Tools for the exploratory analysis of two-dimensional spatial point patterns An introduction to spgrid and spkde #### Maurizio Pisati Department of Sociology and Social Research University of Milano-Bicocca (Italy) maurizio.pisati@unimib.it 14th UK Stata Users Group meeting Cass Business School (London), September 8-9, 2008 #### Outline - Overview - The programs - Background - 2 Description - spgrid - spkde - 3 Applications - Creating two-dimensional grids - Estimating density and intensity functions - Estimating bivariate densities for non-spatial data - Conclusion #### The programs The purpose of this talk is to introduce spgrid and spkde, two novel user-written Stata programs for the exploratory analysis of two-dimensional spatial point patterns #### The programs - The purpose of this talk is to introduce spgrid and spkde, two novel user-written Stata programs for the exploratory analysis of two-dimensional spatial point patterns - spgrid generates several kinds of two-dimensional grids covering rectangular or irregular study regions #### The programs - The purpose of this talk is to introduce spgrid and spkde, two novel user-written Stata programs for the exploratory analysis of two-dimensional spatial point patterns - spgrid generates several kinds of two-dimensional grids covering rectangular or irregular study regions - spkde implements a variety of nonparametric kernel-based estimators of the probability density function and the intensity function of two-dimensional spatial point patterns • A two-dimensional spatial point pattern **S** can be defined as a set of points \mathbf{s}_i (i=1,...,n) located in a two-dimensional study region \mathcal{R} at coordinates (s_{i1},s_{i2}) - A two-dimensional spatial point pattern **S** can be defined as a set of points \mathbf{s}_i (i=1,...,n) located in a two-dimensional study region \mathcal{R} at coordinates (s_{i1},s_{i2}) - Each point s_i represents the location in R of an "object" of some kind: people, events, sites, buildings, plants, cases of a disease, etc. - A two-dimensional spatial point pattern **S** can be defined as a set of points \mathbf{s}_i (i=1,...,n) located in a two-dimensional study region \mathcal{R} at coordinates (s_{i1},s_{i2}) - Each point \mathbf{s}_i represents the location in \mathcal{R} of an "object" of some kind: people, events, sites, buildings, plants, cases of a disease, etc. - Points s_i will be referred to as the data points - A two-dimensional spatial point pattern **S** can be defined as a set of points \mathbf{s}_i (i=1,...,n) located in a two-dimensional study region \mathcal{R} at coordinates (s_{i1},s_{i2}) - Each point \mathbf{s}_i represents the location in \mathcal{R} of an "object" of some kind: people, events, sites, buildings, plants, cases of a disease, etc. - Points s_i will be referred to as the data points - A two-dimensional spatial point pattern **S** can be defined as a set of points \mathbf{s}_i (i=1,...,n) located in a two-dimensional study region \mathcal{R} at coordinates (s_{i1},s_{i2}) - Each point \mathbf{s}_i represents the location in \mathcal{R} of an "object" of some kind: people, events, sites, buildings, plants, cases of a disease, etc. - Points s_i will be referred to as the data points In the analysis of spatial point patterns we are often interested in determining whether the observed data points exhibit some form of *clustering*, as opposed to being distributed uniformly within R - In the analysis of spatial point patterns we are often interested in determining whether the observed data points exhibit some form of *clustering*, as opposed to being distributed uniformly within \mathcal{R} - To explore the possibility of point clustering, it may be useful to describe the spatial point pattern of interest by means of its probability density function $p(\mathbf{s})$ and/or its intensity function $\lambda(\mathbf{s})$ • The probability density function $p(\mathbf{s})$ defines the probability of observing an object per unit area at location $\mathbf{s} \in \mathcal{R}$, while the intensity function $\lambda(\mathbf{s})$ defines the expected number of objects per unit area at location $\mathbf{s} \in \mathcal{R}$ - The probability density function $p(\mathbf{s})$ defines the probability of observing an object per unit area at location $\mathbf{s} \in \mathcal{R}$, while the intensity function $\lambda(\mathbf{s})$ defines the expected number of objects per unit area at location $\mathbf{s} \in \mathcal{R}$ - The probability density function and the intensity function differ only by a constant of proportionality • Both the probability density function p(s) and the intensity function $\lambda(s)$ of a given two-dimensional spatial point pattern can be easily estimated by means of nonparametric estimators, e.g., kernel estimators - Both the probability density function p(s) and the intensity function $\lambda(s)$ of a given two-dimensional spatial point pattern can be easily estimated by means of nonparametric estimators, e.g., kernel estimators - Kernel estimators are used to generate a spatially smooth estimate of $p(\mathbf{s})$ and/or $\lambda(\mathbf{s})$ at a fine grid of points \mathbf{s}_g (g=1,...,G) covering the study region \mathcal{R} • Specifically, the intensity $\lambda(\mathbf{s}_g)$ at each grid point \mathbf{s}_g is estimated by: $$\hat{\lambda}(\mathbf{s}_g) = \frac{c}{A_g} \sum_{i=1}^n k\left(\frac{\mathbf{s}_i - \mathbf{s}_g}{h}\right) w_i$$ where $k(\cdot)$ is the *kernel function* – usually a unimodal symmetrical bivariate probability density function; h is the *kernel bandwidth*, i.e., the radius of the kernel function; w_i is the value taken on by an optional weighting variable W; A_g is the area of the subregion of $\mathcal R$ over which the kernel function is evaluated, possibly corrected for *edge effects*; and c is a constant of proportionality The purpose of spgrid is to generate two-dimensional grids that can be subsequently used by other programs to carry out several kinds of spatial data analysis, e.g., kernel estimation of densities and intensities for two-dimensional spatial point patterns - The purpose of spgrid is to generate two-dimensional grids that can be subsequently used by other programs to carry out several kinds of spatial data analysis, e.g., kernel estimation of densities and intensities for two-dimensional spatial point patterns - In the context of spatial data analysis, a grid is a regular tessellation of the study region R that divides it into a set of contiguous cells whose centers are referred to as the grid points • spgrid can generate both square and hexagonal grids, i.e., grids whose cells are either square or hexagonal - spgrid can generate both square and hexagonal grids, i.e., grids whose cells are either square or hexagonal - spgrid can generate grids covering both rectangular and irregular study regions, possibly made up by more than one polygon - spgrid can generate both square and hexagonal grids, i.e., grids whose cells are either square or hexagonal - spgrid can generate grids covering both rectangular and irregular study regions, possibly made up by more than one polygon - spgrid is able to generate grids with gaps, i.e., grids from which one or more subareas of the study region are excluded from the analysis spkde implements a variety of nonparametric kernel-based estimators of the probability density function and the intensity function of two-dimensional spatial point patterns - spkde implements a variety of nonparametric kernel-based estimators of the probability density function and the intensity function of two-dimensional spatial point patterns - spkde allows to choose among eight different kernel functions: uniform, normal, truncated normal, negative exponential, truncated negative exponential, quartic, triangular, and epanechnikov - spkde implements a variety of nonparametric kernel-based estimators of the probability density function and the intensity function of two-dimensional spatial point patterns - spkde allows to choose among eight different kernel functions: uniform, normal, truncated normal, negative exponential, truncated negative exponential, quartic, triangular, and epanechnikov - The kernel bandwidth can be fixed, variable (based on a minimum number of weighted or unweighted data points), or a combination of the two (adaptive) - spkde implements a variety of nonparametric kernel-based estimators of the probability density function and the intensity function of two-dimensional spatial point patterns - spkde allows to choose among eight different kernel functions: uniform, normal, truncated normal, negative exponential, truncated negative exponential, quartic, triangular, and epanechnikov - The kernel bandwidth can be fixed, variable (based on a minimum number of weighted or unweighted data points), or a combination of the two (adaptive) - spkde applies an approximate edge correction to the estimates of the quantities of interest # Creating two-dimensional grids Let's see how spgrid can be used to generate several kinds of two-dimensional grids Rectangular study region - Square grid cells ``` . spgrid, shape(square) resolution(w10) xrange(0 500) yrange(0 200) /// verbose replace cells("Rectangle-GridCells(Square).dta") /// points("Rectangle-GridPoints(Square).dta") . use "Rectangle-GridPoints(Square).dta", clear . spmap using "Rectangle-GridCells(Square).dta", id(spgrid_id) ``` #### Creating two-dimensional grids Estimating density and intensity functions Estimating bivariate densities for non-spatial data #### Example 2 #### Rectangular study region - Hexagonal grid cells ``` . spgrid, shape(hexagonal) resolution(w10) xrange(0 500) yrange(0 200) /// verbose replace cells("Rectangle-GridCells(Hexagonal).dta") /// points("Rectangle-GridPoints(Hexagonal).dta") ``` - . use "Rectangle-GridPoints(Hexagonal).dta", clear - . spmap using "Rectangle-GridCells(Hexagonal).dta", id(spgrid_id) Irregular study region - Hexagonal grid cells ``` . spgrid using "Italy-OutlineCoordinates.dta", /// shape(hexagonal) resolution(w10) /// verbose replace /// cells("Italy-GridCells(Hexagonal).dta") /// points("Italy-GridPoints(Hexagonal).dta") . use "Italy-GridPoints(Hexagonal).dta", clear . spmap using "Italy-GridCells(Hexagonal).dta", /// id(spgrid_id) /// poly(data("Italy-OutlineCoordinates.dta") /// coclor(red) osize(thick)) ``` Irregular study region - Hexagonal grid cells (valid cells only) ``` . spgrid using "Italy-OutlineCoordinates.dta", /// shape(hexagonal) resolution(w10) /// verbose replace compress /// cells("Italy-GridCells(HexValid).dta") /// points("Italy-GridPoints(HexValid).dta") . use "Italy-GridPoints(HexValid).dta", clear . spmap using "Italy-GridCells(HexValid).dta", /// id(spgrid_id) /// poly(data("Italy-OutlineCoordinates.dta") /// ocolor(red) osize(medium)) ``` Irregular study region with some areas excluded - Hexagonal grid cells (valid cells only) ``` spgrid using "Italy-OutlineCoordinates.dta", shape(hexagonal) resolution(w10) 111 mapexclude("Italy-Exclude.dta") 111 verbose replace compress 111 cells("Italy2-GridCells(HexValid).dta") 111 points("Italy2-GridPoints(HexValid).dta") use "Italy2-GridPoints(HexValid).dta", clear spmap using "Italy2-GridCells(HexValid).dta", /// id(spgrid_id) 111 polv(data("Italv-OutlineCoordinates.dta") ocolor(red) osize(medium)) ``` # Estimating density and intensity functions • Now, let's see how we can use spkde and the two-dimensional grids generated by spgrid to estimate the probability density function $p(\mathbf{s})$ and the intensity function $\lambda(\mathbf{s})$ of any given spatial point pattern # Estimating density and intensity functions - Now, let's see how we can use spkde and the two-dimensional grids generated by spgrid to estimate the probability density function $p(\mathbf{s})$ and the intensity function $\lambda(\mathbf{s})$ of any given spatial point pattern - To this aim, we will use data pertaining to the 103 Italian provinces, taking provinces centroids as the observed data points \mathbf{s}_i (i=1,...,103) # Estimating density and intensity functions - Now, let's see how we can use spkde and the two-dimensional grids generated by spgrid to estimate the probability density function $p(\mathbf{s})$ and the intensity function $\lambda(\mathbf{s})$ of any given spatial point pattern - To this aim, we will use data pertaining to the 103 Italian provinces, taking provinces centroids as the observed data points \mathbf{s}_i (i=1,...,103) - $p(\mathbf{s})$ and $\lambda(\mathbf{s})$ will be estimated at each point \mathbf{s}_g (g=1,...,3,483) of the grid generated in Example 4 above # Example 1: Simple point pattern Quartic kernel function - Fixed bandwidth (100 km) ``` use "Italy-DataPoints.dta", clear . spkde using "Italy-GridPoints(HexValid).dta", /// xcoord(xcoord) ycoord(ycoord) 111 kernel(quartic) method(fixband) 111 111 bandwidth(100) verbose saving("Italy-Kde1.dta", replace) use "Italv-Kde1.dta", clear spmap density using 111 "Italy-GridCells(HexValid).dta", 111 id(spgrid_id) clnum(20) fcolor(Rainbow) 111 ocolor(none ..) legend(off) 111 point(data("Italy-DataPoints.dta") 111 x(xcoord) y(ycoord) size(*0.5)) ``` # Example 2: Simple point pattern Normal kernel function - Fixed bandwidth (69.35 km) The chosen bandwidth equals the average distance between each data point and its 5 nearest neighbors ``` . use "Italy-DataPoints.dta", clear ``` ``` . spkde using "Italy-GridPoints(HexValid).dta", /// xcoord(xcoord) ycoord(ycoord) /// kernel(normal) method(fixband) /// bandwidth(ad5) verbose /// saving("Italy-Kde2.dta", replace) ``` ``` . use "Italy-Kde2.dta", clear ``` ``` . spmap density using /// "Italy-GridCells(HexValid).dta", /// id(spgrid_id) clnum(20) fcolor(Rainbow) /// ocolor(none ..) legend(off) /// point(data("Italy-DataPoints.dta") /// x(xcoord) y(ycoord) size(*0.5)) ``` #### Example 3: Ratio of two intensities Deaths for cardiovascular diseases / Total population Quartic kernel function - Fixed bandwidth (100 km) ``` use "Italy-DataPoints.dta", clear . spkde dcvd95 pop95 using 111 "Italy-GridPoints(HexValid).dta", 111 xcoord(xcoord) ycoord(ycoord) 111 kernel(quartic) method(fixband) 111 bandwidth(100) verbose 111 saving("Italy-Kde3.dta", replace) use "Italy-Kde3.dta", clear generate ratio = dcvd95_intensity / pop95 intensity * 1000 111 . spmap ratio using "Italy-GridCells(HexValid).dta", 111 id(spgrid id) clnum(20) fcolor(Rainbow) /// ocolor(none ..) legend(off) ``` # Estimating bivariate densities for non-spatial data • spgrid and spkde can be used to estimate the joint probability density function p(x, y) of any pair of quantitative variables X and Y # Estimating bivariate densities for non-spatial data - spgrid and spkde can be used to estimate the joint probability density function p(x, y) of any pair of quantitative variables X and Y - As an example, let's estimate and plot the bivariate probability density function for two of the variables included in the auto dataset: mpg and price ### Step 1: Normalize variables in the range [0,1] ``` . sysuse "auto.dta", clear . summarize price mpg . clonevar x = mpg . clonevar y = price . replace x = (x-0) / (50-0) . replace y = (y-0) / (20000-0) . mylabels 0(10)50, myscale((@-0) / (50-0)) local(XLAB) . mylabels 0(5000)20000, myscale((@-0) / (20000-0)) local(YLAB) . keep x y . save "xy.dta", replace ``` ### Step 2: Generate a 100×100 grid ``` . spgrid, shape(hexagonal) xdim(100) /// xrange(0 1) yrange(0 1) /// verbose replace /// cells("2D-GridCells.dta") /// points("2D-GridPoints.dta") ``` ### Step 3: Estimate the bivariate probability density function ``` . spkde using "2D-GridPoints.dta", xcoord(x) ycoord(y) /// kernel(quartic) method(fixband) bandwidth(0.1) /// noedge verbose saving("2D-Kde.dta", replace) ``` ### Step 4: Display the density plot ``` . use "2D-Kde.dta", clear . recode density (.=0) . spmap density using "2D-GridCells.dta", 111 id(spgrid_id) clnum(20) fcolor(Rainbow) /// ocolor(none ..) legend(off) 111 111 point(data("xy.dta") x(x) y(y)) freestyle aspectratio(1) 111 xtitle(" " "Mileage (mpg)") 111 /// xlab('XLAB') vtitle("Price" " ") 111 ylab('YLAB', angle(0)) ``` ### Conclusion spgrid and spkde add to the growing set of commands for spatial data analysis available to Stata users #### Conclusion - spgrid and spkde add to the growing set of commands for spatial data analysis available to Stata users - Both programs will be submitted to the SSC Archive as soon as their respective help files are ready #### Conclusion - spgrid and spkde add to the growing set of commands for spatial data analysis available to Stata users - Both programs will be submitted to the SSC Archive as soon as their respective help files are ready - I'm currently working on other Stata tools for exploratory spatial data analysis: ideas and suggestions are welcome