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Introduction
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Outliers’ influence

To illustrate the influence of outliers, we
generate a dataset according to
Y=1.25+0.6X+€&, where X and €~N(0,1).
We then contaminate the data with
single outliers.

set obs 100

drawnorm X e
gen y=1.25+0.6*X+e

replace x= ...




Outliers in
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Outliers in regression analysis
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Clean
Intercept | 1.24
t-stat (10.76)
Slope 0.59
t-stat (4.96)
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Outliers in regression analysis

Vertical Outlier
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X-Design
Clean | Vertical
Intercept | 1.24 @
t-stat (10.76) (7.15)
Slope 0.59 | 0.67
t-stat (4.96) (2.26)
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Outliers in regression analysis
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X-Design
Clean | Vertical Bad
leverage
Intercept | 1.24 | 2.24 @
t-stat (10.76) (7.15) (6.99)
Slope 0.59 | 0.67
t-stat (4.96) (2.26) (-9.02)




Outliers in
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analysis

Outliers in regression analysis

Good Leverage Point _

~ OLS

X-Design
Clean | Vertical Bad Good
leverage leverage
Intercept | 1.24 | 2.24 4.07 1.25
t-stat (10.76) (7.15) (6.99) (10.94)
Slope 0.59 | 0.67 -0.42 0.57
t-stat (4.96) (2.26) (-9.02)




Outliers in regression analysis

The objective of regression analysis is to
figure out how a dependent variable is
linearly related to a set of explanatory
ones.

Technically speaking, it consists In
estimating the 8 parameters in:

V=6, +0.X,+0,X, +...+0,_X

ip—1 + 8/

to find the model that better fits the data.




Ordinary Least Squares (LS)

On the basis of the estimated
parameters, it is then possible to fit the
model and predict, y the dependent
variable. The discrepancy between y
and y is called the residual (r. =y, — y,).

The objective of LS is to_ minimize the
sum of the squared residuals:

6, =argmin’y r?(8) where 6 =|:
¢ i=1




Li-estimator

However, the squaring of the residuals
makes LS very sensitive to outliers.

To increase robustness, the square
function could be replaced by the
absolute value (Edgeworth, 1887).

611 = argeminzn:\r,(é’)\
=1

[qreg function in Stata]




M-estimators

Huber (1964) generalized this idea to a

set of symmetric p functions that could

be used instead of the absolute value
to increase efficiency and robustness.

To guarantee scale equivariance,
residuals are standardized by a
measure of dispersion o.

The problem becomes:

6, = argmian(mj
0 i=1

o)




M-estimators

M-estimators can be redescending (1)
or monotonic (2).
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M-estimators

It o Is known, the practical
implementation of M-estimators Is
straightforward. Indeed, by defining a

weight:
Gk
W, =
A ()
the problem boils down to.

8, =argmin> w,r?(6)

0 =1




M-estimators as WLS

8, =argmin> w,r?(6)

¢ i=1
However:

1. Weights w: are_a function of 6 that
should thus be estimated iteratively

2. This iterative algorithm is guaranteed
to converge (and yield a solution which
IS unique) only for monotonic M-
estimators ... which are not robust

3. g is generally not known in advance




Stata’s rreg command

The rreg command was created to
tackle these problems. It works as
follows:

1. It awards a weight zero to individuals
with Cook distances larger than 1.

2. A “redescending” M-estimator Is
computed using the iterative algorithm
starting from a monotonic M-solution.

3. 0 Is re-estimated at each iteration
using the median residual of the
previous iteration.




Stata’s rreg command

Unfortunately, this command has not
the expected robust properties:

1. Cook distances do_not help
identifying  leverage points  when
(clustered) outliers mask one the other.

2. The preliminary monotonic M-
estimator provides a poor Initial
candidate because of point 1.

3. 0 Is poorly estimated because of 1
and 2.




lllustration

qreg and rreg are not robust methods:

Stata example:

set obs 100

drawnorm x1-x5 e

gen y=x1+x2+x3+x4+xb+e

replace xl1=invnorm(uniform())+10 in 1/10
o QreEg y x*
estimators rreg y X*

display e(rmse)



Overview of
robust

estimators

Command: qreg

Iteration 1: WLS sum of weighted deviations = 117.31824
Iteration 1: sum of abs. weighted deviations = 119.64818
Iteration 2: sum of abs. weighted deviations = 117.18714
Iteration 3: sum of abs. weighted deviations = 117.04369
Iteration 4: sum of abs. weighted deviations = 116.65145
Iteration 5: sum of abs. weighted deviations = 116.01905
Iteration 6: sum of abs. weighted deviations = 116.01677
Median regression Number of obs = 100
Raw sum of deviations 202.8451 (about -.23892587)
Min sum of deviations 116.0168 Pseudo R2 = 0.4281
y Coef. std. Err. t P>|t]| [95% Conf. Interval]
x1 .179877 .0536822 3.35 0.001 .0732897 .2864643
X2 .754721 .1589944 4.75 0.000 .4390341 1.070408
x3 .949198 .16758 5.66 0.000 .616464 1.281932
x4 .8773521 .1624611 5.40 0.000 .5547817 1.199922
x5 .9931675 .1791938 5.54 0.000 .637374 1.348961
_cons -.0009245 .1887648 0.00 0.996 -.3757213 .3738724




Command: rreg

.48417173
.06025306

maximum difference in weights
maximum difference in weights
maximum difference in weights
maximum difference in weights
maximum difference i ights

iteration 1
Huber iteration 2:
Huber iteration 3:
: T
5

iteration
iteration

Robust regression Number of obs = 100
FC 5, 94) = 33.28
Prob > F = 0.0000
y Coef. std. Err. t P>|t]| [95% Conf. Intervall]
x1 .0514961 3.40 0.001 .0730203  .2775136
X2 .9241295 .1459845 6.33 0.000 .6342739 1.213985
Overview of X3 .9221296 .1569926 5.87 0.000 .6104172 1.233842
e x4 .7781905 .1554807 5.01 0.000 .4694801 1.086901
x5 1.115836 .1639707 6.81 0.000 .790268 1.441403
estimators _cons -.0584287 .175098 0.33 0.739 -.4060898 .2892325

display e(rmse)
1.615155



S-estimators

Robustness can be however achieved
by tackling the problem from a different
perspective.

Instead of minimizing the variance of

the residuals (LS) a more robust

measure of spread of the residuals

could be minimized (Rousseeuw and
Yohali, 1987).

The measure of spread considered
here Is an M-estimator of scale.




S-estimators

Intuition:

The variance is defined by:

= —Z r?(6) which can be rewritten:

18(r(0)Y
Overview of 1 — —Z( I ~ j hence LS IOOkS fOr the
robust n i—1 O

minimal ¢ that satisfies the equality.
But the square function ...




S-estimators
Replace the square by another p:

_1& [ n(6)
=130 5]

o)

but for Gaussian data we want 6° to be
the standard deviation ( = correction)
Eo [p(u)] n
™ 5 — lZp( r'(g)j < M-estimator of scale ...

n<'"\ 6°

The problem boils down to finding the 6,

associated to the minimal 6° that satisfies
the equality



S-estimators

p is generally (Tukey Biweight):
(T -3

ricY | . |r
1—|1—| 4 if - <k
r,):< I K ) o

o

1if |4 > k
wore L -
" where for k=1.548 the BDP is 50% and

the efficiency is 28%. For k=5.182 the
efficiency is 96% but the BDP is 10%.

Pl




MM-estimators

0 ensure robustness AND efficiency,
Yohai (1987) proposes to estimate an M-
estimator:

6, = argmian(mj
¢ i=1

o)

where p is a 93% efficiency Tukey
Biweight function and where o is set
equal to 6°, estimated using a high BDP
S-estimator. The starting point for the
iterations is 6, .




Sregress and MMregress

. Sregress y Xx¥

y Coef. Std. Err. t P>t [95% Conf. Interval]
x1 .9755606 .1331711 7.33 0.000 .7096758 1.241445
X2 1.181668 .1296818 9.11 0.000 .9227498 1.440586
x3 .920803 .1450545 6.35 0.000 .6311923 1.210414
x4 .6578808 .1425573 4.61 0.000 .373256 .9425057
x5 .7086012 .1443784 4.91 0.000 .4203404 .9968621
_cons .0339972 .1464742 0.23 0.817 -.2584479 .3264424

Scale parameter= |1.180746
. MMregress y x*
y Coef. Sstd. Err. t P>|t| [95% cConf. Interval]
Overview of

x1 1 035236 .116956 8.85 0.000 .8026558 1.267815
robust X2 .8967535 .1108331 8§.09 0.000 .6763498 1.117157
estimators x3 1.005016 .1179203 8.52 0.000 .7705186 1.239513
x4 .9289665 .1197309 7.76  0.000 .6908684 1.167065
x5 .9892967 .1268872 7.80 0.000 .7369677 1.241626
_cons -.1214685 .1284036 0.95 0.347 -.3768131 .133876

Scale parameter=| 1.180745



Stata codes

The implemented algorithm:
Salibian-Barrera and Yohai (2006)
1. P-subset

2. Improve the 10 best candidates (i.e.
those with the 10 smallest 6°) using
iteratively reweighted least squares.

. 3. Keep the improved candidate with the
smallest



P-subset (p=2)

, Pick 2 (p) points randomly and
¥ | estimate the equation of the line
(hyperplane) connecting them

o ® .
®
o® " 4
® .J
® o O‘...,

Stata codes ® 7 ®




P-subset (p=2)

, Estimate the residuals associated to
¥ | this line (hyperplane)

Stata codes




P-subset (p=2)

Do 1t N times and each time
¥ | calculate the robust residual spread

Stata codes




Stata codes

P-subset (p=2)

Take the 10 regression lines
(hyperplanes) associated with the
smallest robust spreads and run the
iterative algorithm described previously
to improve the initial candidate.

The regression line (hyperplane)
associated with the smallest refined
robust spread will be the estimated S.




Stata codes

Number of subsets

The minimal number of subsets we need
to have a probability (Pr) of having at
least one clean if a% of outliers corrupt
the dataset can be easily derived:

Contamination: & %




Stata codes

Number of subsets

The minimal number of subsets we need
to have a probability (Pr) of having at
least one clean if a% of outliers corrupt
the dataset can be easily derived:

(1-a)

Will be the probability that one random
point in the dataset is not an outlier




Stata codes

Number of subsets

The minimal number of subsets we need
to have a probability (Pr) of having at
least one clean if a% of outliers corrupt
the dataset can be easily derived:

(1-a)

Will be the probability that none of the
p random points in a p-subset is an
outlier




Stata codes

Number of subsets

The minimal number of subsets we need
to have a probability (Pr) of having at
least one clean if a% of outliers corrupt
the dataset can be easily derived:

1-(1-a)"

Will be the probability that at least one
of the p random points in a p-subset is
an outlier




Stata codes

Number of subsets

The minimal number of subsets we need
to have a probability (Pr) of having at
least one clean if a% of outliers corrupt
the dataset can be easily derived:

N
[1—(1—04)”]
Will be the probability that there is at
least one outlier in each of the N p-

subsets considered (i.e. that all p-
subsets are corrupt)




Number of subsets

The minimal number of subsets we need
to have a probability (Pr) of having at
least one clean if a% of outliers corrupt
the dataset can be easily derived:

N
1—[1—(1—04)”}
Will be the probability that there is at

least one clean p-subset among the N
considered

Stata codes



Number of subsets

The minimal number of subsets we need
to have a probability (Pr) of having at
least one clean if a% of outliers corrupt
the dataset can be easily derived:

Pr:1—[1—(1—a)pJN

Rearranging we have:

Stata codes * |O 1_Pr
N :{ g(1-Pr) 1

log(1-(1-)P)



Drawback

It several dummies are present, the
algorithm might lead collinear samples.

To solve this we programmed the MS-
estimator (out of the scope here). Idea:

Stata codes




Stata codes

Drawback

It several dummies are present, the
algorithm might lead collinear samples.

To solve this we programmed the MS-
estimator (out of the scope here). Idea:
y= X, 6+ X, 6,+¢

—_ ——

discrete continuous

61" =argminy_ p(ly; - X,0,°1- X,6,)
J 2 =1
6, =argminé°(ly, - X,6"°]- X,6,)

2

(

.




|dentify outliers

To properly identify outliers, in addition
to robust (standardized) residuals, we
need an assessment of the outlyingness
in the design space (x variables).

This is generally done by calling on
Mahalanobis distances:

MD = \J(x, = )= (X, - 1)’

weees That are known to be distributed as a \@
for Gaussian data.




Stata codes

Leverage points

However MD are not robust since they
are based on classical estimations of p
(location) and 2 (scatter).

This drawback can be easily solved by
using robust estimations y and 2.




Stata codes

Minimum Covariance Determinant

A well suited method for this is MCD that
considers several subsets containing
(generally) 50% of the observations and
estimates gy and 2 on the data of the
subset associated with the smallest
covariance matrix determinant.

Intuition ...
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Fast-MCD Stata code

The implemented algorithm:
Rousseeuw and Van Driessen (1999)
1. P-subset

2. Concentration (sorting distances)
3. Estimation of robust pmeo and 2ueo

4. Estimation of robust distances:

Stata codes

AD = \/(Xi _/A‘MCD)iX/;CD(Xi — Hycp)’



Fast-MCD vs hadimvo

clear

set obs 1000

local b=sqrt(invchi2(5,0.95))
drawnorm x1-x5 e

replace xl1=invnorm(uniform())+5 in 1/100
gen outlier=0

replace outlier=1 in 1/100
mcd x*, outlier

gen RD=Robust_distance
hadimvo x*, gen(a b) p(0.5)
Scatter RD b

Stata codes



lllustration

Robust distance

Stata codes

0 1 2 3 4 5
Hadi distance (p=.5)




|ldentify outliers in regression

(Rousseeuw and Van Zomeren, 1990)

S_res,

OA_S

1.96

-1.96

Stata codes

Vertical outliers

Bad leverage
@

Good leverage

Good leverage

Vertical outliers

o
Bad leverage

VA 5,0.95

RD,




lllustration

clear

set obs 1000

local b=sqrt(invchi2(5,0.95))

drawnorm x1-x5 e

gen y=x1+x2+x3+x4+xb+e

replace xl1=invnorm(uniform())+5 in 1/100
gen noise=1 in 1/100

Sregress y x*, outlier

mcd x*, outlier

hadimvo x*, gen(a b)

Stata codes



lllustration
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Stata codes

Example

webuse auto

X1: OSregress price mpg headroom trunk
welght length turn displacement
gear_ratio foreign i.rep/8, outlier

mcd mpg headroom trunk weight length
turn displacement gear_ratio, outlier

Scatter S_stdres Robust_distance

gen wl= invnormal (0.975)/abs(S_stdres)
replace wi=1 0f wipl
gen w2= sqrt(invchi2(r(N),0.95))/RD

replace wioel 0f worl
cen w=wl*xw2




Stata codes

Example

15 20
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Stata codes

Example

LS

price Coet. 5td. Err. t Pa |t [05% Canf. Interwal]
21.18847 0.029 -91.51553 -5.196522
head o4 40745 O .00 -483.7537 -99_ 1503 6
g 18 121 2b.66287 O OO 128.4816 2371025
we1gnt 1.188093 -3blldien .00 4526852 1.9235
Tength -38.58704 11.50622 O.002 -g2.02444 -15.14965
furn -6.398393 29.59498 O.830 -gb.6E130 53.8846
disp]acemeut 3.427948 2. 286095 0.144 -1.22867575 8.084571
gear 68. 3984 315.6108 0.081 —-r4.4799 1211_27r
: 9538 2F2.893 0.629 -688. 8187 422.9111
_Irepro_ o0. 42532 358.4681 O.802 -639. 7504 820_601
_Ireps&8_3 —-rid4_8107rs 339.61r°7 O.027 -1476_589 -93 03208
_Irepr&_4 =309_2105% 353.9961 O.389 -1030._ 277 411_856
_Ireps8_5 610. 7227 IF6.5768 0.115 -156.3391 1377785
_Cons 6102548 1666.071 0. 001 2rO8._8r2 9496224

price Coef. std. Err. t Pa |t [25% Conf. Interwval]
mpg 85.07476 O.608 -214_4416 126.5456
headroom 400_.1119 0.091 -1491 _24 112_444
trunk 100.4034 0.462 -126.9186 275.5073
weight 4.667033 1.4e4867 .00 1.73137°3 F-. 602693
Tength -80.65842 43 .41116 O.069 -167.6563 6. 339501
furn -143_ 7061 129_3259 -1.11 0.271 —402_ 881 115.4688
disp]acement 12. 70613 8. Frd4824 1.45 0.153 — 87901 3029127
gear_ratio 115. 0845 1269.769 0.928 2429 _59 2659.759
foreign | 1 1061.906 0 .006 936.4084 5192.622
_Irepsfa8_2 1353 .801 1721.302 0.435 2095 765 4803.366
JIrepr&_3 o55.4354 1618.354 .59 0.557 -2287. 818 4198689
_Irepr&_4 976.60333 leed4.928 .59 0.560 -2359_95%7 4313224
_Ireps&8_5 1757 .997 1804.181 0.97 0.334 -1857. 663 5373.657
_Cons 9969.75 r135.813 1.40 O.168 -4330. 739 2427024




Stata codes

Example

price Coet. 5td. Err. t Pa |t [05% Canf. Interwal]
mpg —48_35%603 21.18847 -2.28 0.029 -91.51553 -5.196522
headroom =291 .452 o4 40745 -3.09 O .00 -483.7537 -99_ 1503 6
trunk 182. 7921 26.66287 b.86 O OO 128.4816 2371025
weight 1.188093 -3blldien 3.29 .00 4526852 1.9235
Tength -38.58704 11.50622 -3.35 O.002 -g2.02444 -15.14965
furn -6.398393 29.59498 -0.22 O.830 -gb.6E130 53.8846
disp]acemeut 3.427948 2. 286095 1.50 0.144 -1.22867575 8.084571
gear_ratio 568. 3984 315.6108 1.80 0.081 —-r4.4799 1211_27r
foreign -132_9538 272.893 -0.49 0.629 -688. 8187 422.9111
_Irepra_2 o0. 42532 358.4681 O.25 O.802 -639. 7504 820_601
_Ireps&8_3 —-rid4_8107rs 339.61r°7 -2.31 O.027 -1476_589 -93 03208
_Irepr&_4 =309_2105% 353.9961 -0_.8r7 O.389 -1030._ 277 411_856
_Ireps8_5 610. 7227 IF6.5768 1.62 0.115 -156.3391 1377785
_Cons 6102548 1666.071 3.66 0. 001 2rO8._8r2 9496224

Furthermore:

LS R2=0.61
S R2=0.82

LS_RMSE=2031
S_RMSE=402




Conclusion

Commands

Sregress varlist [if exp] [in range] [,
e (#) proba(#) noconstant outlier test
replic(#) setseed(#)]

MMregress varlist [if exp] [in rangel
[, e(#) proba(#) noconstant outlier eff
replic(#)]

mcd varlist [if exp]l [in range] [, e(#)
p(#) trim(#) outlier finsample]

MSregress varlist [if exp] [in range] ,
dummies (dummies) [ e(#) proba(#)
noconstant outlier test]




Conclusion

The available methods to identify (and treat)
outliers in Stata are not fully efficient

The proposed commands should be helpful to
deal with outliers in:

1.Regression analysis
2.Multivariate analysis (PCA, etc)

3.Available from vverardi@fundp.ac.be




