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Getting the most out of xtmix
L The Linear Mixed Model

L Model Statement

y=XB8+Zu+e J

where
y is the n x 1 vector of responses
X is the n x p fixed-effects design matrix
3 are the fixed effects
Z is the n x g random-effects design matrix
u are the random effects

€ is the n x 1 vector of errors such that
u G 0
M)
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Getting the most out of xtmixed
L The Linear Mixed Model

I—Variance components

@ Random effects are not directly estimated, but instead
characterized by the elements of G, known as variance
components

@ You can, however “predict” random effects. These are known
as best linear unbiased predictions (BLUPs)

@ As such, you fit a mixed model by estimating 3, 02, and the
variance components in G

@ We can fit linear mixed models in Stata using xtmixed and
gllamm. In the special case of a random-intercept model, we
can also use xtreg
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Getting the most out of xtmixed
L The Linear Mixed Model

I—F’anel Representation (Laird and Ware, 1982)

@ Classical representation has roots in the design literature, but
can make model specification difficult

@ When the data can be thought of as M independent panels, it
is more convenient to express the mixed model as (for
i=1,..,M)

Yi = XiB+ Zjui + € ]

where u; ~ N(0,S), for g x g variance S, and

Z, 0 .- 0
0 Z, - 0 ui

= 0 T |l u= - G=Iy®S
0 0 0 Zy Um
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Getting the most out of xtmixed
I—E><amp|e 1: Standard Random Coefficients
I—Analysis of growth curves

@ Goldstein (1986) analyzed data on weight gain of Asian
children in a British community (Rabe-Hesketh and Skrondal
2008, section 5.10)

@ We analyze a subset of their data, namely 68 children weighed
between one and five times inclusive

@ The graph of growth curves will suggest the following model
features:

overall quadratic growth

child-specific random intercepts

(perhaps) child-specific linear trends

child-specific quadratic components would perhaps be a bit
much

©
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Getting the most out of xtmixed

I—E><amp|e 1: Standard Random Coefficients
I—Graphing growth curves

. use http://www.stata.com/icpsr/mixed/child, clear
(Weight data on Asian children)
sort id age

. graph twoway (line weight age, connect(ascending)), ///
> xtitle(Age in years) ytitle(Weight in Kg) ///
> title(Growth Curves For Child Data)

Growth Curves For Child Data
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Getting the most out of xtmixed
I—E><amp|e 1: Standard Random Coefficients

L Growth-curve model

@ Graphical features suggest the following model for the jth
weighing of the ith child

weight; = Bo + ﬁlage,-j + ﬁzagelgj + ujo + uirage; + €

@ This is a standard random-coefficients model, the bread and
butter of xtmixed

o It is good practice to use cov(unstructured) and not
assume the two random-effects terms are independent, the
default

@ You can always do an LR test to ensure that the added
covariance term is significant
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Getting the most out of xtmixed

I—E><amp|e 1: Standard Random Coefficients

I—Ranclom—coefﬁcients model with xtmixed

. gen age2 = age”2
. xtmixed weight age age2 || id: age, cov(unstructured) variance
Mixed-effects REML regression Number of obs = 198
Group variable: id Number of groups = 68
Obs per group: min = 1
avg = 2.9
max = 5
Wald chi2(2) = 1940.65
Log restricted-likelihood = -262.4327 Prob > chi2 = 0.0000
weight Coef. Std. Err. z P>|z| [95% Conf. Intervall]
age 7.703451 .2408987 31.98 0.000 7.231298 8.175604
age2 -1.66009 .0890272 -18.65 0.000 -1.834581 -1.4856
_cons 3.494664 .1384934 25.23  0.000 3.223222 3.766106
Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall
id: Unstructured
var (age) .2617525 .0912799 .1321462 .5184738
var (_cons) .4172866 .1686882 .1889453 .9215797
cov(age,_cons) .085354 .0904636 -.0919514 .2626593
var (Residual) .3341601 .058922 .2365176 .4721128
LR test vs. linear regression: chi2(3) = 114.39 Prob > chi2 = 0.0000
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Getting the most out of xtmixed

I—E><amp|e 2: Grouped Covariance Structures

I—Assessing a gender effect

@ The previous model grouped boys and girls together

@ Is there a systematic difference (in the overall mean curve)
between boys and girls?

@ Do boys and girls demonstrate different variability about their
respective average curves?

@ We can certainly check graphically

. graph twoway (line weight age, connect(ascending)), by(girl) ///
> xtitle(Age in years) ytitle(Weight in Kg)
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Getting the most out of xtmixed

I—E><amp|e 2: Grouped Covariance Structures

I—Gencler—specific growth curves

boy girl
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Getting the most out of xtmixed

I—E><amp|e 2: Grouped Covariance Structures

L Expanding the model

@ The deficiency of our previous model is that it assumed the
variance components were the same for both boys and girls

weight; = (o + frage; + ﬂgage?j + O3girl; + uio + uprage; + €j

@ Our graph indicates that girls’ curves are bunched closer
together

@ As such, a better model would be to have gender-specific
random effects, i.e. distinct r.e. covariance matrices for boys
and girls

@ In other words we want the portion in red above replaced by

b b . .
u,-Oboy,-J- + uj (age,—j X boy,-j) + u%glrl,j + uﬂ (age,-j X glrllj)
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Getting the most out of xtmixed

I—E><amp|e 2: Grouped Covariance Structures

L Block-diagonal covariances

@ In our new model, the covariance matrix of the random effects
is block diagonal, i.e.

oS

akns

where both X, and X, are 2 x 2 unstructured covariance
matrices

<
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@ You can achieve this effect by “repeating level specifications”

@ We will also add corresponding fixed-effects terms, boy/girl
dummy variables and boy/girl interactions with age.
Otherwise we would be imposing dubious constraints

R. Gutierrez (StataCorp) September 8-9, 2008 13 / 36



Getting the most out of xtmixed

I—E><amp|e 2: Grouped Covariance Structures

I—OLlr new model

@ We wish to fit the following model

Weightij = 52age,2j +
B3boy;; + Ba (age,-j X bOYij) +
Bsgirl; + 6 (age; x girly) +
u,%boy,-j + uf (age; x boy;) +
upgirl; + uf (age,-j X girl,-j) + €
@ At this point | recommend using ML instead of the default

REML estimation. ML permits LR tests for models where the
fixed-effects structures differ

@ For example, say you wanted to test against a model with no
interactions, fixed or random
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Getting the most out of xtmixed

I—E><amp|e 2: Grouped Covariance Structures

I—OLlr new model with xtmixed

. gen boy = !girl

. gen boyXage = boy*age

. gen girlXage = girl*age

. xtmixed weight age2 boy boyXage girl girlXage, nocons ///

> |l id: boy boyXage, nocons cov(un) /17

> |l id: girl girlXage, nocons cov(un) mle var
Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68
Obs per group: min = 1
avg = 2.9
max = 5
Wald chi2(5) = 7095.79
Log likelihood = -248.70821 Prob > chi2 = 0.0000
weight Coef. Std. Err. z P>|z| [95% Conf. Intervall
age2 -1.641597 .0867182 -18.93  0.000 -1.811562  -1.471633
boy 3.766094 .1618969 23.26  0.000 3.448782 4.083406
boyXage 7.782752 .2609228 29.83 0.000 7.271353 8.294152
girl 3.257528 .178941 18.20  0.000 2.90681 3.608246
girlXage 7.5638577 .2386229 31.59 0.000 7.070885 8.006269

—-more--—
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Getting the most out of xtmixed

I—E><amp|e 2: Grouped Covariance Structures

I—OLlr new model with xtmixed

Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall
id: Unstructured
var (boy) .2887796 .1915665 .078688 1.059801
var (boyXage) .4557309 .1794435 .210644 .9859798
cov(boy,boyXage) .0227221 .1373405 -.2464604 .2919046
id: Unstructured
var(girl) .4799603 .2223231 .1936061 1.189848
var (girlXage) .0423413 .0608414 .0025331 .7077496
cov(girl,girlXage) .0645366 .0869897 -.1059602 .2350333
var (Residual) .3211566 .0555259 .2288493 .4506964
LR test vs. linear regression: chi2(6) = 113.34 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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Getting the most out of xtmixed

I—E><amp|e 2: Grouped Covariance Structures

L Some notes

@ [t turns out the greater spread in the boys’ curves is due to
larger variability in the linear component, not the intercept

@ Neither covariance appears to be significant. You can drop
both by simply reverting to xtmixed's default independent
covariance structure

® The identity could be used to further restrict the model
(equality constraints)

@ Using repeated level specifications, each separated by ||, for
achieving gender-specific error structures is equivalent to
using the GROUP option of some PROCedure for fitting
MIXED models employed by Some Alternative Software
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Getting the most out of xtmixed

I—E><amp|e 3: Heteroskedastic Residual Errors

L Heteroskedastic errors

@ What about heteroskedasticity in the residual errors?

@ Dempster et al. (1984) analyze data from a reproductive study
on rats to assess the effect of an experimental compound on
pup weights (Rabe-Hesketh and Skrondal 2008, exercise 3.5)

@ 27 litters were recorded over three treatment groups: control,
low dose, and high dose

@ Weight is related to dosage level and litter size, which are
“litter-level” covariates

@ Weight is also related to sex, a pup-level covariate
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Getting the most out of xtmixed

I—E><amp|e 3: Heteroskedastic Residual Errors

. use http://www.stata.com/icpsr/mixed/rats, clear
(Weights of rat pups)
egen mnw = mean(weight), by(litter)
twoway (scatter mnw size if dose==0) ///
(scatter mnw size if dose==1, msymbol(plus)) ///
(scatter mnw size if dose==2, msymbol(x) msize(large)), ///
ytitle(Mean weight (grams)) ///
legend(order (1 "control" 2 "low dose" 3 "high dose")) ///
legend(position(1) ring(0))
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Getting the most out of xtmixed

I—E><amp|e 3: Heteroskedastic Residual Errors

L Random-intercept model

@ Our initial model is

weight; = Bo + frdoseyjj + Bodosey; + F3sizej 4 Safemalej +
uj + €

for i =1,...,27 litters and j = 1, ..., n; pups within litter

@ This is a standard random-intercept model, fit by xtmixed or,
even, xtreg

@ Residual plots vs. the linear predictor are always a good idea.
In our case, we produce these plots by variable female
because we are curious about heteroskedasticity
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Getting the most out of xtmixed

I—E><amp|e 3: Heteroskedasti

c Residual Errors

I—Ranclom—intercept model with xtmixed

. xi: xtmixed weight i.dose size female || litter:
i.dose _Idose_0-2 (naturally coded; _Idose_O omitted)
(output omitted)
weight Coef. Std. Err. z P>|z| [95% Conf. Intervall
_Idose_1 -.4416666 .1513553 -2.92 0.004 -.7383176 -.1450157
_Idose_2 -.8706054 .1830525 -4.76 0.000 -1.229382 -.511829
size -.1299602 .0190485 -6.82 0.000 -.1672946 -.0926259
female -.3626441 .0477374 -7.60 0.000 -.4562077 -.2690805
_cons 8.324096 .2770569 30.04 0.000 7.781074 8.867118
Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall
litter: Identity
sd(_cons) .3140074 .0532536 .2252069 .4378225
sd(Residual) .4045051 .0166929 .3730758 .4385822

LR test vs. linear regression: chibar2(01) =

R. Gutierrez (StataCorp)
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Getting the most out of xtmixed
I—E><amp|e 3: Heteroskedastic Residual Errors

I—Residual plots by female

predict xbeta
(option xb assumed)

. predict r, residuals
twoway (scatter r xbeta, by(female))
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Getting the most out of xtmixed

I—E><amp|e 3: Heteroskedastic Residual Errors

L Heteroskedastic errors

@ In our previous model, we want ¢;; replaced by
€j = € (1 — femalej) + efjfemale,-j

@ The bad news is that xtmixed will always produce a single,
overall residual term. The good news is we can express the
above instead as

L m f_ . m .
ej = € + (e — €;f)female;

and we can estimate the additional variability due to female

@ This alternate form allows us to fit this model in xtmixed,
provided we create a pseudo two-level model, with the
lowest-level “groups” being the observations (pups)
themselves, nested within litters
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Getting the most out of xtmixed

I—E><amp|e 3: Heteroskedastic Residual Errors

I—Heteroskedastic residuals with xtmixed

. gen pup = _n
. xi: xtmixed weight i.dose size female || litter: || pup: female, nocons var
Mixed-effects REML regression Number of obs = 321
No. of Observations per Group
Group Variable Groups Minimum Average Maximum
litter 27 2 11.9 18
pup 321 1 1.0 1
Wald chi2(4) = 107.22
Log restricted-likelihood = -196.90368 Prob > chi2 = 0.0000
weight Coef. Std. Err. z P>|z| [95% Conf. Intervall]
_Idose_1 -.4500473 .15523 -2.90 0.004 -.7542925  -.1458021
_Idose_2 -.8780883 .18757 -4.68 0.000 -1.245719  -.5104578
size -.1307603 .0196311 -6.66 0.000 -.1692365 -.092284
female -.3634425 .04821 -7.54 0.000 -.4579324  -.2689526
_cons 8.339868 .2845412 29.31  0.000 7.782177 8.897558
--more--
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Getting the most out of xtmixed

I—E><amp|e 3: Heteroskedastic Residual Errors

I—Heteroskedastic residuals with xtmixed

Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall
litter: Identity
var (_cons) .1046383 .035361 .053956 .2029279
pup: Identity
var (female) .0558646 .02933 .0199636 .1563272
var (Residual) .1370851 .0161837 .108768 .1727743
LR test vs. linear regression: chi2(2) = 94.55  Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
. nlcom ( male: exp(2 * [lnsig_e]_cons)) ///
> (female: exp(2 * [lnsig_el_cons) + exp(2 * [1ns2_1_1]_cons))
male: exp(2 * [Ilnsig_e]_cons)
female: exp(2 * [lnsig_el_cons) + exp(2 * [1ns2_1_1]_cons)

weight Coef. Std. Err. z P>|z| [95% Conf. Intervall]
male .1370851 .0161837 8.47 0.000 .1053657 .1688044
female .1929497 .023584 8.18 0.000 . 1467259 .2391734
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Getting the most out of xtmixed

I—E><amp|e 3: Heteroskedastic Residual Errors

L Handling non-convergence

@ Fitting heteroskedastic-error models using this procedure will
often result in non-convergent models

@ The reason is that implicit in the above is the assumption that
2 2
Of. > Ope
@ If not true, the variance component representing added
variability will tend towards zero and form a ridge in the

likelihood surface

@ The solution? Simply model the added variability as due to
male rather than as due to female
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Getting the most out of xtmixed

I—E><amp|e 4: Smoothing Via Penalized Splines

I—Spline smoothing

@ Finally, you can also use xtmixed for spline smoothing:

@ Silverman (1985) analyzed 133 measurements taken from a
simulated motorcycle crash

@ Head acceleration (y) was measured over time (x)

@ Because of the changing nature of the curve over time and
the heteroskedasticity of errors, these data are a staple of the
smoothing literature
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Getting the most out of xtmixed

I—E><amp|e 4: Smoothing Via Penalized Splines

L Scatterplot

. use http://www.stata.com/icpsr/mixed/motor, clear
graph twoway (scatter accel time)
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Getting the most out of xtmixed

I—E><amp|e 4: Smoothing Via Penalized Splines

I—Smoothing via linear splines

@ A linear-spline smoothing model has the form

M

yi = Po + Pixi + Z’Yj Xi — Kjl, +ei
j=1

for M knot points x;, usually chosen to form a grid

@ Think of linear smoothing splines as just a series of
interlocking line segments, the slopes of which need to be
estimated

@ The above suggests plain linear regression, with the
appropriately-generated regressors, of course. Call this the
“fixed-effects” approach
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Getting the most out of xtmixed
I—E><amp|e 4: Smoothing Via Penalized Splines

I—Spline coefficients as fixed effects

local i 1

forvalues k = 1(1)60 {

2. gen time_‘i’ = cond(time - ‘k’ > 0, time - ‘k’, 0)
3. local ++i

4. }

qui regress accel time time_x

predict accel_fixed
(optlon xb assumed; fitted values)

graph twoway (line accel_fixed time) (scatter accel time)
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Getting the most out of xtmixed

I—E><amp|e 4: Smoothing Via Penalized Splines

I—Spline coefficients as fixed effects
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Getting the most out of xtmixed
I—E><amp|e 4: Smoothing Via Penalized Splines

I—F’enalizecl splines and xtmixed

@ As you may have noticed, the problem with the fixed-effects
approach is that it tends to interpolate the data

@ One solution is to use penalized splines, which adds a
roughness penalty to the likelihood from the linear-regression
approach

@ Ruppert et al. (2003), among others, show that this is
equivalent to treating the slopes as random rather than fixed,
and estimating them as BLUPs of a mixed model

@ As such, a “random-effects” approach yields a much
nicer-looking smooth, and we can get xtmixed to do all the
heavy lifting
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Getting the most out of xtmixed

I—E><amp|e 4: Smoothing Via Penalized Splines

I—Penalizecl—spline coefficients as random effects

. xtmixed accel time || _all: time_*, noconstant cov(identity)

(output omitted)

accel Coef. Std. Err. z P>|z| [95% Conf. Intervall]

time -.4672689 13.33173 -0.04 0.972 -26.59698 25.66244

_cons -.0152613 34.32348 -0.00 1.000 -67.28805 67.25753

Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall
_all: Identity

sd(time_1..time_56) (1) 7.01774 1.479116 4.642918 10.60727

sd(Residual) 22.53256 1.462753 19.84051 25.58988

LR test vs. linear regression: chibar2(01) =
(1) time_1 time_2 time_3 time_4 time_6 time_7 time_8 time_9
time_16 time_17 time_18
time_25 time_26 time_27
time_34 time_35 time_36
time_43 time_44 time_45
time_55 time_56

time_12
time_21
time_30
time_39
time_49

time_13
time_22
time_31
time_40
time_50

time_14
time_23
time_32
time_41
time_52

time_15
time_24
time_33
time_42
time_53
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Getting the most out of xtmixed

I—E><amp|e 4: Smoothing Via Penalized Splines

I—Penalizecl—spline coefficients as random effects

. predict accel_random, fitted
. graph twoway (line accel_random time) (scatter accel time)
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Getting the most out of xtmixed
I—E><amp|e 4: Smoothing Via Penalized Splines

L Conclusions

Conclusi

@ xtmixed is versatile

@ You can repeat level specifications to achieve structured
covariance matrices

@ When combined with xtmixed available structures, covariance
matrices can be constrained even further

@ BLUPs are a useful smoothing tool. Their shrinkage
properties keep them from overfitting the data
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