
Using Mata to work more effectively in Stata

Christopher F Baum

Boston College and DIW Berlin

UKSUG 14th Meetings, London, September 2008

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 1 / 59

Introduction

Since the release of version 9, Stata contains a full-fledged matrix
programming language, Mata, with most of the capabilities of MATLAB,
R, Ox or GAUSS. You can use Mata interactively, or you can develop
Mata functions to be called from Stata. In this talk, we emphasize the
latter use of Mata.

Mata functions may be particularly useful where the algorithm you wish
to implement already exists in matrix-language form. It is quite
straightforward to translate the logic of other matrix languages into
Mata: much more so than converting it into Stata’s matrix language.

A large library of mathematical and matrix functions is provided in
Mata, including optimization routines, equation solvers,
decompositions, eigensystem routines and probability density
functions (enhanced in version 10.1). Mata functions can access
Stata’s variables and can work with virtual matrices (views) of a subset
of the data in memory. Mata also supports file input/output.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 2 / 59

Introduction

Since the release of version 9, Stata contains a full-fledged matrix
programming language, Mata, with most of the capabilities of MATLAB,
R, Ox or GAUSS. You can use Mata interactively, or you can develop
Mata functions to be called from Stata. In this talk, we emphasize the
latter use of Mata.

Mata functions may be particularly useful where the algorithm you wish
to implement already exists in matrix-language form. It is quite
straightforward to translate the logic of other matrix languages into
Mata: much more so than converting it into Stata’s matrix language.

A large library of mathematical and matrix functions is provided in
Mata, including optimization routines, equation solvers,
decompositions, eigensystem routines and probability density
functions (enhanced in version 10.1). Mata functions can access
Stata’s variables and can work with virtual matrices (views) of a subset
of the data in memory. Mata also supports file input/output.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 2 / 59

Introduction

Since the release of version 9, Stata contains a full-fledged matrix
programming language, Mata, with most of the capabilities of MATLAB,
R, Ox or GAUSS. You can use Mata interactively, or you can develop
Mata functions to be called from Stata. In this talk, we emphasize the
latter use of Mata.

Mata functions may be particularly useful where the algorithm you wish
to implement already exists in matrix-language form. It is quite
straightforward to translate the logic of other matrix languages into
Mata: much more so than converting it into Stata’s matrix language.

A large library of mathematical and matrix functions is provided in
Mata, including optimization routines, equation solvers,
decompositions, eigensystem routines and probability density
functions (enhanced in version 10.1). Mata functions can access
Stata’s variables and can work with virtual matrices (views) of a subset
of the data in memory. Mata also supports file input/output.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 2 / 59

Introduction Circumventing the limits of Stata’s matrix language

Mata circumvents the limitations of Stata’s traditional matrix
commands. Stata matrices must obey the maximum matsize: 800
rows or columns in Intercooled Stata. Thus, code relying on Stata
matrices is fragile. Stata’s matrix language does contain commands
such as matrix accum which can build a cross-product matrix from
variables of any length, but for many applications the limitation of
matsize is binding.

Even in Stata/SE or Stata/MP, with the possibility of a much larger
matsize, Stata’s matrices have another drawback. Large matrices
consume large amounts of memory, and an operation that converts
Stata variables into a matrix or vice versa will require at least twice the
memory needed for that set of variables.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 3 / 59

Introduction Circumventing the limits of Stata’s matrix language

Mata circumvents the limitations of Stata’s traditional matrix
commands. Stata matrices must obey the maximum matsize: 800
rows or columns in Intercooled Stata. Thus, code relying on Stata
matrices is fragile. Stata’s matrix language does contain commands
such as matrix accum which can build a cross-product matrix from
variables of any length, but for many applications the limitation of
matsize is binding.

Even in Stata/SE or Stata/MP, with the possibility of a much larger
matsize, Stata’s matrices have another drawback. Large matrices
consume large amounts of memory, and an operation that converts
Stata variables into a matrix or vice versa will require at least twice the
memory needed for that set of variables.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 3 / 59

Introduction Circumventing the limits of Stata’s matrix language

The Mata programming language can sidestep these memory issues
by creating matrices with contents that refer directly to Stata
variables—no matter how many variables and observations may be
referenced. These virtual matrices, or views, have minimal overhead in
terms of memory consumption, regardless of their size.

Unlike some matrix programming languages, Mata matrices can
contain either numeric elements or string elements (but not both). This
implies that you can use Mata productively in a list processing
environment as well as in a numeric context.

For example, a prominent list-handling command, Bill Gould’s
adoupdate, is written almost entirely in Mata. viewsource
adoupdate.ado reveals that only 22 lines of code (out of 1,193 lines)
are in the ado-file language. The rest is Mata.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 4 / 59

Introduction Circumventing the limits of Stata’s matrix language

The Mata programming language can sidestep these memory issues
by creating matrices with contents that refer directly to Stata
variables—no matter how many variables and observations may be
referenced. These virtual matrices, or views, have minimal overhead in
terms of memory consumption, regardless of their size.

Unlike some matrix programming languages, Mata matrices can
contain either numeric elements or string elements (but not both). This
implies that you can use Mata productively in a list processing
environment as well as in a numeric context.

For example, a prominent list-handling command, Bill Gould’s
adoupdate, is written almost entirely in Mata. viewsource
adoupdate.ado reveals that only 22 lines of code (out of 1,193 lines)
are in the ado-file language. The rest is Mata.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 4 / 59

Introduction Circumventing the limits of Stata’s matrix language

The Mata programming language can sidestep these memory issues
by creating matrices with contents that refer directly to Stata
variables—no matter how many variables and observations may be
referenced. These virtual matrices, or views, have minimal overhead in
terms of memory consumption, regardless of their size.

Unlike some matrix programming languages, Mata matrices can
contain either numeric elements or string elements (but not both). This
implies that you can use Mata productively in a list processing
environment as well as in a numeric context.

For example, a prominent list-handling command, Bill Gould’s
adoupdate, is written almost entirely in Mata. viewsource
adoupdate.ado reveals that only 22 lines of code (out of 1,193 lines)
are in the ado-file language. The rest is Mata.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 4 / 59

Introduction Speed advantages

Last but by no means least, ado-file code written in the matrix
language with explicit subscript references is slow. Even if such a
routine avoids explicit subscripting, its performance may be
unacceptable. For instance, David Roodman’s xtabond2 can run in
version 7 or 8 without Mata, or in version 9 or 10 with Mata. The
non-Mata version is an order of magnitude slower when applied to
reasonably sized estimation problems.

In contrast, Mata code is automatically compiled into bytecode, like
Java, and can be stored in object form or included in-line in a Stata
do-file or ado-file. Mata code runs many times faster than the
interpreted ado-file language, providing significant speed
enhancements to many computationally burdensome tasks.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 5 / 59

Introduction Speed advantages

Last but by no means least, ado-file code written in the matrix
language with explicit subscript references is slow. Even if such a
routine avoids explicit subscripting, its performance may be
unacceptable. For instance, David Roodman’s xtabond2 can run in
version 7 or 8 without Mata, or in version 9 or 10 with Mata. The
non-Mata version is an order of magnitude slower when applied to
reasonably sized estimation problems.

In contrast, Mata code is automatically compiled into bytecode, like
Java, and can be stored in object form or included in-line in a Stata
do-file or ado-file. Mata code runs many times faster than the
interpreted ado-file language, providing significant speed
enhancements to many computationally burdensome tasks.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 5 / 59

Introduction An efficient division of labour

Mata interfaced with Stata provides for an efficient division of labour. In
a pure matrix programming language, you must handle all of the
housekeeping details involved with data organization, transformation
and selection. In contrast, if you write an ado-file that calls one or more
Mata functions, the ado-file will handle those housekeeping details
with the convenience features of the syntax and marksample

statements of the regular ado-file language. When the housekeeping
chores are completed, the resulting variables can be passed on to
Mata for processing.

Mata can access Stata variables, local and global macros, scalars and
matrices, and modify the contents of those objects as needed. If
Mata’s view matrices are used, alterations to the matrix within Mata
modifies the Stata variables that comprise the view.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 6 / 59

Introduction An efficient division of labour

Mata interfaced with Stata provides for an efficient division of labour. In
a pure matrix programming language, you must handle all of the
housekeeping details involved with data organization, transformation
and selection. In contrast, if you write an ado-file that calls one or more
Mata functions, the ado-file will handle those housekeeping details
with the convenience features of the syntax and marksample

statements of the regular ado-file language. When the housekeeping
chores are completed, the resulting variables can be passed on to
Mata for processing.

Mata can access Stata variables, local and global macros, scalars and
matrices, and modify the contents of those objects as needed. If
Mata’s view matrices are used, alterations to the matrix within Mata
modifies the Stata variables that comprise the view.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 6 / 59

Outline of the talk

In the rest of this talk, I will discuss:

Basic elements of Mata syntax
Design of a Mata function
Mata’s interface functions
Some examples of Stata–Mata routines

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 7 / 59

Outline of the talk

In the rest of this talk, I will discuss:

Basic elements of Mata syntax
Design of a Mata function
Mata’s interface functions
Some examples of Stata–Mata routines

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 7 / 59

Outline of the talk

In the rest of this talk, I will discuss:

Basic elements of Mata syntax
Design of a Mata function
Mata’s interface functions
Some examples of Stata–Mata routines

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 7 / 59

Outline of the talk

In the rest of this talk, I will discuss:

Basic elements of Mata syntax
Design of a Mata function
Mata’s interface functions
Some examples of Stata–Mata routines

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 7 / 59

Mata language elements Operators

To understand Mata syntax, you must be familiar with its operators.
The comma is the column-join operator, so

: r1 = (1, 2, 3)

creates a three-element row vector. We could also construct this
vector using the row range operator (..) as

: r1 = (1..3)

The backslash is the row-join operator, so

c1 = (4 \ 5 \ 6)

creates a three-element column vector. We could also construct this
vector using the column range operator (::) as

: c1 = (4::6)

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 8 / 59

Mata language elements Operators

To understand Mata syntax, you must be familiar with its operators.
The comma is the column-join operator, so

: r1 = (1, 2, 3)

creates a three-element row vector. We could also construct this
vector using the row range operator (..) as

: r1 = (1..3)

The backslash is the row-join operator, so

c1 = (4 \ 5 \ 6)

creates a three-element column vector. We could also construct this
vector using the column range operator (::) as

: c1 = (4::6)

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 8 / 59

Mata language elements Operators

We may combine the column-join and row-join operators:

m1 = (1, 2, 3 \ 4, 5, 6 \ 7, 8, 9)

creates a 3× 3 matrix.

The matrix could also be constructed with the row range operator:

m1 = (1..3 \ 4..6 \ 7..9)

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 9 / 59

Mata language elements Operators

We may combine the column-join and row-join operators:

m1 = (1, 2, 3 \ 4, 5, 6 \ 7, 8, 9)

creates a 3× 3 matrix.

The matrix could also be constructed with the row range operator:

m1 = (1..3 \ 4..6 \ 7..9)

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 9 / 59

Mata language elements Operators

The prime (or apostrophe) is the transpose operator, so

r2 = (1 \ 2 \ 3)’

is a row vector.

The comma and backslash operators can be used on vectors and
matrices as well as scalars, so

r3 = r1, c1’

will produce a six-element row vector, and

c2 = r1’ \ c1

creates a six-element column vector.

Matrix elements can be real or complex, so 2 - 3 i refers to a
complex number 2− 3×

√
−1.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 10 / 59

Mata language elements Operators

The prime (or apostrophe) is the transpose operator, so

r2 = (1 \ 2 \ 3)’

is a row vector.

The comma and backslash operators can be used on vectors and
matrices as well as scalars, so

r3 = r1, c1’

will produce a six-element row vector, and

c2 = r1’ \ c1

creates a six-element column vector.

Matrix elements can be real or complex, so 2 - 3 i refers to a
complex number 2− 3×

√
−1.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 10 / 59

Mata language elements Operators

The prime (or apostrophe) is the transpose operator, so

r2 = (1 \ 2 \ 3)’

is a row vector.

The comma and backslash operators can be used on vectors and
matrices as well as scalars, so

r3 = r1, c1’

will produce a six-element row vector, and

c2 = r1’ \ c1

creates a six-element column vector.

Matrix elements can be real or complex, so 2 - 3 i refers to a
complex number 2− 3×

√
−1.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 10 / 59

Mata language elements Operators

The standard algebraic operators plus (+), minus (−) and multiply (∗)
work on scalars or matrices:

g = r1’ + c1
h = r1 * c1
j = c1 * r1

In this example h will be the 1× 1 dot product of vectors r1, c1 while
j is their 3× 3 outer product.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 11 / 59

Mata language elements Element-wise calculations and the colon operator

One of Mata’s most powerful features is the colon operator. Mata’s
algebraic operators, including the forward slash (/) for division, also
can be used in element-by-element computations when preceded by a
colon:

k = r1’ :* c1

will produce a three-element column vector, with elements as the
product of the respective elements: ki = r1i c1i , i = 1, . . . , 3.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 12 / 59

Mata language elements Element-wise calculations and the colon operator

Mata’s colon operator is very powerful, in that it will work on
nonconformable objects. For example:

r4 = (1, 2, 3)
m2 = (1, 2, 3 \ 4, 5, 6 \ 7, 8, 9)
m3 = r4 :+ m2
m4 = m1 :/ r1

adds the row vector r4 to each row of the 3× 3 matrix m2 to form m3,
and divides the elements of each row of matrix m1 by the
corresponding elements of row vector r1 to form m4.

Mata’s scalar functions will also operate on elements of matrices:

d = sqrt(c)

will take the element-by-element square root, returning missing values
where appropriate.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 13 / 59

Mata language elements Element-wise calculations and the colon operator

Mata’s colon operator is very powerful, in that it will work on
nonconformable objects. For example:

r4 = (1, 2, 3)
m2 = (1, 2, 3 \ 4, 5, 6 \ 7, 8, 9)
m3 = r4 :+ m2
m4 = m1 :/ r1

adds the row vector r4 to each row of the 3× 3 matrix m2 to form m3,
and divides the elements of each row of matrix m1 by the
corresponding elements of row vector r1 to form m4.

Mata’s scalar functions will also operate on elements of matrices:

d = sqrt(c)

will take the element-by-element square root, returning missing values
where appropriate.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 13 / 59

Mata language elements Logical operators

As in Stata, the equality logical operators are a == b and a != b.
They will work whether or not a and b are conformable or even of the
same type: a could be a vector and b a matrix. They return 0 or 1.

Unary not ! returns 1 if a scalar equals zero, 0 otherwise, and may be
applied in a vector or matrix context, returning a vector or matrix
of 0, 1.

The remaining logical comparison operators (>, >=, <, <=) can
only be used on objects that are conformable and of the same general
type (numeric or string). They return 0 or 1.

As in Stata, the logical and (&) and or (|) operators may only be
applied to real scalars.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 14 / 59

Mata language elements Logical operators

As in Stata, the equality logical operators are a == b and a != b.
They will work whether or not a and b are conformable or even of the
same type: a could be a vector and b a matrix. They return 0 or 1.

Unary not ! returns 1 if a scalar equals zero, 0 otherwise, and may be
applied in a vector or matrix context, returning a vector or matrix
of 0, 1.

The remaining logical comparison operators (>, >=, <, <=) can
only be used on objects that are conformable and of the same general
type (numeric or string). They return 0 or 1.

As in Stata, the logical and (&) and or (|) operators may only be
applied to real scalars.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 14 / 59

Mata language elements Logical operators

As in Stata, the equality logical operators are a == b and a != b.
They will work whether or not a and b are conformable or even of the
same type: a could be a vector and b a matrix. They return 0 or 1.

Unary not ! returns 1 if a scalar equals zero, 0 otherwise, and may be
applied in a vector or matrix context, returning a vector or matrix
of 0, 1.

The remaining logical comparison operators (>, >=, <, <=) can
only be used on objects that are conformable and of the same general
type (numeric or string). They return 0 or 1.

As in Stata, the logical and (&) and or (|) operators may only be
applied to real scalars.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 14 / 59

Mata language elements Logical operators

As in Stata, the equality logical operators are a == b and a != b.
They will work whether or not a and b are conformable or even of the
same type: a could be a vector and b a matrix. They return 0 or 1.

Unary not ! returns 1 if a scalar equals zero, 0 otherwise, and may be
applied in a vector or matrix context, returning a vector or matrix
of 0, 1.

The remaining logical comparison operators (>, >=, <, <=) can
only be used on objects that are conformable and of the same general
type (numeric or string). They return 0 or 1.

As in Stata, the logical and (&) and or (|) operators may only be
applied to real scalars.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 14 / 59

Mata language elements Subscripting

Subscripts in Mata utilize square brackets, and may appear on either
the left or right of an algebraic expression. There are two forms: list
subscripts and range subscripts.

With list subscripts, you can reference a single element of an array as
x[i,j]. But i or j can also be a vector: x[i,jvec], where jvec=
(4,6,8) references row i and those three columns of x. Missing
values (dots) reference all rows or columns, so x[i,.] or x[i,]
extracts row i, and x[.,.] or x[,] references the whole matrix.

You may also use range operators to avoid listing each consecutive
element: x[(1..4),.] and x[(1::4),.] both reference the first
four rows of x. The double-dot range creates a row vector, while the
double-colon range creates a column vector. Either may be used in a
subscript expression. Ranges may also decrement, so x[(3::1),.]
returns those rows in reverse order.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 15 / 59

Mata language elements Subscripting

Subscripts in Mata utilize square brackets, and may appear on either
the left or right of an algebraic expression. There are two forms: list
subscripts and range subscripts.

With list subscripts, you can reference a single element of an array as
x[i,j]. But i or j can also be a vector: x[i,jvec], where jvec=
(4,6,8) references row i and those three columns of x. Missing
values (dots) reference all rows or columns, so x[i,.] or x[i,]
extracts row i, and x[.,.] or x[,] references the whole matrix.

You may also use range operators to avoid listing each consecutive
element: x[(1..4),.] and x[(1::4),.] both reference the first
four rows of x. The double-dot range creates a row vector, while the
double-colon range creates a column vector. Either may be used in a
subscript expression. Ranges may also decrement, so x[(3::1),.]
returns those rows in reverse order.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 15 / 59

Mata language elements Subscripting

Subscripts in Mata utilize square brackets, and may appear on either
the left or right of an algebraic expression. There are two forms: list
subscripts and range subscripts.

With list subscripts, you can reference a single element of an array as
x[i,j]. But i or j can also be a vector: x[i,jvec], where jvec=
(4,6,8) references row i and those three columns of x. Missing
values (dots) reference all rows or columns, so x[i,.] or x[i,]
extracts row i, and x[.,.] or x[,] references the whole matrix.

You may also use range operators to avoid listing each consecutive
element: x[(1..4),.] and x[(1::4),.] both reference the first
four rows of x. The double-dot range creates a row vector, while the
double-colon range creates a column vector. Either may be used in a
subscript expression. Ranges may also decrement, so x[(3::1),.]
returns those rows in reverse order.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 15 / 59

Mata language elements Subscripting

Range subscripts use the notation [| |]. They can reference single
elements of matrices, but are not useful for that. More useful is the
ability to say x[| i,j \ m,n |], which creates a submatrix starting
at x[i,j] and ending at x[m,n]. The arguments may be specified as
missing (dot), so x[| 1,2 \4,. |] specifies the submatrix ending in
the last column and x[| 2,2 \ .,.|] discards the first row and
column of x. They also may be used on the left hand side of an
expression, or to extract a submatrix:
v = invsym(xx)[| 2,2 \ .,.|] discards the first row and
column of the inverse of xx.

You need not use range subscripts, as even the specification of a
submatrix can be handled with list subscripts and range operators, but
they are more convenient for submatrix extraction and faster in terms
of execution time.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 16 / 59

Mata language elements Subscripting

Range subscripts use the notation [| |]. They can reference single
elements of matrices, but are not useful for that. More useful is the
ability to say x[| i,j \ m,n |], which creates a submatrix starting
at x[i,j] and ending at x[m,n]. The arguments may be specified as
missing (dot), so x[| 1,2 \4,. |] specifies the submatrix ending in
the last column and x[| 2,2 \ .,.|] discards the first row and
column of x. They also may be used on the left hand side of an
expression, or to extract a submatrix:
v = invsym(xx)[| 2,2 \ .,.|] discards the first row and
column of the inverse of xx.

You need not use range subscripts, as even the specification of a
submatrix can be handled with list subscripts and range operators, but
they are more convenient for submatrix extraction and faster in terms
of execution time.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 16 / 59

Mata language elements Loop constructs

Several constructs support loops in Mata. As in any matrix language,
explicit loops should not be used where matrix operations can be used.
The most common loop construct resembles that of the C language:

for (starting_value; ending_value; incr) {
statements

}

where the three elements define the starting value, ending value or
bound and increment or decrement of the loop. For instance:

for (i=1; i<=10; i++) {
printf("i=%g \n", i)

}

prints the integers 1 to 10 on separate lines.

If a single statement is to be executed, it may appear on the for
statement.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 17 / 59

Mata language elements Loop constructs

You may also use do, which follows the syntax

do {
statements

} while (exp)

which will execute the statements at least once.

Alternatively, you may use while:

while(exp) {
statements

}

which could be used, for example, to loop until convergence.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 18 / 59

Mata language elements Loop constructs

You may also use do, which follows the syntax

do {
statements

} while (exp)

which will execute the statements at least once.

Alternatively, you may use while:

while(exp) {
statements

}

which could be used, for example, to loop until convergence.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 18 / 59

Mata language elements Mata conditional statements

To execute certain statements conditionally, you use if, else:

if (exp) statement

if (exp) statement1
else statement2

if (exp1) {
statements1

}
else if (exp2) {
statements2

}
else {
statements3

}

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 19 / 59

Mata language elements Mata conditional statements

To execute certain statements conditionally, you use if, else:

if (exp) statement

if (exp) statement1
else statement2

if (exp1) {
statements1

}
else if (exp2) {
statements2

}
else {
statements3

}

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 19 / 59

Mata language elements Mata conditional statements

To execute certain statements conditionally, you use if, else:

if (exp) statement

if (exp) statement1
else statement2

if (exp1) {
statements1

}
else if (exp2) {
statements2

}
else {
statements3

}

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 19 / 59

Mata language elements Mata conditional statements

You may also use the conditional a ? b : c, where a is a real scalar.
If a evaluates to true (nonzero), the result is set to b, otherwise c. For
instance,

if (k == 0) dof = n-1
else dof = n-k

can be written as

dof = (k==0 ? n-1 : n-k)

The increment (++) and decrement (−−) operators can be used to
manage counter variables. They may precede or follow the variable.

The operator A # B produces the Kronecker or direct product of A and
B.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 20 / 59

Mata language elements Mata conditional statements

You may also use the conditional a ? b : c, where a is a real scalar.
If a evaluates to true (nonzero), the result is set to b, otherwise c. For
instance,

if (k == 0) dof = n-1
else dof = n-k

can be written as

dof = (k==0 ? n-1 : n-k)

The increment (++) and decrement (−−) operators can be used to
manage counter variables. They may precede or follow the variable.

The operator A # B produces the Kronecker or direct product of A and
B.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 20 / 59

Mata language elements Mata conditional statements

You may also use the conditional a ? b : c, where a is a real scalar.
If a evaluates to true (nonzero), the result is set to b, otherwise c. For
instance,

if (k == 0) dof = n-1
else dof = n-k

can be written as

dof = (k==0 ? n-1 : n-k)

The increment (++) and decrement (−−) operators can be used to
manage counter variables. They may precede or follow the variable.

The operator A # B produces the Kronecker or direct product of A and
B.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 20 / 59

Design of a Mata function Element and organization types

To call Mata code within an ado-file, you must define a Mata function,
which is the equivalent of a Stata ado-file program. Unlike a Stata
program, a Mata function has an explicit return type and a set of
arguments. A function may be of return type void if it does not need a
�return statement. Otherwise, a function is typed in terms of two
characteristics: its element type and their organization type. For
instance,

real scalar calcsum(real vector x)

declares that the Mata calcsum function will return a real scalar. It has
one argument: an object x, which must be a real vector.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 21 / 59

Design of a Mata function Element and organization types

Element types may be real, complex, numeric, string,

pointer, transmorphic. A transmorphic object may be filled with
any of the other types. A numeric object may be either real or
complex. Unlike Stata, Mata supports complex arithmetic.

There are five organization types: matrix, vector, rowvector,

colvector, scalar. Strictly speaking the latter four are just special
cases of matrix. In Stata’s matrix language, all matrices have two
subscripts, neither of which can be zero. In Mata, all but the scalar

may have zero rows and/or columns. Three- (and higher-) dimension
matrices can be implemented by the use of the pointer element type,
not to be discussed further in this talk.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 22 / 59

Design of a Mata function Element and organization types

Element types may be real, complex, numeric, string,

pointer, transmorphic. A transmorphic object may be filled with
any of the other types. A numeric object may be either real or
complex. Unlike Stata, Mata supports complex arithmetic.

There are five organization types: matrix, vector, rowvector,

colvector, scalar. Strictly speaking the latter four are just special
cases of matrix. In Stata’s matrix language, all matrices have two
subscripts, neither of which can be zero. In Mata, all but the scalar

may have zero rows and/or columns. Three- (and higher-) dimension
matrices can be implemented by the use of the pointer element type,
not to be discussed further in this talk.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 22 / 59

Design of a Mata function Arguments, variables and returns

A Mata function definition includes an argument list, which may be
blank. The names of arguments are required and arguments are
positional. The order of arguments in the calling sequence must match
that in the Mata function. If the argument list includes a vertical bar
(|), following arguments are optional.

Within a function, variables may be explicitly declared (and must be
declared if matastrict mode is used). It is good programming
practice to do so, as then variables cannot be inadvertently misused.
Variables within a Mata function have local scope, and are not
accessible outside the function unless declared as external.

A Mata function may only return one item (which could, however, be a
multi-element structure. If the function is to return multiple objects,
Mata’s st_... functions should be used, as we will demonstrate.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 23 / 59

Design of a Mata function Arguments, variables and returns

A Mata function definition includes an argument list, which may be
blank. The names of arguments are required and arguments are
positional. The order of arguments in the calling sequence must match
that in the Mata function. If the argument list includes a vertical bar
(|), following arguments are optional.

Within a function, variables may be explicitly declared (and must be
declared if matastrict mode is used). It is good programming
practice to do so, as then variables cannot be inadvertently misused.
Variables within a Mata function have local scope, and are not
accessible outside the function unless declared as external.

A Mata function may only return one item (which could, however, be a
multi-element structure. If the function is to return multiple objects,
Mata’s st_... functions should be used, as we will demonstrate.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 23 / 59

Design of a Mata function Arguments, variables and returns

A Mata function definition includes an argument list, which may be
blank. The names of arguments are required and arguments are
positional. The order of arguments in the calling sequence must match
that in the Mata function. If the argument list includes a vertical bar
(|), following arguments are optional.

Within a function, variables may be explicitly declared (and must be
declared if matastrict mode is used). It is good programming
practice to do so, as then variables cannot be inadvertently misused.
Variables within a Mata function have local scope, and are not
accessible outside the function unless declared as external.

A Mata function may only return one item (which could, however, be a
multi-element structure. If the function is to return multiple objects,
Mata’s st_... functions should be used, as we will demonstrate.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 23 / 59

Mata’s interface functions Data access

If you’re using Mata functions in conjunction with Stata’s ado-file
language, one of the most important set of tools are Mata’s interface
functions: the st_ functions.

The first category of these functions provide access to data. Stata and
Mata have separate workspaces, and these functions allow you to
access and update Stata’s workspace from inside Mata. For instance,
st_nobs(), st_nvar() provide the same information as describe in
Stata, which returns r(N), r(k) in its return list. Mata functions
st_data(), st_view() allow you to access any rectangular subset
of Stata’s numeric variables, and st_sdata(), st_sview() do the
same for string variables.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 24 / 59

Mata’s interface functions Data access

If you’re using Mata functions in conjunction with Stata’s ado-file
language, one of the most important set of tools are Mata’s interface
functions: the st_ functions.

The first category of these functions provide access to data. Stata and
Mata have separate workspaces, and these functions allow you to
access and update Stata’s workspace from inside Mata. For instance,
st_nobs(), st_nvar() provide the same information as describe in
Stata, which returns r(N), r(k) in its return list. Mata functions
st_data(), st_view() allow you to access any rectangular subset
of Stata’s numeric variables, and st_sdata(), st_sview() do the
same for string variables.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 24 / 59

Mata’s interface functions st_view()

One of the most useful Mata concepts is the view matrix, which as its
name implies is a view of some of Stata’s variables for specified
observations, created by a call to st_view(). Unlike most Mata
functions, st_view() does not return a result. It requires three
arguments: the name of the view matrix to be created, the
observations (rows) that it is to contain, and the variables (columns).
An optional fourth argument can specify touse: an indicator variable
specifying whether each observation is to be included.

st_view(x, ., varname, touse)

States that the previously-declared Mata vector x should be created
from all the observations (specified by the missing second argument)
of varname, as modified by the contents of touse. In the Stata code,
the marksample command imposes any if or in conditions by
setting the indicator variable touse.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 25 / 59

Mata’s interface functions st_view()

The Mata statements

real matrix Z
st_view(Z=., ., .)

will create a view matrix of all observations and all variables in Stata’s
memory. The missing value (dot) specification indicates that all
observations and all variables are included. The syntax Z=. specifies
that the object is to be created as a void matrix, and then populated
with contents. As Z is defined as a real matrix, columns associated
with any string variables will contain all missing values. st_sview()
creates a view matrix of string variables.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 26 / 59

Mata’s interface functions st_view()

If we want to specify a subset of variables, we must define a string
vector containing their names. For instance, if varlist is a string

scalar argument containing Stata variable names,

void foo(string scalar varlist)
...
st_view(X=., ., tokens(varlist), touse)

creates matrix X containing those variables.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 27 / 59

Mata’s interface functions st_data()

An alternative to view matrices is provided by st_data() and
st_sdata(), which copy data from Stata variables into Mata
matrices, vectors or scalars:

X = st_data(., .)

places a copy of all variables in Stata’s memory into matrix X.
However, this operation requires at least twice as much memory as
consumed by the Stata variables, as Mata does not have Stata’s full
set of 1-, 2-, and 4-byte data types. Thus, although a view matrix can
reference any variables currently in Stata’s memory with minimal
overhead, a matrix created by st_data() will consume considerable
memory, just as a matrix in Stata’s own matrix language does.

Similar to st_view(), an optional third argument to st_data() can
mark out desired observations.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 28 / 59

Mata’s interface functions st_data()

An alternative to view matrices is provided by st_data() and
st_sdata(), which copy data from Stata variables into Mata
matrices, vectors or scalars:

X = st_data(., .)

places a copy of all variables in Stata’s memory into matrix X.
However, this operation requires at least twice as much memory as
consumed by the Stata variables, as Mata does not have Stata’s full
set of 1-, 2-, and 4-byte data types. Thus, although a view matrix can
reference any variables currently in Stata’s memory with minimal
overhead, a matrix created by st_data() will consume considerable
memory, just as a matrix in Stata’s own matrix language does.

Similar to st_view(), an optional third argument to st_data() can
mark out desired observations.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 28 / 59

Mata’s interface functions Using views to update Stata variables

A very important aspect of views: using a view matrix rather than
copying data into Mata with st_data() implies that any changes made
to the view matrix will be reflected in Stata’s variables’ contents. This is
a very powerful feature that allows us to easily return information
generated in Mata back to Stata’s variables, or create new content in
existing variables.

This may or may not be what you want to do. Keep in mind that any
alterations to a view matrix will change Stata’s variables, just as a
replace command in Stata would. If you want to ensure that Mata
computations cannot alter Stata’s variables, avoid the use of views, or
use them with caution. You may use st_addvar() to explicitly create
new Stata variables, and st_store() to populate their contents.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 29 / 59

Mata’s interface functions Using views to update Stata variables

A very important aspect of views: using a view matrix rather than
copying data into Mata with st_data() implies that any changes made
to the view matrix will be reflected in Stata’s variables’ contents. This is
a very powerful feature that allows us to easily return information
generated in Mata back to Stata’s variables, or create new content in
existing variables.

This may or may not be what you want to do. Keep in mind that any
alterations to a view matrix will change Stata’s variables, just as a
replace command in Stata would. If you want to ensure that Mata
computations cannot alter Stata’s variables, avoid the use of views, or
use them with caution. You may use st_addvar() to explicitly create
new Stata variables, and st_store() to populate their contents.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 29 / 59

Mata’s interface functions Using views to update Stata variables

A Mata function may take one (or several) existing variables and create
a transformed variable (or set of variables). To do that with views,
create the new variable(s), pass the name(s) as a newvarlist and set
up a view matrix.

st_view(Z=., ., tokens(newvarlist), touse)

Then compute the new content as:

Z[., .] = result of computation

It is important to use the [., .] construct as shown. Z = will cause
a new matrix to be created and break the link to the view.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 30 / 59

Mata’s interface functions Using views to update Stata variables

You may also create new variables and fill in their contents by
combining these techniques:

st_view(Z, ., st_addvar(("int", "float"), ///
("idnr", "bp")))

Z[., .] = result of computation

In this example, we create two new Stata variables, of data type int
and float, respectively, named idnr and bp.

You may also use subviews and, for panel data, panelsubviews. We
will not discuss those here.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 31 / 59

Mata’s interface functions Using views to update Stata variables

You may also create new variables and fill in their contents by
combining these techniques:

st_view(Z, ., st_addvar(("int", "float"), ///
("idnr", "bp")))

Z[., .] = result of computation

In this example, we create two new Stata variables, of data type int
and float, respectively, named idnr and bp.

You may also use subviews and, for panel data, panelsubviews. We
will not discuss those here.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 31 / 59

Mata’s interface functions Access to locals, globals, scalars and matrices

You may also want to transfer other objects between the Stata and
Mata environments. Although local and global macros, scalars and
Stata matrices could be passed in the calling sequence to a Mata
function, the function can only return one item. In order to return a
number of objects to Stata—for instance, a list of macros, scalars and
matrices as is commonly found in the return list from an r-class
program—we use the appropriate st_functions.

For local macros,

contents = st_local("macname")
st_local("macname", newvalue)

The first command will return the contents of Stata local macro
macname. The second command will create and populate that local
macro if it does not exist, or replace the contents if it does, with
newvalue.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 32 / 59

Mata’s interface functions Access to locals, globals, scalars and matrices

You may also want to transfer other objects between the Stata and
Mata environments. Although local and global macros, scalars and
Stata matrices could be passed in the calling sequence to a Mata
function, the function can only return one item. In order to return a
number of objects to Stata—for instance, a list of macros, scalars and
matrices as is commonly found in the return list from an r-class
program—we use the appropriate st_functions.

For local macros,

contents = st_local("macname")
st_local("macname", newvalue)

The first command will return the contents of Stata local macro
macname. The second command will create and populate that local
macro if it does not exist, or replace the contents if it does, with
newvalue.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 32 / 59

Mata’s interface functions Access to locals, globals, scalars and matrices

Along the same lines, functions st_global, st_numscalar and
st_strscalar may be used to retrieve the contents, create, or
replace the contents of global macros, numeric scalars and string
scalars, respectively. Function st_matrix performs these operations
on Stata matrices.

All of these functions can be used to obtain the contents, create or
replace the results in r() or e(): Stata’s return list and
ereturn list. Functions st_rclear and st_eclear can be used
to delete all entries in those lists. Read-only access to the c()
objects is also available.

The stata() function can execute a Stata command from within
Mata.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 33 / 59

Mata’s interface functions Access to locals, globals, scalars and matrices

Along the same lines, functions st_global, st_numscalar and
st_strscalar may be used to retrieve the contents, create, or
replace the contents of global macros, numeric scalars and string
scalars, respectively. Function st_matrix performs these operations
on Stata matrices.

All of these functions can be used to obtain the contents, create or
replace the results in r() or e(): Stata’s return list and
ereturn list. Functions st_rclear and st_eclear can be used
to delete all entries in those lists. Read-only access to the c()
objects is also available.

The stata() function can execute a Stata command from within
Mata.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 33 / 59

Some examples of Stata–Mata routines A simple Mata function

Now consider a simple Mata function called from an ado-file. Imagine
that we did not have an easy way of computing the minimum and
maximum of the elements of a Stata variable, and wanted to do so with
Mata:

program varextrema, rclass
version 10.1
syntax varname(numeric) [if] [in]
marksample touse
mata: calcextrema("‘varlist’", "‘touse’")
display as txt " min (‘varlist’) = " as res r(min)
display as txt " max (‘varlist’) = " as res r(max)
return scalar min = r(min)
return scalar max = r(max)

end

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 34 / 59

Some examples of Stata–Mata routines A simple Mata function

Our ado-language code creates a Stata command, varextrema,
which requires the name of a single numeric Stata variable. You may
specify if exp or in range conditions. The Mata function
calcextrema is called with two arguments: the name of the variable
and the name of the touse temporary variable marking out valid
observations. As we will see the Mata function returns its results in two
numeric scalars: r(min), r(max). Those are returned in turn to the
calling program in the varextrema return list.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 35 / 59

Some examples of Stata–Mata routines A simple Mata function

We then add the Mata function definition to varextrema.ado:

version 10.1
mata:
mata set matastrict on
void calcextrema(string scalar varname, ///

string scalar touse)
{
real colvector x, cmm
st_view(x, ., varname, touse)
cmm = colminmax(x)
st_numscalar("r(min)", cmm[1])
st_numscalar("r(max)", cmm[2])

}
end

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 36 / 59

Some examples of Stata–Mata routines A simple Mata function

The Mata code as shown is strict: all objects must be defined. The
function is declared void as it does not return a result. A Mata
function could return a single result to Mata, but we need to send two
results back to Stata. The input arguments are declared as string
scalar as they are variable names.

We create a view matrix, colvector x, as the subset of varname for
which touse==1. Mata’s colminmax() function computes the
extrema of its arguments as a two-element vector, and
st_numscalar() returns each of them to Stata as r(min),
r(max) respectively.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 37 / 59

Some examples of Stata–Mata routines A multi-variable function

Now let’s consider a slightly more ambitious task. Say that you would
like to center a number of variables on their means, creating a new set
of transformed variables. Surprisingly, official Stata does not have
such a command, although Ben Jann’s center command does so.
Accordingly, we write Stata command centervars, employing a Mata
function to do the work.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 38 / 59

Some examples of Stata–Mata routines A multi-variable function

The Stata code:

program centervars, rclass
version 10.1
syntax varlist(numeric) [if] [in], ///

GENerate(string) [DOUBLE]
marksample touse
quietly count if ‘touse’
if ‘r(N)’ == 0 error 2000
foreach v of local varlist {

confirm new var ‘generate’‘v’
}
foreach v of local varlist {

qui generate ‘double’ ‘generate’‘v’ = .
local newvars "‘newvars’ ‘generate’‘v’"

}
mata: centerv("‘varlist’", "‘newvars’", "‘touse’")

end

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 39 / 59

Some examples of Stata–Mata routines A multi-variable function

The file centervars.ado contains a Stata command, centervars,
that takes a list of numeric variables and a mandatory generate()
option. The contents of that option are used to create new variable
names, which then are tested for validity with confirm new var, and
if valid generated as missing. The list of those new variables is
assembled in local macro newvars. The original varlist and the list
of newvars is passed to the Mata function centerv() along with
touse, the temporary variable that marks out the desired
observations.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 40 / 59

Some examples of Stata–Mata routines A multi-variable function

The Mata code:

version 10.1
mata:
void centerv(string scalar varlist, ///

string scalar newvarlist,
string scalar touse)

{
real matrix X, Z
st_view(X=., ., tokens(varlist), touse)
st_view(Z=., ., tokens(newvarlist), touse)
Z[., .] = X :- mean(X)

}
end

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 41 / 59

Some examples of Stata–Mata routines A multi-variable function

In the Mata function, tokens() extracts the variable names from
varlist and places them in a string rowvector, the form needed by
st_view . The st_view function then creates a view matrix, X,
containing those variables and the observations selected by if and in
conditions.

The view matrix allows us to both access the variables’ contents, as
stored in Mata matrix X, but also to modify those contents. The colon
operator (:-) subtracts the vector of column means of X from the data.
Using the Z[,]= notation, the Stata variables themselves are
modified. When the Mata function returns to Stata, the contents and
descriptive statistics of the variables in varlist will be altered.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 42 / 59

Some examples of Stata–Mata routines A multi-variable function

In the Mata function, tokens() extracts the variable names from
varlist and places them in a string rowvector, the form needed by
st_view . The st_view function then creates a view matrix, X,
containing those variables and the observations selected by if and in
conditions.

The view matrix allows us to both access the variables’ contents, as
stored in Mata matrix X, but also to modify those contents. The colon
operator (:-) subtracts the vector of column means of X from the data.
Using the Z[,]= notation, the Stata variables themselves are
modified. When the Mata function returns to Stata, the contents and
descriptive statistics of the variables in varlist will be altered.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 42 / 59

Some examples of Stata–Mata routines A multi-variable function

One of the advantages of Mata use is evident here: we need not loop
over the variables in order to demean them, as the operation can be
written in terms of matrices, and the computation done very efficiently
even if there are many variables and observations. Also note that
performing these calculations in Mata incurs minimal overhead, as the
matrix Z is merely a view on the Stata variables in newvars. One
caveat: Mata’s mean() function performs listwise deletion, like Stata’s
correlate command.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 43 / 59

Some examples of Stata–Mata routines Passing a function to Mata

Let’s consider adding a feature to centervars: the ability to
transform variables before centering with one of several mathematical
functions (abs(), exp(), log(), sqrt()). The user will provide the
name of the desired transformation, which defaults to the identity
transformation, and Stata will pass the name of the function (actually, a
pointer to the function) to Mata. We call this new command
centertrans.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 44 / 59

Some examples of Stata–Mata routines Passing a function to Mata

The Stata code:
program centertrans, rclass

version 10.1
syntax varlist(numeric) [if] [in], ///

GENerate(string) [TRans(string)] [DOUBLE]
marksample touse
quietly count if ‘touse’
if ‘r(N)’ == 0 error 2000
foreach v of local varlist {

confirm new var ‘generate’‘v’
}
local trops abs exp log sqrt
if "‘trans’" == "" {
local trfn "mf_iden"

}
else {
local ntr : list posof "‘trans’" in trops
if !‘ntr’ {
display as err "Error: trans must be chosen from ‘trops’"
error 198
}

local trfn : "mf_‘trans’"
}
foreach v of local varlist {

qui generate ‘double’ ‘generate’‘trans’‘v’ = .
local newvars "‘newvars’ ‘generate’‘trans’‘v’"

}
mata: centertrans("‘varlist’", "‘newvars’", &‘trfn’(), "‘touse’")

end

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 45 / 59

Some examples of Stata–Mata routines Passing a function to Mata

In Mata, we must define “wrapper functions" for the transformations, as
we cannot pass a pointer to a built-in function. We define trivial
functions such as

function mf_log(x) return(log(x))

which defines the mf_log() scalar function as taking the log of its
argument.

The Mata function centertrans() receives the function argument as

pointer(real scalar function) scalar f

To apply the function, we use

Z[., .] = (*f)(X)

which applies the function referenced by f to the elements of the
matrix X.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 46 / 59

Some examples of Stata–Mata routines Passing a function to Mata

In Mata, we must define “wrapper functions" for the transformations, as
we cannot pass a pointer to a built-in function. We define trivial
functions such as

function mf_log(x) return(log(x))

which defines the mf_log() scalar function as taking the log of its
argument.

The Mata function centertrans() receives the function argument as

pointer(real scalar function) scalar f

To apply the function, we use

Z[., .] = (*f)(X)

which applies the function referenced by f to the elements of the
matrix X.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 46 / 59

Some examples of Stata–Mata routines Passing a function to Mata

In Mata, we must define “wrapper functions" for the transformations, as
we cannot pass a pointer to a built-in function. We define trivial
functions such as

function mf_log(x) return(log(x))

which defines the mf_log() scalar function as taking the log of its
argument.

The Mata function centertrans() receives the function argument as

pointer(real scalar function) scalar f

To apply the function, we use

Z[., .] = (*f)(X)

which applies the function referenced by f to the elements of the
matrix X.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 46 / 59

Some examples of Stata–Mata routines Passing a function to Mata

The Mata code:

version 10.1
mata:
function mf_abs(x) return(abs(x))
function mf_exp(x) return(exp(x))
function mf_log(x) return(log(x))
function mf_sqrt(x) return(sqrt(x))
function mf_iden(x) return(x)

void centertrans(string scalar varlist, ///
string scalar newvarlist,
pointer(real scalar function) scalar f,
string scalar touse)

{
real matrix X, Z
st_view(X=., ., tokens(varlist), touse)
st_view(Z=., ., tokens(newvarlist), touse)
Z[,] = (*f)(X)
Z[,] = Z :- mean(Z)

}
end

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 47 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

Mata may prove particularly useful when you have an algorithm readily
expressed in matrix form. Many estimation problems fall into that
category. In this last example, I illustrate how “heteroskedastic OLS”
(HOLS) can be easily implemented in Mata, with Stata code handling
all of the housekeeping details. This section draws on joint work with
Mark Schaffer.

HOLS is a form of Generalised Method of Moments (GMM) estimation
in which you assert not only that the regressors X are uncorrelated
with the error, but that you also have additional variables Z which are
also uncorrelated with the error. Those additional “orthogonality
conditions” serve to improve the efficiency of estimation when
non-i .i .d . errors are encountered. This estimator is described in help
ivreg2 and in Baum, Schaffer & Stillman, Stata Journal, 2007.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 48 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

Mata may prove particularly useful when you have an algorithm readily
expressed in matrix form. Many estimation problems fall into that
category. In this last example, I illustrate how “heteroskedastic OLS”
(HOLS) can be easily implemented in Mata, with Stata code handling
all of the housekeeping details. This section draws on joint work with
Mark Schaffer.

HOLS is a form of Generalised Method of Moments (GMM) estimation
in which you assert not only that the regressors X are uncorrelated
with the error, but that you also have additional variables Z which are
also uncorrelated with the error. Those additional “orthogonality
conditions” serve to improve the efficiency of estimation when
non-i .i .d . errors are encountered. This estimator is described in help
ivreg2 and in Baum, Schaffer & Stillman, Stata Journal, 2007.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 48 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

The hols command takes a dependent variable and a set of
regressors. The exog() option may be used to provide the names of
additional variables uncorrelated with the error. By default, hols
calculates estimates under the assumption of i .i .d . errors. If the
robust option is used, the estimates’ standard errors are robust to
arbitrary heteroskedasticity.

Following estimation, the estimates post and estimates
display commands are used to provide standard Stata estimation
output. If the exog option is used, a Sargan–Hansen J test statistic is
provided. A significant value of the J statistic implies rejection of the
null hypothesis of orthogonality.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 49 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

The hols command takes a dependent variable and a set of
regressors. The exog() option may be used to provide the names of
additional variables uncorrelated with the error. By default, hols
calculates estimates under the assumption of i .i .d . errors. If the
robust option is used, the estimates’ standard errors are robust to
arbitrary heteroskedasticity.

Following estimation, the estimates post and estimates
display commands are used to provide standard Stata estimation
output. If the exog option is used, a Sargan–Hansen J test statistic is
provided. A significant value of the J statistic implies rejection of the
null hypothesis of orthogonality.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 49 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

The Stata code:
program hols, eclass
version 10.1
syntax varlist [if] [in] [, exog(varlist) robust]
local depvar: word 1 of ‘varlist’
local regs: list varlist - depvar
marksample touse
markout ‘touse’ ‘exog’
tempname b V
mata: m_hols("‘depvar’", "‘regs’", "‘exog’", "‘touse’", "‘robust’")
mat ‘b’ = r(beta)
mat ‘V’ = r(V)
local vnames ‘regs’ _cons
matname ‘V’ ‘vnames’
matname ‘b’ ‘vnames’, c(.)
local N = r(N)
ereturn post ‘b’ ‘V’, depname(‘depvar’) obs(‘N’) esample(‘touse’)
ereturn local depvar = "‘depvar’"
ereturn scalar N = r(N)
ereturn scalar j = r(j)
ereturn scalar L = r(L)
ereturn scalar K = r(K)
if "‘robust’" != "" {

ereturn local vcetype "Robust"
}
local res = cond("‘exog’" != "", "Heteroskedastic", "")
display _newline "‘res’ OLS results" _col(60) "Number of obs = " e(N)
ereturn display
display "Sargan-Hansen J statistic: " %7.3f e(j)
if (e(L)-e(K) > 0) {
display "Chi-sq(" %3.0f e(L)-e(K) ") P-val = " ///

%5.4f chiprob(e(L)-e(K), e(j)) _newline
}
end

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 50 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

The Mata code makes use of a function to compute the covariance
matrix: either the classical, non-robust VCE or the
heteroskedasticity-robust VCE . For ease of reuse, this logic is broken
out into a standalone function.
version 10.1
mata:
real matrix m_myomega(real rowvector beta,

real colvector Y,
real matrix X,
real matrix Z,
string scalar robust)

{
real matrix QZZ, omega
real vector e, e2
real scalar N, sigma2

// Calculate residuals from the coefficient estimates
N = rows(Z)
e = Y - X * beta’
if (robust=="") {
// Compute classical, non-robust covariance matrix

QZZ = 1/N * quadcross(Z, Z)
sigma2 = 1/N * quadcross(e, e)
omega = sigma2 * QZZ

}
else {
// Compute heteroskedasticity-consistent covariance matrix

e2 = e:^2
omega = 1/N * quadcross(Z, e2, Z)

}
_makesymmetric(omega)
return (omega)
}

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 51 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

The main Mata code takes as arguments the dependent variable
name, the list of regressors, the optional list of additional exogenous
variables, the marksample indicator (touse) and the robust flag.
The logic for linear GMM can be expressed purely in terms of matrix
algebra.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 52 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

The Mata code:
void m_hols(string scalar yname,

string scalar inexognames,
string scalar exexognames,
string scalar touse,
string scalar robust)

{
real matrix Y, X2, Z1, X, Z, QZZ, QZX, W, omega, V
real vector cons, beta_iv, beta_gmm, e, gbar
real scalar K, L, N, j
st_view(Y, ., tokens(yname), touse)
st_view(X2, ., tokens(inexognames), touse)
st_view(Z1, ., tokens(exexognames), touse)
// Constant is added by default.
cons = J(rows(X2), 1, 1)
X = X2, cons
Z = Z1, X
K = cols(X)
L = cols(Z)
N = rows(Y)
QZZ = 1/N * quadcross(Z, Z)
QZX = 1/N * quadcross(Z, X)
// First step of 2-step feasible efficient GMM. Weighting matrix = inv(Z’Z)
W = invsym(QZZ)
beta_iv = (invsym(X’Z * W * Z’X) * X’Z * W * Z’Y)’

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 53 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

Mata code, continued...
// Use first-step residuals to calculate optimal weighting matrix for 2-step FEGMM
omega = m_myomega(beta_iv, Y, X, Z, robust)
// Second step of 2-step feasible efficient GMM
W = invsym(omega)
beta_gmm = (invsym(X’Z * W * Z’X) * X’Z * W * Z’Y)’
// Sargan-Hansen J statistic: first we calculate the second-step residuals
e = Y - X * beta_gmm’
// Calculate gbar = 1/N * Z’*e
gbar = 1/N * quadcross(Z, e)
j = N * gbar’ * W * gbar
// Sandwich var-cov matrix (no finite-sample correction)
// Reduces to classical var-cov matrix if Omega is not robust form.
// But the GMM estimator is "root-N consistent", and technically we do
// inference on sqrt(N)*beta. By convention we work with beta, so we adjust
// the var-cov matrix instead:
V = 1/N * invsym(QZX’ * W * QZX)
// Return results to Stata as r-class macros.
st_matrix("r(beta)", beta_gmm)
st_matrix("r(V)", V)
st_numscalar("r(j)", j)
st_numscalar("r(N)", N)
st_numscalar("r(L)", L)
st_numscalar("r(K)", K)
}
end

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 54 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

Comparison of HOLS estimation results
. hols price mpg headroom, robust

OLS results Number of obs = 74

Robust

price Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg -259.1057 66.15838 -3.92 0.000 -388.7737 -129.4376

headroom -334.0215 314.9933 -1.06 0.289 -951.3971 283.3541

_cons 12683.31 2163.351 5.86 0.000 8443.224 16923.4

Sargan-Hansen J statistic: 0.000

. hols price mpg headroom, exog(trunk displacement weight) robust

Heteroskedastic OLS results Number of obs = 74

Robust

price Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg -287.4003 60.375 -4.76 0.000 -405.7331 -169.0675

headroom -367.0973 313.6646 -1.17 0.242 -981.8687 247.6741

_cons 13136.54 2067.6 6.35 0.000 9084.117 17188.96

Sargan-Hansen J statistic: 4.795
Chi-sq(3) P-val = 0.1874

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 55 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

As shown, this user-written estimation command can take advantage
of all of the features of official estimation commands. There is even
greater potential for using Mata with nonlinear estimation problems, as
its new optimize() suite of commands allows easy access to an
expanded set of optimization routines: see Austin Nichols’ talk on
GMM estimation in Mata from Summer NASUG 2008.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 56 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

If you’re serious about using Mata, you should familiarize yourself with
Ben Jann’s moremata package, available from SSC. The package
contains a function library, lmoremata, as well as full documentation
of all included routines (in the same style as Mata’s on-line function
descriptions).

Routines in moremata currently include kernel functions; statistical
functions for quantiles, ranks, frequencies, means, variances and
correlations; functions for sampling; density and distribution functions;
root finders; matrix utility and manipulation functions; string functions;
and input-output functions. Many of these functions provide
functionality as yet missing from official Mata, and ease the task of
various programming chores.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 57 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

If you’re serious about using Mata, you should familiarize yourself with
Ben Jann’s moremata package, available from SSC. The package
contains a function library, lmoremata, as well as full documentation
of all included routines (in the same style as Mata’s on-line function
descriptions).

Routines in moremata currently include kernel functions; statistical
functions for quantiles, ranks, frequencies, means, variances and
correlations; functions for sampling; density and distribution functions;
root finders; matrix utility and manipulation functions; string functions;
and input-output functions. Many of these functions provide
functionality as yet missing from official Mata, and ease the task of
various programming chores.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 57 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

In summary, then, it should be apparent that gaining some familiarity
with Mata will expand your horizons as a Stata programmer. Mata may
be used effectively in either its interactive or function mode as an
efficient adjunct to Stata’s traditional command-line interface. We have
not illustrated its usefulness for text processing problems (such as
developing a concordance of words in a manuscript) but it could be
fruitfully applied to such tasks as well. To echo my earlier UKSUG talk,
A little bit of Mata programming goes a long way!

And if you’re interesting in learning more about interfacing Mata and
Stata...

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 58 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

In summary, then, it should be apparent that gaining some familiarity
with Mata will expand your horizons as a Stata programmer. Mata may
be used effectively in either its interactive or function mode as an
efficient adjunct to Stata’s traditional command-line interface. We have
not illustrated its usefulness for text processing problems (such as
developing a concordance of words in a manuscript) but it could be
fruitfully applied to such tasks as well. To echo my earlier UKSUG talk,
A little bit of Mata programming goes a long way!

And if you’re interesting in learning more about interfacing Mata and
Stata...

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 58 / 59

Some examples of Stata–Mata routines A Mata-based estimation routine

In summary, then, it should be apparent that gaining some familiarity
with Mata will expand your horizons as a Stata programmer. Mata may
be used effectively in either its interactive or function mode as an
efficient adjunct to Stata’s traditional command-line interface. We have
not illustrated its usefulness for text processing problems (such as
developing a concordance of words in a manuscript) but it could be
fruitfully applied to such tasks as well. To echo my earlier UKSUG talk,
A little bit of Mata programming goes a long way!

And if you’re interesting in learning more about interfacing Mata and
Stata...

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 58 / 59

Shameless advert

	 Telephone:	 979-696-4600
		 800-782-8272
		 800-STATAPC

	 Fax:	 979-696-4601
	 Email:	 service@stata-press.com
	 URL:	 http://www.stata-press.com

AN
 IN

TROD
UCTION

 TO STATA PROGRAM
M

IN
G

BAUM

CHRISTOPHER F. BAUM

An Introduction to
Stata Programming

10100101001010100101010100101010010010101001001010100

10100101001010100101010100101010010010101001001010100

Rosto enis at. Utat, volor in euis num eugue facidunt utat nonsenissim veliquat prat.
Duipsus ciduis atummy nos nonullaor accum ipis doloborem nonsequi eriustrud
molobore vel dolore tie magna aut ad eugue duipis dip exero odit eliquat lummodit la
faccumsan ercipis adit doluptat ad dionse et, sisi.
Ed moluptat veniat. An utet augait lore dolorting eum esectem adigna accum vel irilla
conullum ilit, susci bla am ametum dit, quis num quat. Olestissi tat utationsed tat. Duis
adipsuscilit nulpute ea feum nos amconsent dolorem dolore veraesto dionse dio exer
ing eugait nostio enismodipit lorer sit ver sed do del utat ipit eliqui ea feu facin utpat.
Xeros ad molorer cillandignis dolobore consed do odolorpero exer sectetummy nulputat
nostrud molore conulput volesse magna faccum volor si enim zzrilit aliquiscilis alisl
inim voloborperci euguero dionsed eum zzrit, cor il ilit ut vel il dip eum digna facin
ullaortie conulpute commod ex ero od modo dolorper si.
Volore eugait utpatem ea feummy nulla faci enim nibh eum eu facidunt alit ent lut
lorperos nonulput autpatet, se voluptatem veros nisim velit lutat velessenibh eugait
inim zzrilit iriurer aestrud essit adipiscidunt eugiat adigna accummo lessit iure
modiamc onummy nos nos accummod magna facing eugait la augiat. Equatem dipit
lam zzriustrud ercidui sciduipit la feuguercil dipit essit iurem deliquam dit volestrud
mincing eugiat.

See chapters 13–14 of my book, forthcoming this fall
from Stata Press.

Christopher F Baum (BC & DIW Berlin) Using Mata in Stata UKSUG2008 59 / 59

	Introduction
	Circumventing the limits of Stata's matrix language
	Speed advantages
	An efficient division of labour

	Outline of the talk
	Mata language elements
	Operators
	Element-wise calculations and the colon operator
	Logical operators
	Subscripting
	Loop constructs
	Mata conditional statements

	Design of a Mata function
	Element and organization types
	Arguments, variables and returns

	Mata's interface functions
	Data access
	st_view()
	st_data()
	Using views to update Stata variables
	Access to locals, globals, scalars and matrices

	Some examples of Stata--Mata routines
	A simple Mata function
	A multi-variable function
	Passing a function to Mata
	A Mata-based estimation routine

	Shameless advert

