# Tools for the exploratory analysis of two-dimensional spatial point patterns An introduction to spgrid and spkde

#### Maurizio Pisati

Department of Sociology and Social Research University of Milano-Bicocca (Italy) maurizio.pisati@unimib.it

14th UK Stata Users Group meeting Cass Business School (London), September 8-9, 2008

#### Outline

- Overview
  - The programs
  - Background
- 2 Description
  - spgrid
  - spkde
- 3 Applications
  - Creating two-dimensional grids
  - Estimating density and intensity functions
  - Estimating bivariate densities for non-spatial data
- Conclusion

#### The programs

 The purpose of this talk is to introduce spgrid and spkde, two novel user-written Stata programs for the exploratory analysis of two-dimensional spatial point patterns

#### The programs

- The purpose of this talk is to introduce spgrid and spkde, two novel user-written Stata programs for the exploratory analysis of two-dimensional spatial point patterns
- spgrid generates several kinds of two-dimensional grids covering rectangular or irregular study regions

#### The programs

- The purpose of this talk is to introduce spgrid and spkde, two novel user-written Stata programs for the exploratory analysis of two-dimensional spatial point patterns
- spgrid generates several kinds of two-dimensional grids covering rectangular or irregular study regions
- spkde implements a variety of nonparametric kernel-based estimators of the probability density function and the intensity function of two-dimensional spatial point patterns

• A two-dimensional spatial point pattern **S** can be defined as a set of points  $\mathbf{s}_i$  (i=1,...,n) located in a two-dimensional study region  $\mathcal{R}$  at coordinates ( $s_{i1},s_{i2}$ )

- A two-dimensional spatial point pattern **S** can be defined as a set of points  $\mathbf{s}_i$  (i=1,...,n) located in a two-dimensional study region  $\mathcal{R}$  at coordinates ( $s_{i1},s_{i2}$ )
- Each point s<sub>i</sub> represents the location in R of an "object" of some kind: people, events, sites, buildings, plants, cases of a disease, etc.

- A two-dimensional spatial point pattern **S** can be defined as a set of points  $\mathbf{s}_i$  (i=1,...,n) located in a two-dimensional study region  $\mathcal{R}$  at coordinates  $(s_{i1},s_{i2})$
- Each point  $\mathbf{s}_i$  represents the location in  $\mathcal{R}$  of an "object" of some kind: people, events, sites, buildings, plants, cases of a disease, etc.
- Points s<sub>i</sub> will be referred to as the data points

- A two-dimensional spatial point pattern **S** can be defined as a set of points  $\mathbf{s}_i$  (i=1,...,n) located in a two-dimensional study region  $\mathcal{R}$  at coordinates ( $s_{i1},s_{i2}$ )
- Each point  $\mathbf{s}_i$  represents the location in  $\mathcal{R}$  of an "object" of some kind: people, events, sites, buildings, plants, cases of a disease, etc.
- Points s<sub>i</sub> will be referred to as the data points

- A two-dimensional spatial point pattern **S** can be defined as a set of points  $\mathbf{s}_i$  (i=1,...,n) located in a two-dimensional study region  $\mathcal{R}$  at coordinates ( $s_{i1},s_{i2}$ )
- Each point  $\mathbf{s}_i$  represents the location in  $\mathcal{R}$  of an "object" of some kind: people, events, sites, buildings, plants, cases of a disease, etc.
- Points s<sub>i</sub> will be referred to as the data points



 In the analysis of spatial point patterns we are often interested in determining whether the observed data points exhibit some form of *clustering*, as opposed to being distributed uniformly within R

- In the analysis of spatial point patterns we are often interested in determining whether the observed data points exhibit some form of *clustering*, as opposed to being distributed uniformly within  $\mathcal{R}$
- To explore the possibility of point clustering, it may be useful to describe the spatial point pattern of interest by means of its probability density function  $p(\mathbf{s})$  and/or its intensity function  $\lambda(\mathbf{s})$

• The probability density function  $p(\mathbf{s})$  defines the probability of observing an object per unit area at location  $\mathbf{s} \in \mathcal{R}$ , while the intensity function  $\lambda(\mathbf{s})$  defines the expected number of objects per unit area at location  $\mathbf{s} \in \mathcal{R}$ 

- The probability density function  $p(\mathbf{s})$  defines the probability of observing an object per unit area at location  $\mathbf{s} \in \mathcal{R}$ , while the intensity function  $\lambda(\mathbf{s})$  defines the expected number of objects per unit area at location  $\mathbf{s} \in \mathcal{R}$
- The probability density function and the intensity function differ only by a constant of proportionality

• Both the probability density function p(s) and the intensity function  $\lambda(s)$  of a given two-dimensional spatial point pattern can be easily estimated by means of nonparametric estimators, e.g., kernel estimators

- Both the probability density function p(s) and the intensity function  $\lambda(s)$  of a given two-dimensional spatial point pattern can be easily estimated by means of nonparametric estimators, e.g., kernel estimators
- Kernel estimators are used to generate a spatially smooth estimate of  $p(\mathbf{s})$  and/or  $\lambda(\mathbf{s})$  at a fine grid of points  $\mathbf{s}_g$  (g=1,...,G) covering the study region  $\mathcal{R}$

• Specifically, the intensity  $\lambda(\mathbf{s}_g)$  at each grid point  $\mathbf{s}_g$  is estimated by:

$$\hat{\lambda}(\mathbf{s}_g) = \frac{c}{A_g} \sum_{i=1}^n k\left(\frac{\mathbf{s}_i - \mathbf{s}_g}{h}\right) w_i$$

where  $k(\cdot)$  is the *kernel function* – usually a unimodal symmetrical bivariate probability density function; h is the *kernel bandwidth*, i.e., the radius of the kernel function;  $w_i$  is the value taken on by an optional weighting variable W;  $A_g$  is the area of the subregion of  $\mathcal R$  over which the kernel function is evaluated, possibly corrected for *edge effects*; and c is a constant of proportionality

 The purpose of spgrid is to generate two-dimensional grids that can be subsequently used by other programs to carry out several kinds of spatial data analysis, e.g., kernel estimation of densities and intensities for two-dimensional spatial point patterns

- The purpose of spgrid is to generate two-dimensional grids that can be subsequently used by other programs to carry out several kinds of spatial data analysis, e.g., kernel estimation of densities and intensities for two-dimensional spatial point patterns
- In the context of spatial data analysis, a grid is a regular tessellation of the study region R that divides it into a set of contiguous cells whose centers are referred to as the grid points

• spgrid can generate both square and hexagonal grids, i.e., grids whose cells are either square or hexagonal

- spgrid can generate both square and hexagonal grids, i.e., grids whose cells are either square or hexagonal
- spgrid can generate grids covering both rectangular and irregular study regions, possibly made up by more than one polygon

- spgrid can generate both square and hexagonal grids, i.e., grids whose cells are either square or hexagonal
- spgrid can generate grids covering both rectangular and irregular study regions, possibly made up by more than one polygon
- spgrid is able to generate grids with gaps, i.e., grids from which one or more subareas of the study region are excluded from the analysis

 spkde implements a variety of nonparametric kernel-based estimators of the probability density function and the intensity function of two-dimensional spatial point patterns

- spkde implements a variety of nonparametric kernel-based estimators of the probability density function and the intensity function of two-dimensional spatial point patterns
- spkde allows to choose among eight different kernel functions: uniform, normal, truncated normal, negative exponential, truncated negative exponential, quartic, triangular, and epanechnikov

- spkde implements a variety of nonparametric kernel-based estimators of the probability density function and the intensity function of two-dimensional spatial point patterns
- spkde allows to choose among eight different kernel functions: uniform, normal, truncated normal, negative exponential, truncated negative exponential, quartic, triangular, and epanechnikov
- The kernel bandwidth can be fixed, variable (based on a minimum number of weighted or unweighted data points), or a combination of the two (adaptive)

- spkde implements a variety of nonparametric kernel-based estimators of the probability density function and the intensity function of two-dimensional spatial point patterns
- spkde allows to choose among eight different kernel functions: uniform, normal, truncated normal, negative exponential, truncated negative exponential, quartic, triangular, and epanechnikov
- The kernel bandwidth can be fixed, variable (based on a minimum number of weighted or unweighted data points), or a combination of the two (adaptive)
- spkde applies an approximate edge correction to the estimates of the quantities of interest

# Creating two-dimensional grids

 Let's see how spgrid can be used to generate several kinds of two-dimensional grids

Rectangular study region - Square grid cells



```
. spgrid, shape(square) resolution(w10) xrange(0 500) yrange(0 200) ///
verbose replace cells("Rectangle-GridCells(Square).dta") ///
points("Rectangle-GridPoints(Square).dta")
. use "Rectangle-GridPoints(Square).dta", clear
. spmap using "Rectangle-GridCells(Square).dta", id(spgrid_id)
```

#### Creating two-dimensional grids

Estimating density and intensity functions Estimating bivariate densities for non-spatial data

#### Example 2

#### Rectangular study region - Hexagonal grid cells



```
. spgrid, shape(hexagonal) resolution(w10) xrange(0 500) yrange(0 200) ///
    verbose replace cells("Rectangle-GridCells(Hexagonal).dta") ///
    points("Rectangle-GridPoints(Hexagonal).dta")
```

- . use "Rectangle-GridPoints(Hexagonal).dta", clear
- . spmap using "Rectangle-GridCells(Hexagonal).dta", id(spgrid\_id)

Irregular study region - Hexagonal grid cells



```
. spgrid using "Italy-OutlineCoordinates.dta", ///
shape(hexagonal) resolution(w10) ///
verbose replace ///
cells("Italy-GridCells(Hexagonal).dta") ///
points("Italy-GridPoints(Hexagonal).dta")
. use "Italy-GridPoints(Hexagonal).dta", clear
. spmap using "Italy-GridCells(Hexagonal).dta", ///
id(spgrid_id) ///
poly(data("Italy-OutlineCoordinates.dta") ///
coclor(red) osize(thick))
```

Irregular study region - Hexagonal grid cells (valid cells only)



```
. spgrid using "Italy-OutlineCoordinates.dta", ///
shape(hexagonal) resolution(w10) ///
verbose replace compress ///
cells("Italy-GridCells(HexValid).dta") ///
points("Italy-GridPoints(HexValid).dta")
. use "Italy-GridPoints(HexValid).dta", clear
. spmap using "Italy-GridCells(HexValid).dta", ///
id(spgrid_id) ///
poly(data("Italy-OutlineCoordinates.dta") ///
ocolor(red) osize(medium))
```

Irregular study region with some areas excluded - Hexagonal grid cells (valid cells only)



```
spgrid using "Italy-OutlineCoordinates.dta",
   shape(hexagonal) resolution(w10)
                                               111
   mapexclude("Italy-Exclude.dta")
                                               111
   verbose replace compress
                                               111
   cells("Italy2-GridCells(HexValid).dta")
                                               111
   points("Italy2-GridPoints(HexValid).dta")
use "Italy2-GridPoints(HexValid).dta", clear
spmap using "Italy2-GridCells(HexValid).dta", ///
   id(spgrid_id)
                                               111
   polv(data("Italv-OutlineCoordinates.dta")
   ocolor(red) osize(medium))
```

# Estimating density and intensity functions

• Now, let's see how we can use spkde and the two-dimensional grids generated by spgrid to estimate the probability density function  $p(\mathbf{s})$  and the intensity function  $\lambda(\mathbf{s})$  of any given spatial point pattern

# Estimating density and intensity functions

- Now, let's see how we can use spkde and the two-dimensional grids generated by spgrid to estimate the probability density function  $p(\mathbf{s})$  and the intensity function  $\lambda(\mathbf{s})$  of any given spatial point pattern
- To this aim, we will use data pertaining to the 103 Italian provinces, taking provinces centroids as the observed data points  $\mathbf{s}_i$  (i=1,...,103)

# Estimating density and intensity functions

- Now, let's see how we can use spkde and the two-dimensional grids generated by spgrid to estimate the probability density function  $p(\mathbf{s})$  and the intensity function  $\lambda(\mathbf{s})$  of any given spatial point pattern
- To this aim, we will use data pertaining to the 103 Italian provinces, taking provinces centroids as the observed data points  $\mathbf{s}_i$  (i=1,...,103)
- $p(\mathbf{s})$  and  $\lambda(\mathbf{s})$  will be estimated at each point  $\mathbf{s}_g$  (g=1,...,3,483) of the grid generated in Example 4 above

# Example 1: Simple point pattern Quartic kernel function - Fixed bandwidth (100 km)



```
use "Italy-DataPoints.dta", clear
. spkde using "Italy-GridPoints(HexValid).dta", ///
    xcoord(xcoord) ycoord(ycoord)
                                                111
    kernel(quartic) method(fixband)
                                                 111
                                                111
    bandwidth(100) verbose
    saving("Italy-Kde1.dta", replace)
 use "Italv-Kde1.dta", clear
 spmap density using
                                             111
    "Italy-GridCells(HexValid).dta",
                                             111
    id(spgrid_id) clnum(20) fcolor(Rainbow)
                                             111
    ocolor(none ..) legend(off)
                                             111
    point(data("Italy-DataPoints.dta")
                                             111
    x(xcoord) y(ycoord) size(*0.5))
```

# Example 2: Simple point pattern

Normal kernel function - Fixed bandwidth (69.35 km)

The chosen bandwidth equals the average distance between each data point and its 5 nearest neighbors



```
. use "Italy-DataPoints.dta", clear
```

```
. spkde using "Italy-GridPoints(HexValid).dta", ///
xcoord(xcoord) ycoord(ycoord) ///
kernel(normal) method(fixband) ///
bandwidth(ad5) verbose ///
saving("Italy-Kde2.dta", replace)
```

```
. use "Italy-Kde2.dta", clear
```

```
. spmap density using ///
"Italy-GridCells(HexValid).dta", ///
id(spgrid_id) clnum(20) fcolor(Rainbow) ///
ocolor(none ..) legend(off) ///
point(data("Italy-DataPoints.dta") ///
x(xcoord) y(ycoord) size(*0.5))
```

#### Example 3: Ratio of two intensities Deaths for cardiovascular diseases / Total population

Quartic kernel function - Fixed bandwidth (100 km)



```
use "Italy-DataPoints.dta", clear
. spkde dcvd95 pop95 using
                                         111
     "Italy-GridPoints(HexValid).dta",
                                         111
    xcoord(xcoord) ycoord(ycoord)
                                         111
    kernel(quartic) method(fixband)
                                         111
    bandwidth(100) verbose
                                         111
    saving("Italy-Kde3.dta", replace)
 use "Italy-Kde3.dta", clear
 generate ratio = dcvd95_intensity /
    pop95 intensity * 1000
                                             111
. spmap ratio using
    "Italy-GridCells(HexValid).dta",
                                             111
    id(spgrid id) clnum(20) fcolor(Rainbow) ///
    ocolor(none ..) legend(off)
```

# Estimating bivariate densities for non-spatial data

• spgrid and spkde can be used to estimate the joint probability density function p(x, y) of any pair of quantitative variables X and Y

# Estimating bivariate densities for non-spatial data

- spgrid and spkde can be used to estimate the joint probability density function p(x, y) of any pair of quantitative variables X and Y
- As an example, let's estimate and plot the bivariate probability density function for two of the variables included in the auto dataset: mpg and price

### Step 1: Normalize variables in the range [0,1]

```
. sysuse "auto.dta", clear
. summarize price mpg
. clonevar x = mpg
. clonevar y = price
. replace x = (x-0) / (50-0)
. replace y = (y-0) / (20000-0)
. mylabels 0(10)50, myscale((@-0) / (50-0)) local(XLAB)
. mylabels 0(5000)20000, myscale((@-0) / (20000-0)) local(YLAB)
. keep x y
. save "xy.dta", replace
```

### Step 2: Generate a 100×100 grid

```
. spgrid, shape(hexagonal) xdim(100) ///
    xrange(0 1) yrange(0 1) ///
    verbose replace ///
    cells("2D-GridCells.dta") ///
    points("2D-GridPoints.dta")
```

### Step 3: Estimate the bivariate probability density function

```
. spkde using "2D-GridPoints.dta", xcoord(x) ycoord(y) ///
   kernel(quartic) method(fixband) bandwidth(0.1) ///
   noedge verbose saving("2D-Kde.dta", replace)
```

### Step 4: Display the density plot

```
. use "2D-Kde.dta", clear
. recode density (.=0)
. spmap density using "2D-GridCells.dta",
                                              111
    id(spgrid_id) clnum(20) fcolor(Rainbow) ///
    ocolor(none ..) legend(off)
                                              111
                                              111
    point(data("xy.dta") x(x) y(y))
    freestyle aspectratio(1)
                                              111
    xtitle(" " "Mileage (mpg)")
                                              111
                                              ///
    xlab('XLAB')
    vtitle("Price" " ")
                                              111
    ylab('YLAB', angle(0))
```



### Conclusion

 spgrid and spkde add to the growing set of commands for spatial data analysis available to Stata users

#### Conclusion

- spgrid and spkde add to the growing set of commands for spatial data analysis available to Stata users
- Both programs will be submitted to the SSC Archive as soon as their respective help files are ready

#### Conclusion

- spgrid and spkde add to the growing set of commands for spatial data analysis available to Stata users
- Both programs will be submitted to the SSC Archive as soon as their respective help files are ready
- I'm currently working on other Stata tools for exploratory spatial data analysis: ideas and suggestions are welcome