Prediction for Multilevel Models

Sophia Rabe-Hesketh

Graduate School of Education & Graduate Group in Biostatistics
University of California, Berkeley

Institute of Education, University of London

Joint work with Anders Skrondal

UK Stata Users Group meeting London, September 2008

Outline

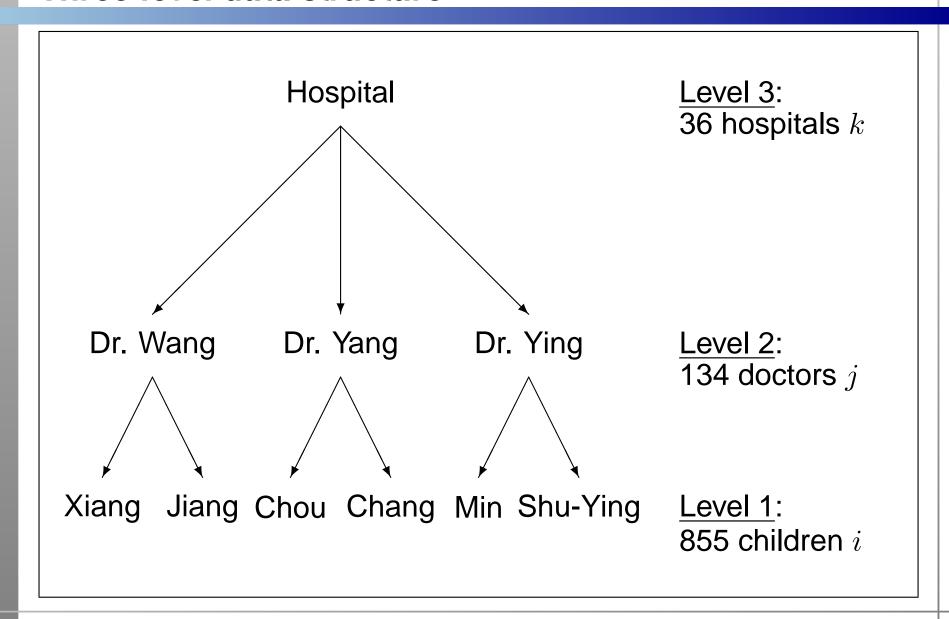
- Application: Abuse of antibiotics in China
- Three-level logistic regression model
- Prediction of random effects
 - Empirical Bayes (EB) prediction
 - Standard errors for EB prediction and approximate CI
- Prediction of response probabilities
 - Conditional response probabilities
 - Posterior mean response probabilities (different types)
 - Population-averaged response probabilities
- Concluding remarks

Abuse of antibiotics in China

- Acute respiratory tract infection (ARI) can lead to pneumonia and death if not properly treated
- Inappropriate frequent use of antibiotics was common in China in 1990's, leading to drug resistance
- In the 1990's the WHO introduced a program of case management for children under 5 with ARI in China
- Data collected on 855 children i (level 1) treated by 134 doctors j (level 2) in 36 hospitals k (level 3) in two counties (one of which was in the WHO program)
- Response variable: Whether antibiotics were prescribed when there were no clinical indications based on medical files

Reference: Min Yang (2001). *Multinomial Regression*. In Goldstein and Leyland (Eds). *Multilevel Modelling of Health Statistics*, pages 107-123.

Three-level data structure



Variables

- lacksquare Response variable y_{ijk}
 - Antibiotics prescribed without clinical indications (1: yes, 0: no)
- lacksquare 7 covariates \mathbf{x}_{ijk}
 - Patient level i
 - [Age] Age in years (0-4)
 - [Temp] Body temperature, centered at 36°C
 - [Paymed] Pay for medication (yes=1, no=0)
 - [Selfmed] Self medication (yes=1, no=0)
 - [Wrdiag] Failure to diagnose ARI early (yes=1, no=0)
 - Doctor level j
 - [DRed] Doctor's education
 (6 categories from self-taught to medical school)
 - Hospital level k
 - [WHO] Hospital in WHO program (yes=1, no=0)

Three-level random intercept logistic regression

Logistic regression with random intercepts for doctors and hospitals

$$logit[Pr(y_{ijk} = 1 | \mathbf{x}_{ijk}, \zeta_{jk}^{(2)}, \zeta_{k}^{(3)})] = \mathbf{x}'_{ijk} \boldsymbol{\beta} + \zeta_{jk}^{(2)} + \zeta_{k}^{(3)}$$

- Level 3: $\zeta_k^{(3)}|\mathbf{x}_{ijk}\sim N(0,\psi^{(3)})$ independent across hospitals $\psi^{(3)}$ is residual between-hospital variance
- Level 2: $\zeta_{jk}^{(2)}|\mathbf{x}_{ijk},\zeta_k^{(3)}\sim N(0,\psi^{(2)})$ independent across doctors, independent of $\zeta_k^{(3)}$ $\psi^{(2)}$ is residual between-doctor, within-hospital variance
- gllamm command:

gllamm abuse age temp Paymed Selfmed Wrdiag DRed WHO, //
i(doc hosp) link(logit) family(binom) adapt

Maximum likelihood estimates

	No covariates		F	Full model			
Parameter	Est	(SE)	Est	(SE)	(OR)		
β_0 [Cons]	0.87	(0.14)	1.52	(0.46)			
eta_1 [Age]			0.14	(0.07)	1.15		
eta_2 [Temp]			-0.72	(0.10)	0.49		
eta_3 [Paymed]			0.38	(0.30)	1.46		
eta_4 [Selfmed]			-0.65	(0.21)	0.52		
eta_5 [Wrdiag]			1.97	(0.20)	7.18		
eta_6 [DRed]			-0.20	(0.10)	0.82		
eta_7 [WHO]			-1.26	(0.32)	0.28		
$\psi^{(2)}$	0.20		0.14				
$\psi^{(3)}$	0.36		0.19				
Log-likelihood	-5	12.14	-415.76				
using gllamm with adaptive quadrature							

Distributions of random effects and responses

Vector of all random intercepts for hospital k

$$\boldsymbol{\zeta}_{k(3)} \equiv (\zeta_{1k}^{(2)}, \dots, \zeta_{J_k k}^{(2)}, \zeta_k^{(3)})'$$

Random effects distribution [Prior distribution]

$$\varphi(\zeta_{k(3)}), \quad \varphi(\zeta_{jk}^{(2)}), \quad \varphi(\zeta_{k}^{(3)}), \quad \text{all (multivariate) normal}$$

• Conditional response distribution of all responses $\mathbf{y}_{k(3)}$ for hospital k, given all covariates $\mathbf{X}_{k(3)}$ and all random effects $\boldsymbol{\zeta}_{k(3)}$ for hospital k [Likelihood]

$$f(\mathbf{y}_{k(3)}|\mathbf{X}_{k(3)},\boldsymbol{\zeta}_{k(3)}) = \prod_{\substack{\text{all docs } j \\ \text{in hosp } k \text{ of doc } j}} f(y_{ijk}|\mathbf{x}_{ijk},\boldsymbol{\zeta}_{jk}^{(2)},\boldsymbol{\zeta}_{k}^{(3)})$$

Posterior distribution

Use Bayes theorem to obtain posterior distribution of random effects given the data:

$$\omega(\boldsymbol{\zeta}_{k(3)}|\mathbf{y}_{k(3)}, \mathbf{X}_{k(3)}) = \frac{\varphi(\boldsymbol{\zeta}_{k(3)})f(\mathbf{y}_{k(3)}|\mathbf{X}_{k(3)}, \boldsymbol{\zeta}_{k(3)})}{\int \varphi(\boldsymbol{\zeta}_{k(3)})f(\mathbf{y}_{k(3)}|\mathbf{X}_{k(3)}, \boldsymbol{\zeta}_{k(3)})d\boldsymbol{\zeta}_{k(3)}}$$

$$\propto \varphi(\boldsymbol{\zeta}_{k}^{(3)}) \prod_{j} \varphi(\boldsymbol{\zeta}_{jk}^{(2)}) \prod_{i} f(y_{ijk}|\mathbf{x}_{ijk}, \boldsymbol{\zeta}_{jk}^{(2)}, \boldsymbol{\zeta}_{k}^{(3)})$$

ullet Denominator, marginal likelihood contribution for hospital k, simplifies

$$\int \varphi(\zeta_k^{(3)}) \prod_j \left[\int \varphi(\zeta_{jk}^{(2)}) \prod_i f(y_{ijk}|\mathbf{x}_{ijk}, \zeta_{jk}^{(2)}, \zeta_k^{(3)}) \,\mathrm{d}\zeta_{jk}^{(2)} \right] \,\mathrm{d}\zeta_k^{(3)}$$

Empirical Bayes prediction of random effects

Empirical Bayes (EB) prediction is mean of posterior distribution

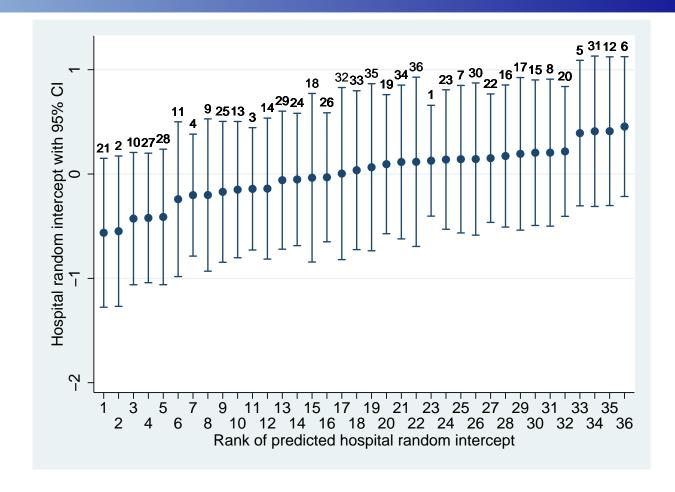
$$\widetilde{\boldsymbol{\zeta}}_{k(3)} = \int \boldsymbol{\zeta}_{k(3)} \ \omega(\boldsymbol{\zeta}_{k(3)}|\mathbf{y}_{k(3)}, \mathbf{X}_{k(3)}) \ d\boldsymbol{\zeta}_{k(3)}$$

- Standard error of EB is standard deviation of posterior distribution
- Using gllapred with the u option

gllapred eb, u

- ullet ebm1 contains $\widetilde{\zeta}_{jk}^{(2)}$
- ullet ebs1 contains $\operatorname{SE}(\widetilde{\zeta}_{jk}^{(2)})$
- ullet ebm2 contains $\widetilde{\zeta}_k^{(3)}$
- ullet ebs2 contains $\operatorname{SE}(\widetilde{\zeta}_k^{(3)})$
- For approximately normal posterior, use Wald-type interval, e.g., for hospital k, 95% CI is $\widetilde{\zeta}_k^{(3)} \pm 1.96$ SE $(\widetilde{\zeta}_k^{(3)})$

Confidence intervals for hospital random effects



- $m{\mathcal{G}}_k^{(3)} \pm 1.96~\mathrm{SE}(\widetilde{\zeta}_k^{(3)})$
- Identify the good and bad with caution

Predicted probability for patient of hypothetical doctor

Predicted **conditional probability** for hypothetical values \mathbf{x}^0 of the covariates and $\boldsymbol{\zeta}^0$ of the random intercepts

$$\widehat{\Pr}(y = 1 | \mathbf{x}^0, \boldsymbol{\zeta}^0) = \frac{\exp(\mathbf{x}^{0'} \widehat{\boldsymbol{\beta}} + \zeta^{(2)0} + \zeta^{(3)0})}{1 + \exp(\mathbf{x}^{0'} \widehat{\boldsymbol{\beta}} + \zeta^{(2)0} + \zeta^{(3)0})}$$

- If $\zeta^{(2)0} + \zeta^{(3)0} = 0$, median of distribution for $\zeta_{jk}^{(2)} + \zeta_k^{(3)}$, then predicted conditional probability is median probability
 - Analogously for other percentiles
- Using gllapred with mu and us() option:

```
replace age = 2 / * etc.: change covariates to \mathbf{x}^0 * / generate zeta1 = 0 generate zeta2 = 0 gllapred probc, mu us(zeta)
```

Predicted probability for new patient of existing doctor in existing hospital

Posterior mean probability for new patient of existing doctor j in hospital k

$$\widetilde{\mathsf{Pr}}_{jk}(y=1|\mathbf{x}^0) = \int \widehat{\mathsf{Pr}}(y=1|\mathbf{x}^0, \boldsymbol{\zeta}_{k(3)}) \, \omega(\boldsymbol{\zeta}_{k(3)}|\mathbf{y}_{k(3)}, \mathbf{X}_{k(3)}) \, \mathrm{d}\boldsymbol{\zeta}_{k(3)}$$

- Invent additional patient i^*jk with covariate values $\mathbf{x}_{i^*jk} = \mathbf{x}^0$
- Make sure that invented observation does not contribute to posterior $\omega(\zeta_{k(3)}|\mathbf{y}_{k(3)},\mathbf{X}_{k(3)})$

$$\omega(\zeta_{k(3)}|\mathbf{y}_{k(3)},\mathbf{X}_{k(3)}) \propto \varphi(\zeta_k^{(3)}) \prod_j \varphi(\zeta_{jk}^{(2)}) \prod_{i \neq i^*} f(y_{ijk}|\mathbf{x}_{ijk},\zeta_{jk}^{(2)},\zeta_k^{(3)})$$

ullet Cannot simply plug in EB prediction $\widetilde{\zeta}_{k(3)}$ for $\zeta_{k(3)}$

$$\widetilde{\mathsf{Pr}}_{jk}(y=1|\mathbf{x}^0) \neq \widehat{\mathsf{Pr}}(y=1|\mathbf{x}^0, \zeta_{k(3)} = \widetilde{\zeta}_{k(3)})$$

Prediction dataset: One new patient per doctor

Data (ignore gaps)			Data	Data with invented observations			
id	doc	hosp	abuse	id	doc	hosp	abuse
1	1	1	0	1	1	1	0
2	1	1	1	2	1	1	1
				•	1	1	•
3	2	2	0	3	2	2	0
				•	2	2	•
4	3	2	1	4	3	2	1
5	3	2	1	5	3	2	1
				•	3	2	•

- Response variable abuse must be missing for invented observations
- Use required value of doc
- Can invent several patients per doctor

Prediction dataset: One new patient per doctor (continued)

Data	with	invented	ohser	vations
Dala	VVILII	IIIVEIILEU	ODSEL	valions

				terms for posterior			
id	doc	hosp	abuse	hospital	doctor	patient	
1	1	1	0	$\varphi(\zeta_1^{(3)})$	$\varphi(\zeta_{11}^{(2)})$	$f(y_{111} \zeta_1^{(3)},\zeta_{11}^{(2)})$	
2	1	1	1			$f(y_{211} \zeta_1^{(3)},\zeta_{11}^{(2)})$	
•	1	1	•			1	
3	2	2	0	$\varphi(\zeta_2^{(3)})$	$\varphi(\zeta_{22}^{(2)})$	$f(y_{322} \zeta_2^{(3)},\zeta_{22}^{(2)})$	
•	2	2	•			1	
4	3	2	1		$\varphi(\zeta_{32}^{(2)})$	$f(y_{432} \zeta_2^{(3)},\zeta_{32}^{(2)})$	
5	3	2	1			$f(y_{532} \zeta_2^{(3)},\zeta_{32}^{(2)})$	
•	3	2	•			1	

Using gllapred with mu and fsample options:

gllapred probd, mu fsample

Predicted probability for new patient of new doctor in existing hospital

Posterior mean probability for new patient of new doctor in existing hospital k

$$\widetilde{\mathsf{Pr}}_k(y=1|\mathbf{x}^0) = \int \widehat{\mathsf{Pr}}(y=1|\mathbf{x}^0, \boldsymbol{\zeta}_{k(3)}^*) \, \omega(\boldsymbol{\zeta}_{k(3)}^*|\mathbf{y}_{k(3)}, \mathbf{X}_{k(3)}) \, \mathrm{d}\boldsymbol{\zeta}_{3(k)}^*$$

- Invent additional observation i^*j^*k with covariates in $\mathbf{x}_{i^*j^*k} = \mathbf{x}^0$
- $\boldsymbol{\zeta}_{k(3)}^* = (\zeta_{j^*k}^{(2)}, \zeta_{k(3)}')'$
- Make sure that invented doctor but not invented patient contribute to posterior $\omega(\zeta_{k(3)}^*|\mathbf{y}_{k(3)},\mathbf{X}_{k(3)})$

$$\omega(\boldsymbol{\zeta}_{k(3)}^*|\mathbf{y}_{k(3)},\mathbf{X}_{k(3)}) \propto \varphi(\boldsymbol{\zeta}_{j^*k}^{(2)}) \omega(\boldsymbol{\zeta}_{k(3)}|\mathbf{y}_{k(3)},\mathbf{X}_{k(3)})$$

Prediction dataset: One new doctor and patient per hospital

Data	Data (ignore gaps)			Data with invented observations			
id	doc	hosp	abuse	id	doc	hosp	abuse
1	1	1	0	1	1	1	0
2	1	1	1	2	1	1	1
				•	0	1	•
3	2	2	0	3	2	2	0
4	3	2	1	4	3	2	1
5	3	2	1	5	3	2	1
				•	0	2	•

- Response variable abuse must be missing for invented observations
- Use unique (for that hospital) value of doc
- Can invent several new docs which can all have the same value of doc

Prediction dataset: One new doctor and patient per hospital (continued)

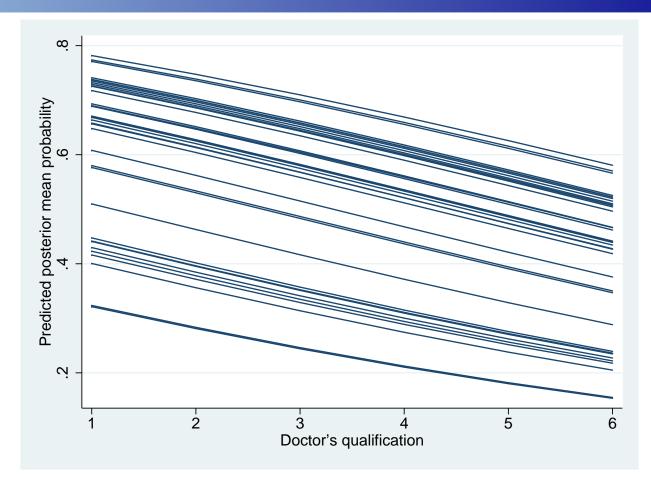
Data with invented observations

				terms for posterior			
id	doc	hosp	abuse	hospital	doctor	patient	
1	1	1	0	$\varphi(\zeta_1^{(3)})$	$\varphi(\zeta_{11}^{(2)})$	$f(y_{111} \zeta_1^{(3)},\zeta_{11}^{(2)})$	
2	1	1	1			$f(y_{211} \zeta_1^{(3)},\zeta_{11}^{(2)})$	
•	0	1	•		$\varphi(\zeta_{01}^{(2)})$	1	
3	2	2	0	$\varphi(\zeta_2^{(3)})$	$\varphi(\zeta_{22}^{(2)})$	$f(y_{322} \zeta_2^{(3)},\zeta_{22}^{(2)})$	
4	3	2	1		$\varphi(\zeta_{32}^{(2)})$	$f(y_{432} \zeta_2^{(3)},\zeta_{32}^{(2)})$	
5	3	2	1			$f(y_{532} \zeta_2^{(3)},\zeta_{32}^{(2)})$	
•	0	2	•		$\varphi(\zeta_{02}^{(2)})$	1	

Using gllapred with mu and fsample options:

gllapred probh, mu fsample

Example: Predicted probability for new patient of new doctor in existing hospital

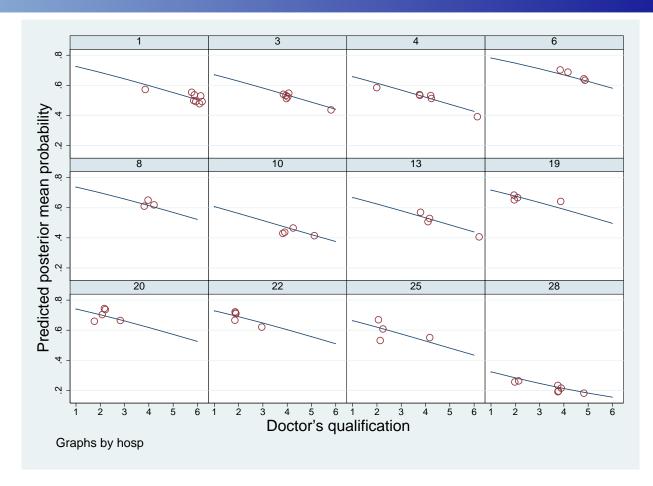


Each curve represents a hospital

For each hospital: 6 new doctors with [DRed] = 1, 2, 3, 4, 5, 6

For each doctor: 1 new patient with [Age] = 2, [Temp] = 1 (37°C), [Paymed] = 0, [Selfmed] = 0, [Wrdiag] = 0

Example: Predicted probability for new patient of existing doctor in existing hospital



- 12 of the hospitals, with curves as in previous slide
- Dots represent doctors with [DRed] as observed
 For each doctor: predicted probability for 1 new patient with [Age] = 2, [Temp] = 1, [Paymed] = 0, [Selfmed] = 0, [Wrdiag] = 0

Predicted probability for new patient of new doctor in new hospital

Population-averaged or marginal probability:

$$\overline{\Pr}(y=1|\mathbf{x}^0) = \int \widehat{\Pr}(y=1|\mathbf{x}^0, \zeta_{jk}^{(2)}, \zeta_k^{(3)}) \, \varphi(\zeta_{jk}^{(2)}), \varphi(\zeta_k^{(3)}) \, \mathrm{d}\zeta_{jk}^{(2)} \, \mathrm{d}\zeta_k^{(3)}$$

Cannot plug in means of random intercepts

$$\overline{\Pr}(y=1|\mathbf{x}^0) \neq \widehat{\Pr}(y=1|\mathbf{x}^0,\zeta_{jk}^{(2)}=0,\zeta_k^{(3)}=0)$$
 mean \neq median

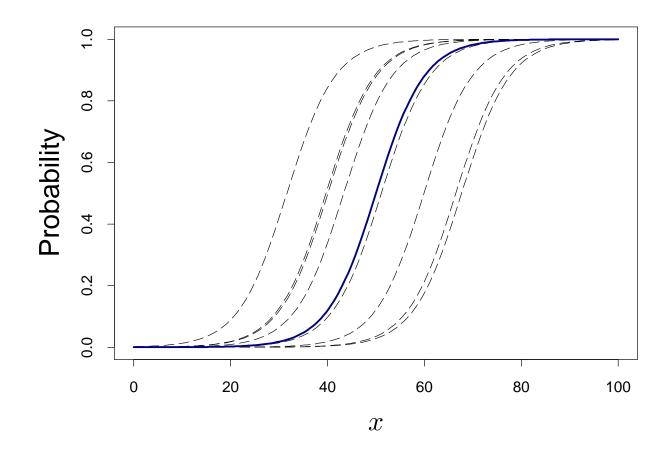
Using gllapred with the mu and marg options:

gllapred prob, mu marg fsample

Confidence interval, by sampling parameters from the estimated asymptotic sampling distribution of their estimates

ci_marg_mu lower upper, level(95) dots

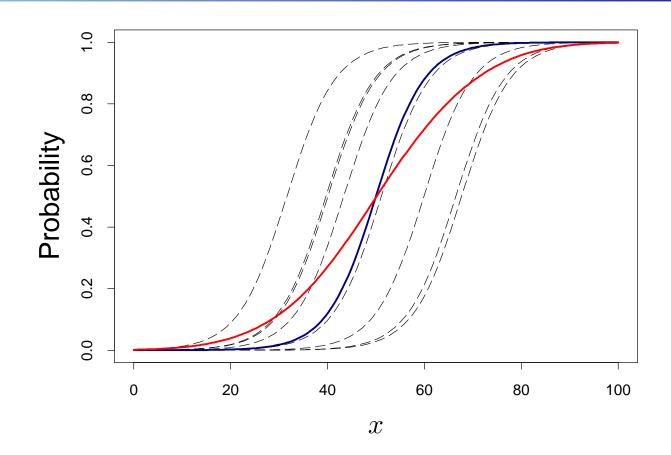
Illustration Cluster-specific: versus population averaged probability



---- cluster-specific (random sample)

----- median

Illustration Cluster-specific: versus population averaged probability

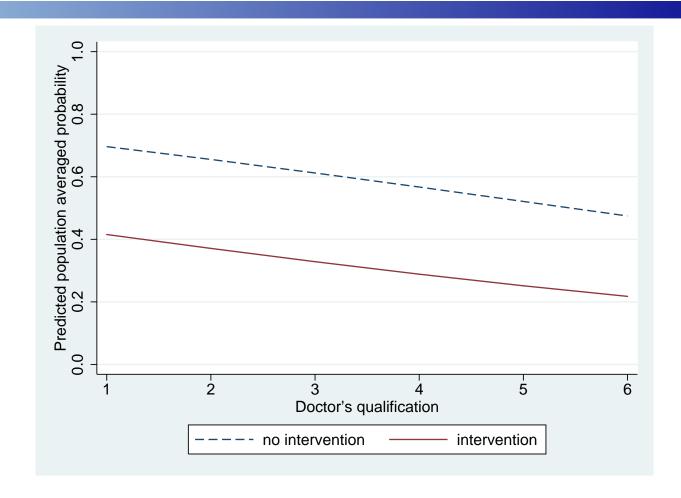


---- cluster-specific (random sample)

----- median

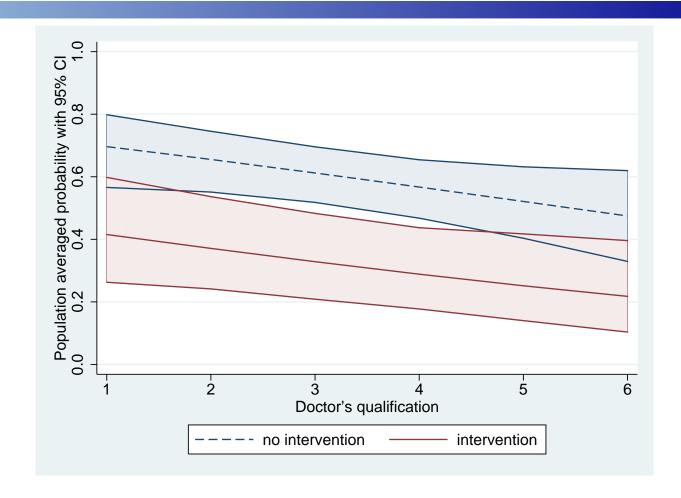
population averaged

Example: Predicted probability for new patient of new doctor in new hospital



Same patient covariates as before

Example: Predicted probability for new patient of new doctor in new hospital



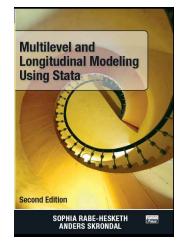
- Same patient covariates as before
- Confidence bands represent parameter uncertainty

Concluding remarks

Discussed:

- Empirical Bayes (EB) prediction of random effects and CI using gllapred, ignoring parameter uncertainty
- Prediction of different kinds of probabilities using gllapred after careful preparation of prediction dataset
- Simulation-based CI for predicted marginal probabilities using new command ci_marg_mu
- Methods work for any GLLAMM model, including random-coefficient models and models for ordinal, nominal or count data
- Assumed normal random effects distribution
 - EB predictions not robust to misspecification of distribution
 - Could use nonparametric maximum likelihood in gllamm, followed by same gllapred and ci_marg_mu commands

References



Rabe-Hesketh, S. and Skrondal, A. (2008). Multilevel and Longitudinal Modeling Using Stata (2nd Edition). College Station, TX: Stata Press.

- Skrondal, A. and Rabe-Hesketh, S. (2008). Prediction in multilevel generalized linear models. *Journal of the Royal Statistical Society, Series A*, in press.
- Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. *Journal of Econometrics* 128, 301-323.