

Robust Statistics in Stata

Vincenzo Verardi (vverardi@fundp.ac.be)

FUNDP (Namur) and ULB (Brussels), Belgium FNRS Associate Researcher

Based on joint work with C. Croux (KULeuven) and Catherine Dehon (ULB)

Overview

- 1. Introduction
- 2. Outliers in regression analysis
- 3. Overview of robust estimators
- 4. Stata codes
- 5. Conclusion

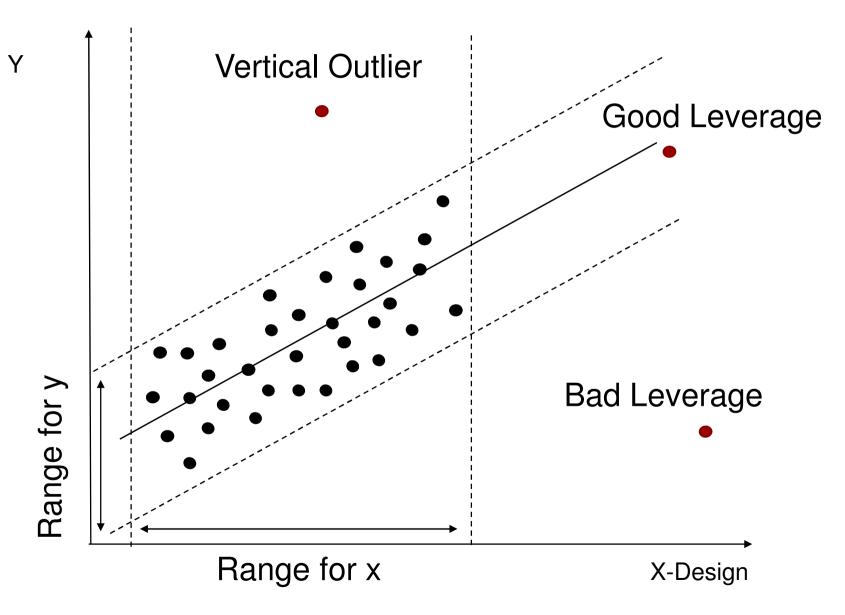
Type of outliers in regression

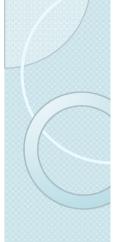
Introduction

regression

Overview o

Stata codes





Outliers in regression analysis

overview of robust

Stata codes

Conclusion

Outliers' influence

To illustrate the influence of outliers, we generate a dataset according to $Y=1.25+0.6X+\varepsilon$, where X and $\varepsilon\sim N(0,1)$. We then contaminate the data with single outliers.

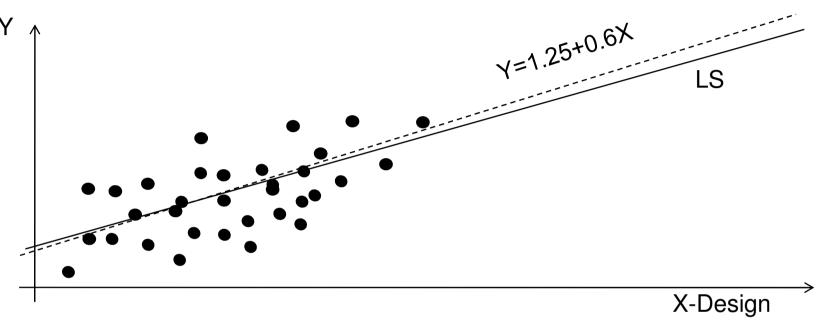
```
set obs 100
drawnorm X e
gen y=1.25+0.6*X+e
replace x= ...
```

Introduction

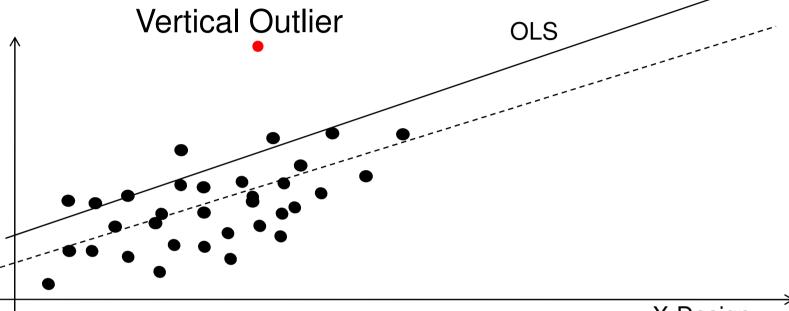
Outliers in regression analysis

Overview o robust estimators

Stata codes



	Clean
Intercept	1.24
t-stat	(10.76)
Slope	0.59
t-stat	(4.96)



X-Design

	Clean	Vertical
Intercept t-stat	1.24 (10.76)	(7.15)
Slope t-stat	0.59 (4.96)	0.67 (2.26)

Introduction

Outliers in regression analysis

Overview or robust estimators

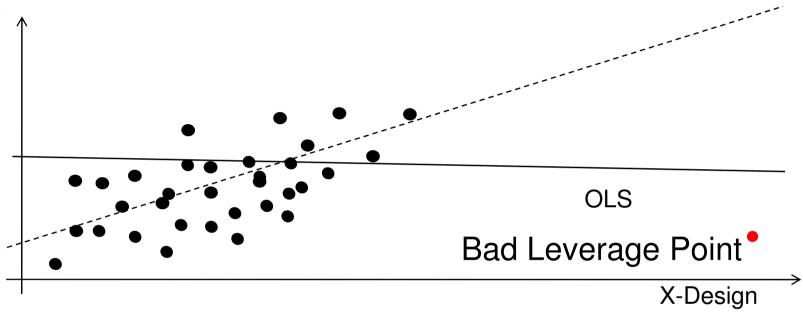
Stata codes

Introduction

Outliers in regression analysis

Overview of robust estimators

Stata codes



	Clean	Vertical	Bad leverage
Intercept t-stat	1.24 (10.76)	2.24 (7.15)	(6.99)
Slope t-stat	0.59 (4.96)	0.67 (2.26)	(6.99) -0.42 (-9.02)

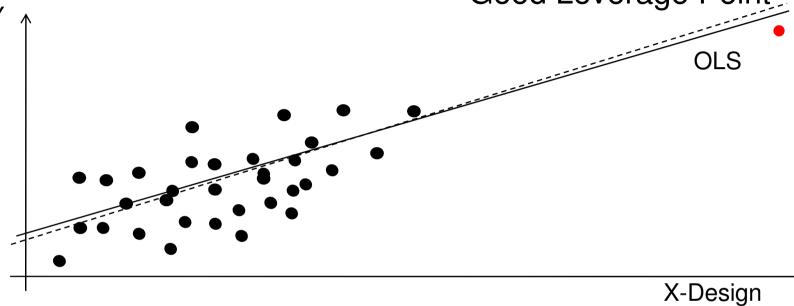
Good Leverage Point

Introduction

Outliers in regression analysis

Overview o

Stata codes



	Clean	Vertical	Bad leverage	Good leverage
Intercept	1.24	2.24	4.07	1.25
t-stat	(10.76)	(7.15)	(6.99)	(10.94)
Slope t-stat	0.59 (4.96)	0.67 (2.26)	-0.42 (-9.02)	0.57

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

Outliers in regression analysis

The objective of <u>regression analysis</u> is to figure out how a dependent variable is linearly related to a set of explanatory ones.

Technically speaking, it <u>consists in</u> estimating the θ parameters in:

$$y_i = \theta_0 + \theta_1 X_{i1} + \theta_2 X_{i2} + \dots + \theta_{p-1} X_{ip-1} + \varepsilon_i$$

to find the model that better fits the data.

regression analysis

Overview of robust estimators

Stata codes

Conclusion

Ordinary Least Squares (LS)

On the basis of the estimated parameters, it is then possible to fit the model and predict, \hat{y} the dependent variable. The discrepancy between y and \hat{y} is called the residual $(r_i = y_i - \hat{y}_i)$.

The objective of LS is to minimize the sum of the squared residuals:

$$\hat{\theta}_{LS} = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} r_i^2(\theta) \text{ where } \theta = \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_{p-1} \end{bmatrix}$$

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

L₁-estimator

However, the squaring of the residuals makes <u>LS</u> very <u>sensitive to outliers</u>.

To increase robustness, the square function could be <u>replaced</u> by the <u>absolute value</u> (Edgeworth, 1887).

$$\hat{\theta}_{L_1} = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} |r_i(\theta)|$$

[qreg function in Stata]

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

M-estimators

Huber (1964) generalized this idea to a set of symmetric p functions that could be used instead of the absolute value to increase efficiency and robustness.

To guarantee scale equivariance, residuals are standardized by a measure of dispersion σ .

The problem becomes:

$$\hat{\theta}_{M} = \underset{\theta}{\operatorname{argmin}} \sum_{j=1}^{n} \rho \left(\frac{r_{j}(\theta)}{\sigma} \right)$$

Outliers in regression analysis

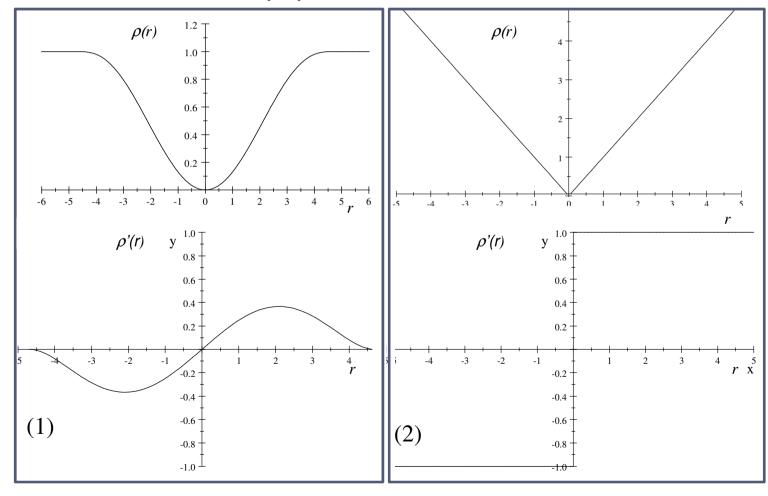
Overview of robust estimators

Stata codes

Conclusior

M-estimators

M-estimators can be <u>redescending</u> (1) or <u>monotonic</u> (2).



Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

M-estimators

If σ is known, the practical implementation of M-estimators is straightforward. Indeed, by defining a weight:

$$w_{i} = \frac{\rho \left(\frac{r_{i}(\theta)}{\sigma} \right)}{r_{i}^{2}(\theta)}$$

the problem boils down to:

$$\hat{\theta}_{M} = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} w_{i} r_{i}^{2}(\theta)$$

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

M-estimators as WLS

$$\hat{\theta}_{M} = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} w_{i} r_{i}^{2}(\theta)$$

However:

- 1. Weights w_i are a function of θ that should thus be estimated iteratively
- 2. This iterative algorithm is guaranteed to <u>converge</u> (and yield a solution which is unique) <u>only for monotonic Mestimators</u> ... which are not robust
- 3. $\underline{\sigma}$ is generally not known in advance

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

Stata's rreg command

The rreg command was created to tackle these problems. It works as follows:

- 1. It awards a weight zero to individuals with Cook distances larger than 1.
- 2. A "redescending" M-estimator is computed using the iterative algorithm starting from a monotonic M-solution.
- $3. \, \sigma$ is re-estimated at each iteration using the median residual of the previous iteration.

Outliers in regression

Overview of robust estimators

Stata codes

Conclusion

Stata's rreg command

Unfortunately, this command has not the expected robust properties:

- 1. Cook distances <u>do not</u> help identifying leverage points when (clustered) outliers mask one the other.
- 2. The preliminary monotonic Mestimator provides a poor initial candidate because of point 1.
- $3. \sigma$ is poorly estimated because of 1 and 2.

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

Illustration

greg and rreg are not robust methods:

Stata example:

```
set obs 100
drawnorm x1-x5 e
gen y=x1+x2+x3+x4+x5+e
replace x1=invnorm(uniform())+10 in 1/10
qreg y x*
rreg y x*
display e(rmse)
```


Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

Command: qreg

```
Iteration 1: WLS sum of weighted deviations =
                                                  117.31824
Iteration 1: sum of abs. weighted deviations =
                                                  119.64818
Iteration 2: sum of abs. weighted deviations =
                                                  117.18714
Iteration 3: sum of abs. weighted deviations =
                                                  117.04369
Iteration 4: sum of abs. weighted deviations =
                                                  116.65145
Iteration 5: sum of abs. weighted deviations =
                                                  116.01905
Iteration 6: sum of abs. weighted deviations =
                                                  116.01677
                                                    Number of obs =
Median regression
                                                                            100
  Raw sum of deviations 202.8451 (about -.23892587)
  Min sum of deviations 116.0168
                                                      Pseudo R2
                                                                         0.4281
```

У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 x3 x4 x5 _cons	.179877 .7547212 .949198 .8773521 .9931675 0009245	.0536822 .1589944 .16758 .1624611 .1791938 .1887648	3.35 4.75 5.66 5.40 5.54 -0.00	0.001 0.000 0.000 0.000 0.000 0.996	.0732897 .4390341 .616464 .5547817 .637374	.2864643 1.070408 1.281932 1.199922 1.348961 .3738724

Command: rreg

. rreg y x*

Huber iteration 1:	maximum difference in weights	i =	.48417173
	maximum difference in weights		.06025306
	maximum difference in weights		.01572401
	maximum difference in weights		.14759052
Biweight iteration 5:	maximum difference in weights	_	.00770808

Introduction

Robust regression

Number of obs = 100F(5, 94) = 33.28Prob > F = 0.0000

regression analysis

Overview of robust estimators

coef. [95% Conf. Interval] Std. Err. P>|t| У t .175267 x1 .0514961 3.40 0.001 .0730203 .2775136 .9241295 **x**2 .1459845 6.33 0.000 .6342739 1.213985 .9221296 5.87 0.000 .6104172 1.233842 **x**3 .1569926 .7781905 .1554807 5.01 0.000 .4694801 1.086901 **x**4 **x**5 6.81 1.115836 .1639707 0.000 .790268 1.441403 -.0584287 .175098 -0.330.739 -.4060898 .2892325 _cons

Stata codes

. display e(rmse)
1.6151557

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

S-estimators

Robustness can be however achieved by tackling the problem from a different perspective.

Instead of minimizing the variance of the residuals (LS) a more robust measure of spread of the residuals could be minimized (Rousseeuw and Yohai, 1987).

The measure of spread considered here is an M-estimator of scale.

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

S-estimators

Intuition:

The variance is defined by:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n r_i^2(\theta)$$
 which can be rewritten:

$$1 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{r_i(\theta)}{\hat{\sigma}} \right)^2 \text{ hence LS looks for the}$$

minimal $\hat{\sigma}$ that satisfies the equality.

But the square function ...

Outliers in regression

Overview of robust estimators

Stata codes

Conclusion

S-estimators

Replace the square by another ρ :

$$1 = \frac{1}{n} \sum_{i=1}^{n} \rho \left(\frac{r_i(\theta)}{\hat{\sigma}^S} \right)$$

but for Gaussian data we want $\hat{\sigma}^{S}$ to be the standard deviation (\Rightarrow correction)

$$\mathcal{S} = \frac{1}{n} \sum_{i=1}^{n} \rho \left(\frac{r_i(\theta)}{\hat{\sigma}^{S}} \right) \leftarrow \text{M-estimator of scale ...}$$

The problem boils down to finding the $\hat{\theta}_s$ associated to the minimal $\hat{\sigma}^s$ that satisfies the equality

S-estimators

ρ is generally (Tukey Biweight):

$$\rho(\frac{r_{i}}{\sigma}) = \begin{cases} 1 - \left[1 - \left(\frac{r_{i}/\sigma}{k}\right)^{2}\right]^{3} & \text{if } \left|\frac{r_{i}}{\sigma}\right| \leq k \\ 1 & \text{if } \left|\frac{r_{i}}{\sigma}\right| > k \end{cases}$$

where for k=1.548 the BDP is 50% and the efficiency is 28%. For k=5.182 the efficiency is 96% but the BDP is 10%.

Introduction

Outliers in regression analysis

Overview of robust estimators

Stata codes

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

MM-estimators

To ensure robustness AND efficiency, Yohai (1987) proposes to estimate an Mestimator:

$$\hat{\theta}_{M} = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} \rho \left(\frac{r_{i}(\theta)}{\sigma} \right)$$

where ρ is a 95% efficiency Tukey Biweight function and where σ is set equal to $\hat{\sigma}^S$, estimated using a high BDP S-estimator. The starting point for the iterations is $\hat{\theta}_S$.

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

Sregress and MMregress

. Sregress y x*

У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 x3 x4 x5 _cons	.9755606 1.181668 .920803 .6578808 .7086012 .0339972	.1331711 .1296818 .1450545 .1425573 .1443784 .1464742	7.33 9.11 6.35 4.61 4.91 0.23	0.000 0.000 0.000 0.000 0.000 0.817	.7096758 .9227498 .6311923 .373256 .4203404 2584479	1.241445 1.440586 1.210414 .9425057 .9968621

Scale parameter= 1.1

1.180746

. MMregress y x*

У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x1	1.035236	.116956	8.85	0.000	.8026558	1.267815
x2	.8967535	.1108331	8.09	0.000	.6763498	1.117157
x3	1.005016	.1179203	8.52	0.000	.7705186	1.239513
x4	.9289665	.1197309	7.76	0.000	.6908684	1.167065
x5	.9892967	.1268872	7.80	0.000	.7369677	1.241626
_cons	1214685	.1284036	-0.95	0.347	3768131	.133876

Scale parameter= 1.180745

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusior

Stata codes

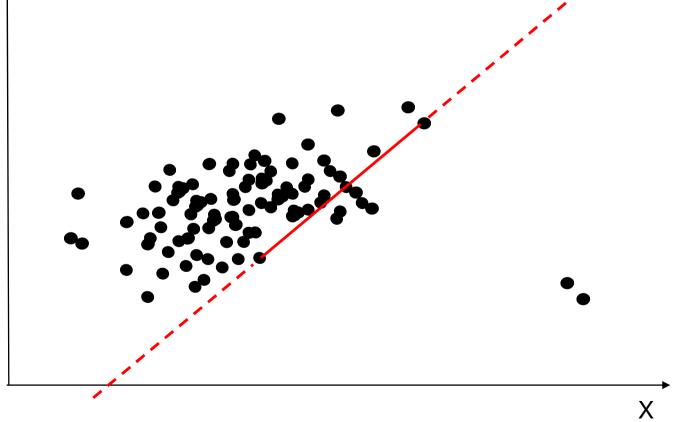
The implemented algorithm:

Salibian-Barrera and Yohai (2006)

- 1. P-subset
- 2. Improve the 10 best candidates (i.e. those with the 10 smallest $\hat{\sigma}^s$) using iteratively reweighted least squares.
- 3. Keep the improved candidate with the smallest.

P-subset (p=2)

Pick 2 (p) points randomly and estimate the equation of the line (hyperplane) connecting them.



Introduction

Outliers in regression

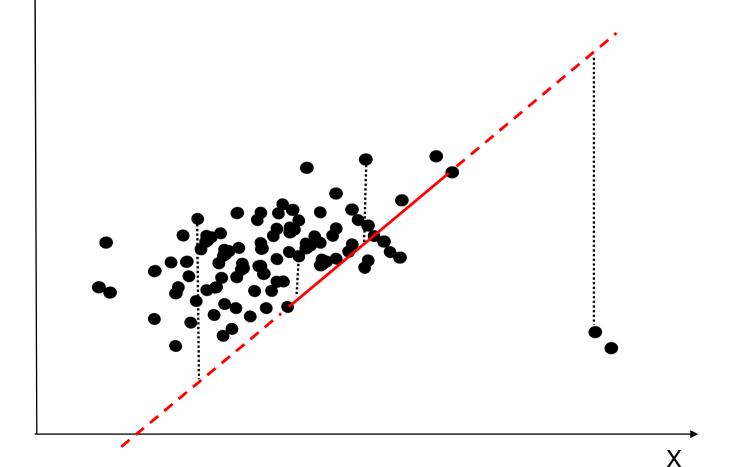
Overview of robust

Stata codes

Conclusior

P-subset (p=2)

Estimate the residuals associated to this line (hyperplane)



Introduction

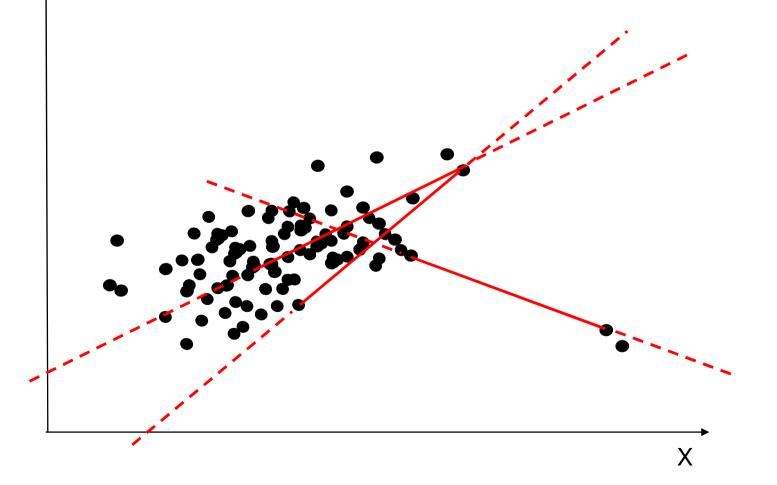
Outliers in regression

Overview of robust

Stata codes

P-subset (p=2)

Do it N times and each time calculate the robust residual spread



Introduction

Outliers in regression

Overview of robust

Stata codes

Outliers in regression analysis

Overview of robust

Stata codes

Conclusion

P-subset (p=2)

Take the 10 regression lines (hyperplanes) associated with the smallest robust spreads and run the iterative algorithm described previously to improve the initial candidate.

The regression line (hyperplane) associated with the smallest refined robust spread will be the estimated S.

Outliers in regression analysis

Overview or obust estimators

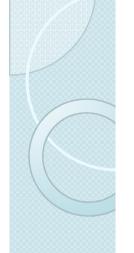
Stata codes

Conclusion

Number of subsets

The minimal number of subsets we need to have a probability (Pr) of having at least one clean if $\alpha\%$ of outliers corrupt the dataset can be easily derived:

Contamination: α %



Outliers in regression analysis

overview of robust

Stata codes

Conclusion

Number of subsets

The minimal number of subsets we need to have a probability (Pr) of having at least one clean if $\alpha\%$ of outliers corrupt the dataset can be easily derived:

$$(1-\alpha)$$

Will be the probability that one random point in the dataset is not an outlier

Outliers in regression analysis

Overview of robust

Stata codes

Conclusior

Number of subsets

The minimal number of subsets we need to have a probability (Pr) of having at least one clean if $\alpha\%$ of outliers corrupt the dataset can be easily derived:

$$(1-\alpha)^{\rho}$$

Will be the probability that none of the prandom points in a p-subset is an outlier

Outliers in regression analysis

overview of robust

Stata codes

Conclusior

Number of subsets

The minimal number of subsets we need to have a probability (Pr) of having at least one clean if $\alpha\%$ of outliers corrupt the dataset can be easily derived:

$$1-(1-\alpha)^{\rho}$$

Will be the probability that at least one of the p random points in a p-subset is an outlier

Outliers in regression analysis

overview o

Stata codes

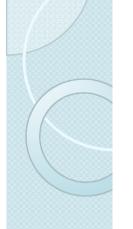
Conclusion

Number of subsets

The minimal number of subsets we need to have a probability (Pr) of having at least one clean if $\alpha\%$ of outliers corrupt the dataset can be easily derived:

$$\left[1-\left(1-\alpha\right)^{\rho}\right]^{N}$$

Will be the probability that there is at least one outlier in each of the N p-subsets considered (i.e. that all p-subsets are corrupt)



Outliers in regression analysis

Overview of robust

Stata codes

Conclusion

Number of subsets

The minimal number of subsets we need to have a probability (Pr) of having at least one clean if $\alpha\%$ of outliers corrupt the dataset can be easily derived:

$$1 - \left[1 - \left(1 - \alpha\right)^{\rho}\right]^{N}$$

Will be the probability that there is at least one clean p-subset among the N considered

Outliers in regression analysis

overview of robust

Stata codes

Conclusion

Number of subsets

The minimal number of subsets we need to have a probability (Pr) of having at least one clean if $\alpha\%$ of outliers corrupt the dataset can be easily derived:

$$Pr = 1 - \left[1 - \left(1 - \alpha\right)^{\rho}\right]^{N}$$

Rearranging we have:

$$N^* = \left\lceil \frac{\log(1-\Pr)}{\log(1-(1-\alpha)^p)} \right\rceil$$

regression analysis

Overview of robust

Stata codes

Conclusion

Drawback

If several dummies are present, the algorithm might lead collinear samples.

To solve this we programmed the MS-estimator (out of the scope here). Idea:

Drawback

If several dummies are present, the algorithm might lead collinear samples.

To solve this we programmed the MS-estimator (out of the scope here). Idea:

$$y = \underbrace{X_1}_{discrete} \underbrace{\theta_1 + \underbrace{X_2}_{continuous}} \underbrace{\theta_2 + \mathcal{E}}$$

$$\begin{cases} \theta_1^{MS} = \underset{\theta_1}{\operatorname{argmin}} \sum_{i=1}^n \rho([y_i - X_2 \hat{\theta}_2^{MS}] - X_1 \theta_1) \\ \theta_2^{MS} = \underset{\theta_2}{\operatorname{argmin}} \hat{\sigma}^S([y_i - X_1 \hat{\theta}_1^{MS}] - X_2 \theta_2) \end{cases}$$

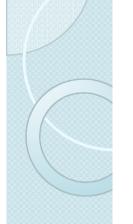
Introduction

Outliers in regression

Overview of robust estimators

Stata codes

Conclusior



Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

Identify outliers

To properly identify outliers, in addition to robust (standardized) residuals, we need an assessment of the <u>outlyingness</u> in the <u>design space</u> (x variables).

This is generally done by calling on Mahalanobis distances:

$$MD = \sqrt{(x_i - \mu)\Sigma^{-1}(x_i - \mu)'}$$

That are known to be distributed as a $\sqrt{\chi_p^2}$ for Gaussian data.

regressior analysis

Overview of robust estimators

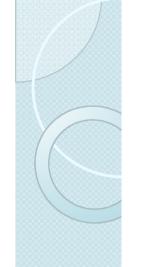
Stata codes

Conclusion

Leverage points

However MD <u>are not robust</u> since they are based on classical estimations of μ (location) and Σ (scatter).

This drawback can be easily solved by using robust estimations μ and Σ .



regression analysis

Overview or obust estimators

Stata codes

Conclusion

Minimum Covariance Determinant

A well suited method for this is \underline{MCD} that considers several <u>subsets</u> containing (generally) $\underline{50\%}$ of the observations and estimates μ and Σ on the data of the subset associated with the <u>smallest covariance matrix determinant</u>.

Intuition ...

Outliers in regression analysis

Overview o robust estimators

Stata codes

Conclusion

Generalized Variance

The generalized variance proposed by Wilks (1932), is a one-dimensional measure of multidimensional scatter. It is defined as $GV = det(\Sigma)$.

In the 2x2 case it is easy to see the underlying idea:

$$\Sigma = \begin{bmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{bmatrix} \text{ and } \det(\Sigma) = \sigma_x^2 \sigma_y^2 - \sigma_{xy}^2$$
Raw bivariate spread

Outliers in regression analysis

Overview o robust estimators

Stata codes

Conclusion

Fast-MCD Stata code

The implemented algorithm:

Rousseeuw and Van Driessen (1999)

- 1. P-subset
- 2. Concentration (sorting distances)
- 3. Estimation of robust μ_{MCD} and Σ_{MCD}
- 4. Estimation of robust distances:

$$RD = \sqrt{(x_i - \hat{\mu}_{MCD})\hat{\Sigma}_{MCD}^{-1}(x_i - \hat{\mu}_{MCD})'}$$

Outliers in regression analysis

Overview or robust estimators

Stata codes

Conclusion

Fast-MCD vs hadimvo

```
clear
set obs 1000
local b=sqrt(invchi2(5,0.95))
drawnorm x1-x5 e
replace x1=invnorm(uniform())+5 in 1/100
gen outlier=0
replace outlier=1 in 1/100
mcd x*, outlier
gen RD=Robust_distance
hadimvo x*, gen(a b) p(0.5)
Scatter RD b
```

Illustration

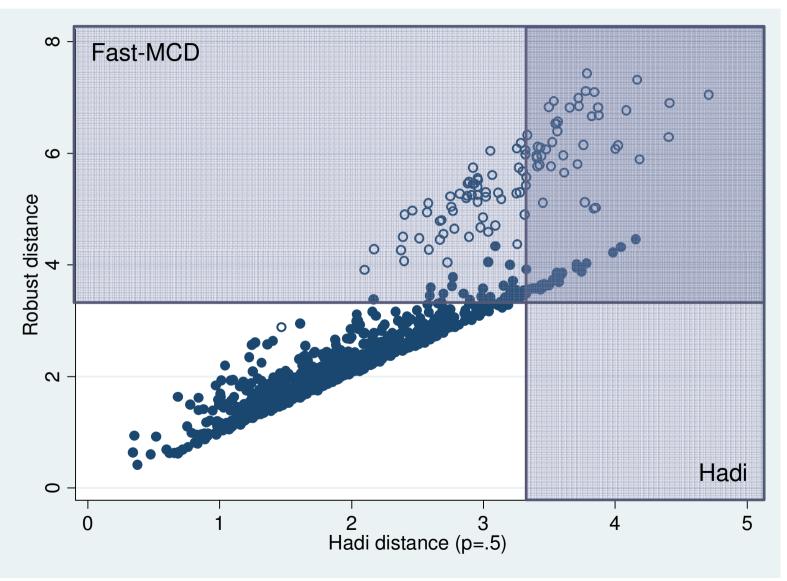
Introduction

Outliers in regression

Overview of robust estimators

Stata codes

Conclusion



Identify outliers in regression

(Rousseeuw and Van Zomeren, 1990)

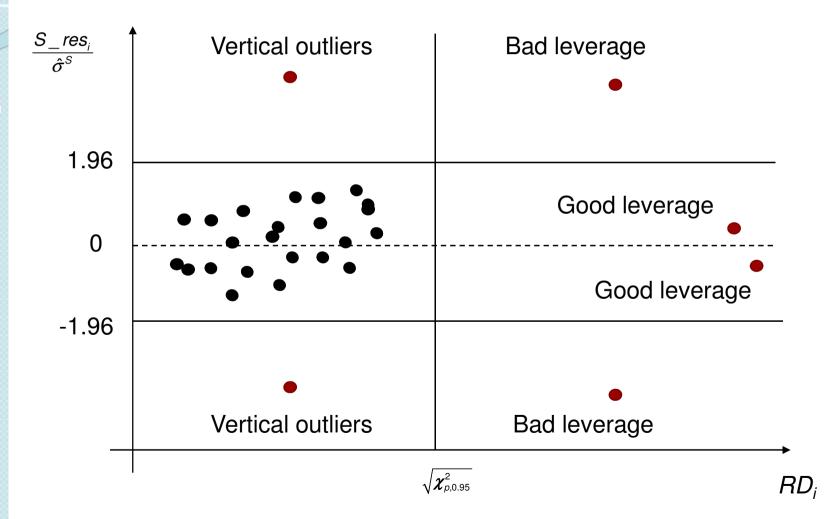
Introduction

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion



Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

Illustration

```
clear
set obs 1000
local b=sqrt(invchi2(5,0.95))
drawnorm x1-x5 e
gen y=x1+x2+x3+x4+x5+e
replace x1=invnorm(uniform())+5 in 1/100
gen noise=1 in 1/100
Sregress y x*, outlier
mcd x*, outlier
hadimvo x*, gen(a b)
```

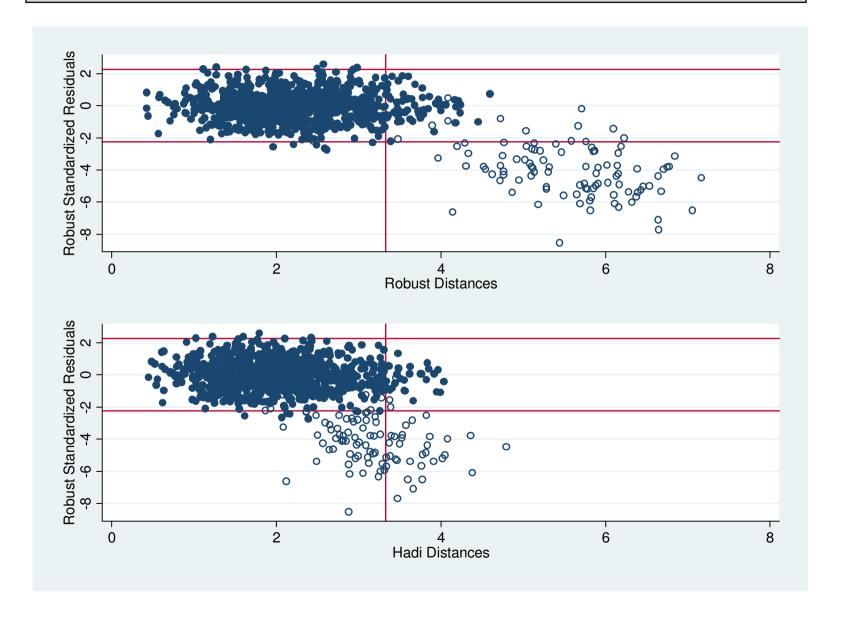
Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusior

Illustration



Outliers in regressior analysis

Overview of robust

Stata codes

Conclusion

Example

webuse auto

xi: Sregress price mpg headroom trunk weight length turn displacement gear_ratio foreign i.rep78, outlier

mcd mpg headroom trunk weight length
turn displacement gear_ratio, outlier
Scatter S_stdres Robust_distance

```
gen w1= invnormal(0.975)/abs(S_stdres)
replace w1=1 if w1>1
gen w2= sqrt(invchi2(r(N),0.95))/RD
replace w2=1 if w2>1
gen w=w1*w2
```

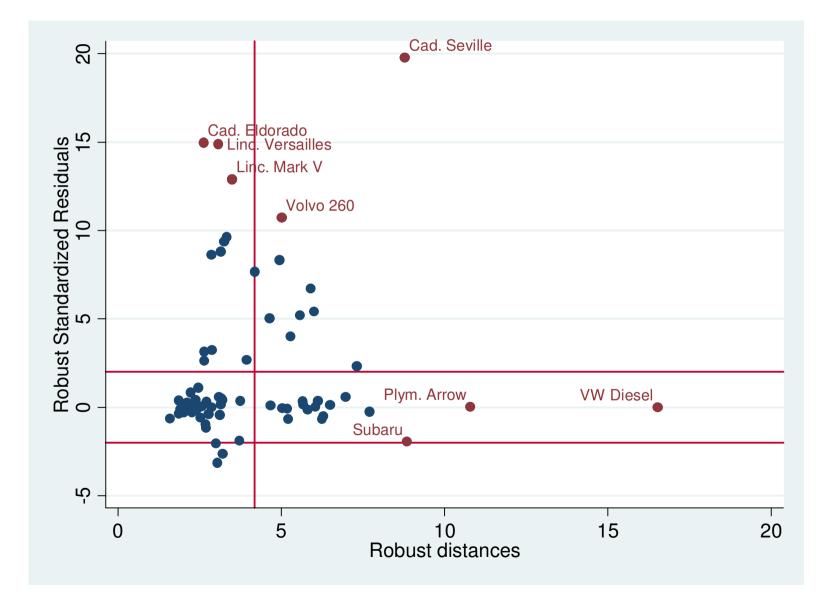
Outliers in regression analysis

Overview of robust

Stata codes

Conclusion

Example



Outliers in regression

robust estimators

Stata codes

Conclusion

Example

S	price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	mpg	283 \$ 15 6 0 \$ 1	21.18847		0.029	-91.51553 -483.7537	-5.196522
	headroom trunk	-291.452 182.7921	94.40745 26.66287	-3.09 6.86	0.004 0.000	128.4816	-99.15036 237.1025
	weight length	1.188093 -38.58704	.3610366 11.50622	3.29 -3.35	0.002 0.002	.4526852 -62.02444	1.9235 -15.14965
	turn	-6.398393	29.59498	-0. 22	0.830	-66.68139	53.8846
	displacement gear_ratio	3.427948 568.3984	2.286095 315.6108	1.50 1.80	0.144 0.081	-1.228675 -74.4799	8.084571 1211.277
		######################################	272.893	#01419	0.629	-688.8187	422.9111
	_Irep78_2	90.42532	358.4681	0.25	0.802	-639.7504	820.601
	_Irep78_3 _Irep78_4	-784.8107 -309.2105	339.6177 353.9961	-2.31 -0.87	0.027 0.389	-1476.589 -1030.277	-93.03208 411.856
	_Irep78_5	610.7227	376.5768	1.62	0.115	-156.3391	1377.785
	_cons	6102.548	1666.071	3.66	0.001	2708.872	9496.224

LS	price	Coef.	Std. Err.	t	P> t	[95% Conf.	Intervall
LO							
	mpg	-45-948	85.07476	= 0] 5 72	0.608	-214.4416	126.5456
	headroom	-689.3982	400.1119	-1.72	0.091	-1491.24	112.444
	trunk	74.129435	100.4034	0.74	0.462	-126.9186	275.5073
	weight	4.667033	1.464867	3.19	0.002	1.731373	7.602693
	length	-80.65842	43.41116	-1.86	0.069	-167.6563	6.339501
	turn	-143.7061	129.3259	-1.11	0.271	-402.881	115.4688
	displacement	12.70613	8.774824	1.45	0.153	-4.87901	30.29127
	gear_ratio	115.0845	1269.769	0.09	0.928	-2429.59	2659.759
	foreign	3064.515	1061.906	2.489	0.006	936.4084	5192.622
	_Irep78_2	1353.801	1721.302	0.79	0.435	-2095.765	4803.366
	_Irep78_3	955.4354	1618.354	0.59	0.557	-2287.818	4198.689
	_Irep78_4	976.6333	1664.928	0.59	0.560	-2359.957	4313.224
	_Irep78_5	1757.997	1804.181	0.97	0.334	-1857.663	5373.657
	_cons	9969.75	7135.813	1.40	0.168	-4330.739	24270.24

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusior

Example

S	price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	mpg headroom trunk weight length turn displacement gear_ratio foreign _Irep78_2	-48.35603 -291.452 182.7921 1.188093 -38.58704 -6.398393 3.427948 568.3984 -132.9538 90.42532	21.18847 94.40745 26.66287 .3610366 11.50622 29.59498 2.286095 315.6108 272.893 358.4681	-2.28 -3.09 6.86 3.29 -3.35 -0.22 1.50 1.80 -0.49 0.25	0.029 0.004 0.000 0.002 0.002 0.830 0.144 0.081 0.629 0.802	-91.51553 -483.7537 128.4816 .4526852 -62.02444 -66.68139 -1.228675 -74.4799 -688.8187 -639.7504	-5.196522 -99.15036 237.1025 1.9235 -15.14965 53.8846 8.084571 1211.277 422.9111 820.601
	_Irep78_3 _Irep78_4	-784.8107 -309.2105	339.6177 353.9961	-2.31 -0.87	0.027	-1476.589 -1030.277	-93.03208 411.856
	_Irep78_5 _cons	610.7227 6102.548	376.5768 1666.071	1.62 3.66	0.115 0.001	-156.3391 2708.872	1377.785 9496.224

Furthermore:

Outliers in regression analysis

overview of robust

Stata codes

Conclusion

Commands

Sregress varlist [if exp] [in range] [,
e(#) proba(#) noconstant outlier test
replic(#) setseed(#)]

MMregress varlist [if exp] [in range]
[, e(#) proba(#) noconstant outlier eff
replic(#)]

mcd varlist [if exp] [in range] [, e(#)
p(#) trim(#) outlier finsample]

MSregress varlist [if exp] [in range] ,
dummies(dummies) [e(#) proba(#)
noconstant outlier test]

Outliers in regression analysis

Overview of robust estimators

Stata codes

Conclusion

Conclusion

The available methods to identify (and treat) outliers in Stata are not fully efficient

The proposed commands should be helpful to deal with outliers in:

- 1.Regression analysis
- 2. Multivariate analysis (PCA, etc)
- 3. Available from vverardi@fundp.ac.be