should give similar 
estimates – they should differ only by chance.  A chi-squared based test of the difference in 
parameter estimates can be used to verify this.  An equivalent test is to estimate the residuals, 
𝑒 , from the regression of 𝐷 on  𝑾, 𝒁 .  Then one estimates the regression of 𝐻 on 𝑫, 𝑾 and 𝑒 .  
If IV and OLS give similar estimates, the variable 𝑒  will not be statistically different from zero.  
Johnson and DiNardo (1997, page 339) provide the intuition behind this test.  The regression of 
𝐷 on  𝑾, 𝒁  splits the variation in 𝐷 into two parts.  One part, the predicted values from this 
regression (each of which is a linear combination of the variables in  𝑾, 𝒁 ), is uncorrelated with 

, assuming that the instruments are valid.  The other part, the residuals, is uncorrelated with  
if the condition is satisfied.  If the condition is not satisfied, then these residuals will explain 

successfully some of the variation in , (or, equivalently, some of the variation in 𝐻 that remains 
after conditioning on  𝑾, 𝒁 ) and IV estimation may be warranted. 

2. if one can sign the bias associated with OLS.  Suppose for instance that OLS is known to 
underestimate a treatment effect.  Then if the treatment effect estimate is positive despite this 
bias, one has good evidence that the treatment effect really is positive. 

3. if the sample size is small or the instruments are only weakly correlated with 𝐷.  The desirable 
properties of the IV estimator are realized only as the sample size grows infinitely large.  
(Technically, the IV estimator is biased but consistent.)  As I illustrate below, in finite sized 
samples, the IV estimator can be wildly inaccurate. 
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Finite sample properties of the IV estimator 
 
Inspecting equation (13), it is clear that the IV estimator of 𝛽1 is in fact a ratio of two unknown 
quantities: the numerator is the correlation between the instrument and 𝐻, the denominator is the 
correlation between the instrument and 𝐷.  When the correlation between the instrument and 𝐷 is 
weak, then the IV estimator can be highly imprecise.  Indeed, when the correlation approaches zero, 
meaning that the instrument explains none of the variation in 𝐷, the estimator approaches infinity.  
Even when the instrument and 𝐷 are highly correlated, if the sample size is small then estimates of both 
correlations can be imprecise, rendering the ratio of these estimated correlations highly imprecise. 
The degree of imprecision of the IV estimator can be illustrated via Monte Carlo simulation.  Suppose 
that health outcomes 𝐻 are determined according to the process: 
 
𝐻 = 100 + 25𝐷 − 0.50𝐹 − 0.75𝑎𝑔𝑒 + , ~ 𝑈[−10,10]     (H3) 
 
where 𝐷 indicates which form of care is used, 𝐹 is an index of patient frailty, where a larger value of 𝐹 
means greater frailty, 𝑎𝑔𝑒 is patient age in years, and  is a random variable, representing idiosyncratic 

factors that affect health, or perhaps measurement error in 𝐻.   can take on any integer value in the 
interval [−10,10], each with equal probability.  The shorthand way of writing this is  ~ 𝑈[−10,10], 
where “~” means “distributed as”, “𝑈” means the uniform distribution, and [−10,10] defines the range 

of values  can assume.1  Hence 𝐻 is lower for older, more frail subjects and is 25 units higher for those 
using new care  𝐷 = 1  compared to those using standard care  𝐷 = 0 . 
 
What remains is to describe how patients are assigned to new and old care.  I consider two alternatives: 
 
Randomization with full compliance 
Here 𝐷 is determined by the outcome of a coin toss (T1). 
 
Patients assigned to 𝑫 on the basis of 𝑭 and 𝑫𝒐𝒄𝑻𝒚𝒑𝒆. 
In this case clinical factors, not a coin toss, determine 𝐷. 
 

𝐷 =  
1 𝑖𝑓 𝐼𝑛𝑑𝑒𝑥 > 0
0 𝑖𝑓 𝐼𝑛𝑑𝑒𝑥 ≤ 0

  

𝐼𝑛𝑑𝑒𝑥 = −40 + 0.5𝑎𝑔𝑒 + 0.5𝐹 − 20𝑑𝐶 + , ~ 𝑈 −10,10      (T2) 
 
New care is given only if a patient’s 𝐼𝑛𝑑𝑒𝑥 value exceeds some threshold level, arbitrarily set equal to 
zero.  𝐼𝑛𝑑𝑒𝑥 is greater, the older is the patient (i.e. the greater is 𝑎𝑔𝑒), the more frail is the patient (i.e. 
the greater is 𝐹), and the greater is the patient-specific idiosyncratic factor (i.e. the greater is the 
random variable , where  ~ 𝑈[−10,10]).  High values of  could reflect other factors that influence 
treatment assignment, such as a strong patient preference for the new type of care.  𝐼𝑛𝑑𝑒𝑥 is 20 points 
lower if the patient is treated by a 𝐶-type (conservative) doctor, identified by 𝑑𝐶 = 1, instead of a 𝐿-
type (liberal) doctor (𝑑𝐶 = 0).   Hence under (T2), sicker patients and those treated by liberal doctors 
are more likely to receive new care.   
 

                                                 
1
 Errors drawn from 𝑈[−10,10] can take on any one of 21 different integer values: -10, -9, -8, …, -1, 0, 1, …, 8, 9, 

10, each occurring with equal probability (=1/21).  Subjects with the same values of 𝐷, 𝐹 and 𝑎𝑔𝑒 can therefore 
have health outcomes that differ by as much as 20 units. 
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I first demonstrate the behavior of the IV estimator as the sample size increase.  To do so, I used health 
outcome process (H3) and treatment assignment process (T2) to generate a sample of size 𝑛 
observations.  For each subject in my sample, I arbitrarily assigned values of 𝑑𝐶 (0 or 1), 𝑎𝑔𝑒 (between 
25 and 73 years), 𝐹 (between 1 and 100), and randomly drawn values of  and .  I generated 𝑅 = 1000 
of such samples, taking independent draws of  and   for each sample.  I used various values of 
𝑛 =  100, 1000, 2500, 25000 .  For each of the 𝑅 samples of size 𝑛 observations, I used the generalized 
IV estimator that controls for 𝑎𝑔𝑒, and uses 𝑑𝐶 as an instrument to estimate the treatment effect 
parameter 𝛽1 (which is equal to 25). 
 
The kernel-smoothed histograms of the 𝑅 treatment effect estimates are displayed in Figure 1.  When 
𝑛 = 100 the sampling distribution of the estimator is rather wide (estimates varied from about 10 to 28) 
and is centered over 18.  Increasing 𝑛 to 1000 decreased the variability of estimates but did not 
materially improve the bias.  The IV estimator is approximately unbiased when the sample size is in the 
order of 𝑛 = 25000 observations. 
 

Figure 1 Histogram of 1000 treatment effect estimates generated from IV estimator using various 
sample sizes.   

 
 
How do the other estimators compare?  Using health outcome process (H3) and one of the treatment 
assignment processes (T1) and (T2), I generated 𝑅 = 1000 samples of size 𝑛 = 100 observations and, 
for each sample, used several different estimators to produce estimates of the treatment effect.  I 

considered the difference in means estimator, 𝑏1
𝑑𝑚 ,  applied to both treatment assignment process (T2) 

(i.e., observational data) and treatment assignment (T1)  (experimental data).  I also reproduced the 
results for the generalized IV estimator that controls for 𝑎𝑔𝑒, and uses 𝑑𝐶 as an instrument, shown in 
Figure 1.   
 
The kernel-smoothed histograms of the 𝑅 treatment effect estimates are displayed in Figure 2.  As 

expected, the sampling distribution of the DIM estimator, 𝑏1
𝑑𝑚 , estimated using the observational data 

(labeled as DIM OBS in the figure) is well to the left of 25, indicating that 𝑏1
𝑑𝑚  is severely downwards 

biased.  Conversely, the DIM estimator estimated using the experimental data, DIM RCT in the figure, is 

centered over 25, indicating that 𝑏1
𝑑𝑚  is unbiased in this context.  The IV estimator, IV OBS in the figure, 

is downwards biased, but not to the same degree as DIM OBS. 
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Figure 2 Histogram of 1000 treatment effect estimates generated from various estimators.  Sample 
size of 100 in each case.   

 
Note: DIM OBS: difference in means estimator using observational data.  IV OBS: instrumental variables estimator 
using observational data (instrument is DocType).  DIM RCT: difference in means estimator where treatments 
randomly assigned.  Sample size = 100 in each case. 

 
I next examined the properties of the IV estimator using observational data with different values of 𝑛 
and different degrees of correlation between the instrument and treatment assignment.  First, I 
considered the IV estimator using a smaller sample size (𝑛 = 50).  This case is denoted “IV n=50”.  Then I 
considered the behavior of the IV estimator where 𝑛 = 100 as before, but where the correlation 
between 𝑑𝐶 and 𝐷 was weakened.  Specifically, I modified (T2) so that the coefficient on 𝑑𝐶 was half as 
large in absolute value as before:  
 
𝐼𝑛𝑑𝑒𝑥 = −40 + 0.5𝑎𝑔𝑒 + 0.5𝐹 − 𝟏𝟎𝑑𝐶 + , ~ 𝑈[−10,10]     (T3) 
 
This case was denoted as “IV n=100 weak instrument”.  Next, I further weakened the influence of 𝑑𝐶 
and 𝐷 by modifying (T2) so that the coefficient on 𝑑𝐶 was even smaller:  
 
𝐼𝑛𝑑𝑒𝑥 = −40 + 0.5𝑎𝑔𝑒 + 0.5𝐹 − 𝟔𝑑𝐶 + , ~ 𝑈[−10,10]     (T4) 
 
but compensated by increasing the sample size from 𝑛 = 100 to 𝑛 = 2500.  This case was denoted as 
“IV n=2500 very weak instrument”.   
 
The resulting sampling distributions are displayed in Figure 3.  The IV estimator using 𝑛 = 50 is 
compared to the IV estimator using 𝑛 = 100 (which appears as “IV OBS” in the previous figure).  Note 
the smaller sample size decreases the precision of the estimator but, ironically, reduces the bias.  
Weakening the correlation between 𝐷 and 𝑑𝐶 while using 𝑛 = 100 resulted in a marked decrease in 
estimator precision – estimates ranged from less than 0 to over 80.  Weakening the correlation even 
further while using 𝑛 = 2500 produced an IV estimator with roughly the same precision as the “IV 
n=50” case, but with a marked increase in bias.   
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Figure 3 Histogram of 1000 treatment effect estimates generated from instrumental variables 
estimators.     

 
Note: IV n=100: instrumental variables estimator with sample size (n) = 100.  IV n=50: instrumental variables 
estimator with n = 50.  IV n=100: instrumental variables estimator with n = 100 and correlation between DocType 
and D weakened.  IV n=2500: instrumental variables estimator with n = 2500 and correlation between DocType and 
D weakened further.  In each case instrument is DocType. 

 
The take home message is that small sample sizes or weak correlation between instrument and 
treatment can adversely affect the performance of the IV estimator.  The IV estimator can also behave 
poorly when an invalid instrument is used, i.e. when there is some correlation between the instrument 
and the unmodelled determinants of 𝐻.  Indeed, Bound and colleagues (1995) demonstrate that the 
adverse effects of weak instruments on IV performance are exacerbated when there is even weak 
correlation between the instruments and the error.  A final determinant of the finite sample 
performance of the IV estimator is the number of instruments chosen.  More instruments are better, 
but only up to a point.  As Kennedy (2003, page 175) notes, as more instruments are added, in small 

samples, 𝐷  becomes closer and closer to 𝐷 “and so begins to introduce the bias that the IV procedure is 
trying to eliminate.  This bias is proportional to the inverse of the F test statistic for testing the 
significance of the instrumental variables in explaining the explanatory variable for which it is to serve as 
an instrument.”    
 
For further discussions of weak instruments and the generalized IV estimator see Staiger and Stock 
(1997), Hahn and Hausman (2002), and Stock, Wright and Yogo (2002). 
 

The reduced form model 
 
Even if the IV estimator performs poorly, one can learn about the treatment effect by estimating via OLS 
what is known as the ‘reduced form’ model.  This model relates the health outcome 𝐻 to the 
instruments 𝒁 and any known exogenous health determinants 𝑾.  To illustrate, suppose that 𝐻 is 
determined by the equation: 
 
𝐻 = 𝑓 𝐷, 𝑾,            (18) 
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And suppose that treatment assignment 𝐷 is determined by the equation: 
 
𝐷 = 𝑔 𝒁,             (19) 
 
The reduced form model is derived by substituting (19) into (18): 
 
𝐻 = 𝑓 𝑔 𝒁,  , 𝑾,            (20) 
 
which leads to the estimable regression model: 
 
𝐻 = 𝛼0 + 𝑾′𝜶𝟏 + 𝒁′𝜶𝟐 + 𝜔 
 
where the 𝛼’s are unknown parameters and  𝜔 is the composite error term derived from the two 
random components:  and .  OLS is an unbiased estimator of the 𝛼’s; the estimates of 𝜶𝟐 inform the 
‘net effect’ of each of the instruments on 𝐻.  The net effect of instrument 𝑍𝑗  on 𝐻 is comprised of the 

product of the effect of 𝑍𝑗  on 𝐷 (which is proportional to the strength of 𝑍𝑗 ) and the effect of 𝐷 on 𝐻 

(i.e. the treatment effect).  This can be seen by differentiating (20) w.r.t. 𝑍𝑗 : 

 
𝜕𝐻

𝜕𝑍𝑗
=

𝜕𝑓 𝐷, 𝑾,  

𝜕𝐷

𝜕𝑔 𝒁,  

𝜕𝑍𝑗
 

 
As Angrist and Krueger (2001) note, the sign, magnitude and statistical significance of the estimates of 

the 𝜶𝟐 are informative.   If 𝜶𝟐𝒋 = 0, then either 
𝜕𝑓 𝐷,𝑾,  

𝜕𝐷
= 0 (i.e. the treatment effect is zero), or 

𝜕𝑔 𝒁, 

𝜕𝑍𝑗
= 0 (i.e. the instruments are weak).  If one can rule out the latter using the results of the first 

stage regression, then there is evidence that the new treatment does not work better than standard 

care.  Moreover, if one has estimates of 
𝜕𝐻

𝜕𝑍𝑗
 and one knows the sign and can bound the magnitude of 

𝜕𝑔 𝒁, 

𝜕𝑍𝑗
, then one can learn about the sign and magnitude of 

𝜕𝑓 𝐷,𝑾,  

𝜕𝐷
.   

 

IV estimation of variable treatment effects 
 
The effect of some treatment 𝑥 on a health outcome 𝑦 might vary between individuals.  For instance, 
some medications are ineffective among individuals who lack the ability to metabolize certain 
compounds.  Some individuals apparently do not seem to suffer any adverse consequences from 
cigarette smoking, while others do.  A recent literature has analyzed the properties of the IV estimator 
when treatment effects vary by individual and individuals use private information to determine which 
treatment option is best.  An illustrative example is Newhouse and McClellan’s analysis of the impact of 
post-MI cardiac revascularization on mortality rates.  Recall that they used as an instrument the 
“differential distance”, the additional distance (if any) between the hospital closest to the patient’s 
residence and a hospital with revascularization capacity.   While this instrument was highly correlated 
with the receipt of revascularization, it was the not the only determining factor.  Another, unobserved, 
factor, the patient’s suitability for revascularization, also was found to be important.  Indeed patients 
who were ill suited for revascularization would almost certainly not undergo the procedure, no matter 
how close they lived to a hospital which could perform the procedure.  Other patients who were ideal 
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candidates for the procedure would eventually likely receive it, again, irrespective of their proximity to a 
hospital.  So the IV estimator in this case tells us about the impact of revascularization on the subset of 
patients occupying the middle ground between being ideal candidates and being ill-suited for the 
procedure.  For such patients, the effectiveness of the procedure is unclear and factors such as 
geographic proximity to a revascularization facility could be deciding factors in treatment decisions.  
Note that in this case, the IV treatment effect estimate underestimates the effectiveness of treatment 
for ideal candidates and overestimates the effectiveness of the treatment among those ill suited for the 
procedure. 
 
To obtain more precise results about the behavior of the IV treatment effect estimator when treatment 
effects vary, let us modify the health outcome model (H1) slightly: 
 
𝐻𝑖 = 𝛽0 + 𝛽1𝑖𝐷𝑖 + 𝜀𝑖             
 
where 𝑖 indexes subjects.  Hence 𝛽1𝑖  reflects the treatment effect specific to subject 𝑖.  Imbens and 
Angrist (1994) demonstrate that the IV estimator converges to a weighted average of treatment effects 
where the weights are largest for subjects who vary their treatment choice 𝐷𝑖  by the greatest degree in 
response to changes in the instruments.  In particular, following the nomenclature of Auld (2006), if the 
instrument 𝑍 takes 𝐺 different values, then under fairly general conditions the IV estimate of ‘the’ 
causal effect of 𝐷 on 𝐻 using 𝑍 as an instrument converges to: 
 

𝑏1
𝑖𝑣 →  𝜆𝑔𝛽1𝑔

𝐺

𝑔=1
 

 
where 𝛽1𝑔  is the average effect of 𝐷 on 𝐻 in subpopulation 𝑔 and the 𝜆𝑔 ’s are weights that depend on 

how much D varies with Z in subpopulation g.  Recalling our previous example, one could imagine there 
being just two values of 𝐺: those who live near (𝑔 = 1) and those who live far away  𝑔 = 2  from a 
catheterization hospital.  In both groups, those whose catheterization treatment decision does not 
depend on distance will contribute nothing to the treatment effect estimate.  Hence the IV estimate 
reflects the average of the treatment effects in the remaining patients – those whose catheterization 
treatment decision depends on distance.   
 
The lesson is that when TEs vary, IV estimates will tend to reflect the TEs of those whose treatment 
decision varies the most with variation in the instrument.  One implication is that the interpretation of 
the IV estimator can depend on the instrument used.  Two analysts, each using valid instruments, can 
legitimately produce different treatment effect estimates.  To illustrate, suppose that catheterization 
treatments were assigned using a coin toss, not differential distance.  Hence there would be again be 
two values of 𝐺: those randomized to receive catheterization treatment (𝑔 = 1) and those randomized 
to standard care (𝑔 = 2).  If the randomization worked as intended, then the mix of patient types 
should be the same in both groups, implying that the weights 𝜆𝑔and the average treatment effect 𝛽1𝑔  

should be the same in both groups as well.  Moreover because each patient’s treatment alllocation is 
equally dependent on the outcome of the coin toss, each patient will have an identical weight and the IV 
estimator will converge to a simple average of the 𝛽1𝑖 .  Note that the interpretation of the IV estimator 
in this context is different than the interpretation when distance was used as an instrument. 
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IV estimation of treatment effects in non-linear models 
 
The models consider so far have been linear in parameters.  Some models, however, are nonlinear.  Of 
these nonlinear models, some can be rendered linear via a suitable transformation.   For instance, if 
health outcomes are determined by the process:  
 

𝐻 = 𝑒𝛽0𝑒𝛽1𝐷𝑤𝛽2𝑒           (H4) 
 
Then, as Davidson and MacKinnon (2003, page 22) note, the model can be rendered linear in the 
parameters by taking the logarithm of both sides: 
 
ln 𝐻 = 𝛽0 + 𝛽1𝐷 + 𝛽2ln𝑤 +          (H5) 
 
IV estimation of intrinsically nonlinear models can be handled using nonlinear IV estimation.  Non-linear 
IV estimation is suitable when one can formulate one’s model in the form of a non-linear regression: 
 
𝐻𝑖 = 𝒙𝑖(𝜷) + 𝜀𝑖            (21) 
 
where 𝒙𝑖 𝜷  is a nonlinear regression function that depends on 𝜷, a vector of 𝐾 unknown parameters, 
the treatment indicator 𝐷𝑖  and any other covariates included in the model.  As before, 𝜀𝑖  represents the 
influence of all other determinants of 𝐻𝑖  that are not explicitly modeled, some of which may be 
associated with 𝐷𝑖 .  This framework can accommodate a variety of models.  Suppose, for example, that 
𝐻𝑖  is a count variable; perhaps 𝐻𝑖  is the number of chronic health problems afflicting subject 𝑖.  The 
Poisson model of 𝐻𝑖  can be written as: 
 
𝐻𝑖 = exp(𝛽0 + 𝛽1𝐷𝑖 + 𝑾𝒊′𝜸) + 𝜀𝑖          (22) 
 
Conversely 𝐻𝑖  might be a binary response; it could be the case that 𝐻𝑖 = 1 if subject 𝑖 has high blood 
pressure and 𝐻𝑖 = 0 otherwise.  The logit model of the probability that 𝐻𝑖 = 1 can be written as:2  
 

𝐻𝑖 =
exp (𝛽0+𝛽1𝐷𝑖+𝑾𝒊′𝜸)

1+exp (𝛽0+𝛽1𝐷𝑖+𝑾𝒊′𝜸)
+ 𝜀𝑖           (23) 

 
Nonlinear IV models are somewhat controversial.  Terza (2006) is skeptical about the realism of models 
of the form (21) because they treat observed and latent determinants of health outcomes 
asymmetrically.  While observed determinants are modeled using the non-linear function 𝒙𝑖 𝜷 , latent 
determinants are relegated to the additive error term.  Hence the marginal effects of observed and 
unobserved covariates on 𝐻 can be quite different, with no apparent justification.  The one exception is 
the exponential model (22); Terza demonstrates that this model treats observed and unobserved health 
determinants symmetrically.  
 

                                                 
2
 As Davidson and MacKinnon (2003, page 456, 476) note, one could improve estimator precision by dividing 

observations on 𝐻𝑖  and 𝒙𝑖 𝜷  by the square root of the observation’s error variance.  The error variance in the 
Poisson case is equal to its conditional mean, while the error variance in the logit case is simply the variance of a 

Bernoulli distributed random variable: 𝑝𝑖(1 − 𝑝𝑖) where 𝑝𝑖 =
exp (𝛽0+𝛽1𝐷𝑖+𝑾𝒊′𝜸)

1+exp (𝛽0+𝛽1𝐷𝑖+𝑾𝒊′𝜸)
. 
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Consistent estimation of the parameters of non-linear regression models requires that the following 
‘moment conditions’ be satisfied: 
   

𝑿 𝜷 ′ 𝑯 − 𝒙 𝜷  = 𝟎          (24) 

 

where 𝑿 𝜷 ≡
𝜕𝒙 𝜷 

𝜕𝜷
 is the matrix of 𝑛 observations on the 𝐾 partial derivatives of the regression 

function with respect to each of the 𝐾 parameters in 𝜷.  These moment conditions are the 
generalization to the non-linear regression context of the condition in the linear context that the errors 
be independent of the covariates.  For instance, if the 𝑖𝑡𝑕 observation on 𝒙𝑖 𝜷  is  
 
𝒙𝑖 𝜷 = 𝛽0 + 𝛽1𝐷𝑖  

 
Then  

𝑿𝑖 𝜷 ′ ≡  
𝜕𝒙𝑖 𝜷 

𝜕𝛽0

𝜕𝒙𝑖 𝜷 

𝜕𝛽1
 =  1 𝐷𝑖  

 
Hence (24) would require that 𝐷 and 𝜀 be orthogonal (i.e. the errors do not vary with values of 𝐷). 
When the errors are not orthogonal to 𝑿𝑖 𝜷  then one can use nonlinear IV provided that one has a set 
of instruments 𝒁 that satisfy the condition that:  
 

𝑿 𝜷 ′𝑷𝒁∗ 𝑯 − 𝒙 𝜷  = 𝟎         (25) 

 
where 𝑷𝒁∗  was previously defined and 𝑿 𝜷 ′𝑷𝒁∗ are the predicted values from regressions of the 
columns of 𝑿 𝜷  on 𝒁∗.  Hence condition (22) states that the summary instruments be independent of 
the error terms.  The non-linear IV estimator is the estimate of 𝜷 that solves (25); this estimator is 
equivalent to the estimate of 𝜷 that minimizes the criterion function: 
 

𝑄 𝜷, 𝑯 =  𝑯 − 𝒙 𝜷  ′𝑷𝒁∗ 𝑯 − 𝒙 𝜷         (26) 

 
Recall that IV estimation of the parameters of the linear model can be performed in two steps, wherein 

𝐷 is replaced by 𝐷 , the predicted values from the regression of 𝐷 on 𝒁∗, and this modified model 
estimated by OLS as per usual.  When the model is non-linear, estimates must be derived from 

minimization of the criterion function (26); replacing 𝐷 with 𝐷  and estimating the modified model by 
non-linear least squares will not yield consistent estimates.  Suppose, for instance, that one was 
analyzing data from a RCT comparing the effectiveness of a new drug vs placebo on the probability of 
heart failure.  Suppose further that compliance with the RCT was not perfect.  One might be tempted to 

estimate (23) via non-linear least squares after replacing the observed 𝐷 with 𝐷 , the predicted values 
from a regression of 𝐷 on 𝐶𝑜𝑖𝑛𝑇𝑜𝑠𝑠.  This temptation should be resisted.  One would need to minimize 
(26) or perhaps use the linear probability model instead. 
 

Conclusions 
 
Instrumental variables estimation can be a useful alternative to conventional covariate adjustment 
approaches.  Finding good instruments, however, is not easy.  Successful application of IV requires 
either experimental variation in treatment assignment or a source of quasi-experimental variation that 
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is incidental to the outcome being analysed.  Furthermore, the desirable properties of IV are guaranteed 
to hold only as the sample size approaches infinity.  In samples of modest size, IV estimates can be wildly 
inaccurate if instruments have only a modest effect on treatment or if there is even a weak correlation 
between instrument and the outcome being modeled.  Finally, IV estimation when treatment effects are 
heterogenous requires careful consideration of the subjects whose treatment status is affected by 
variation in the instrument.  IV reveals nothing about treatment effectiveness among subjects whose 
treatment status is non-responsive to variation in the instrument. 
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