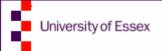

Decomposition of inequality change into pro-poor growth and mobility components: dsgi ni deco

Stephen P. Jenkins (presenter) and Philippe Van Kerm

UKSUG, London, 10–11 September 2009

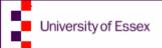


Background

- Many tools exist in Stata for the examination of (economic) inequality and related concepts
 - E.g. i neqdeco, sumdi st, svygei, svyatk, svyl orenz, i nequal 7, gl curve, ...
 - ... and other tools for summarizing univariate distributions
 - Review with illustrations: Jenkins, S.P. 2006. Estimation and interpretation of measures of inequality, poverty, and social welfare using Stata. NASUG 2006, Boston.
 http://econpapers.repec.org/paper/bocasug06/16.htm
- The tools can be used to examine differences between distributions
 - e.g. trends over time; differences between regions
- But the focus is on *differences in two marginal distributions*, not the joint distribution

Inequality change from a joint distribution perspective

Change in inequality in the marginal distributions for two years decomposed into two components:


- 1. progressivity of income growth: how much income growth benefits those on lower incomes relative to those on higher incomes
- 2. reranking: how much reranking in income positions is associated with the income growth

This presentation: Stata module to calculate the exact decomposition derived by:

Jenkins, S.P. and Van Kerm, P. "Trends in income inequality, pro-poor income growth and income mobility", *Oxford Economic Papers*, 58 (3), July 2006, 531–548.

- includes empirical analysis comparing USA and Germany

Graphical illustration: USA inequality change 1981–1986

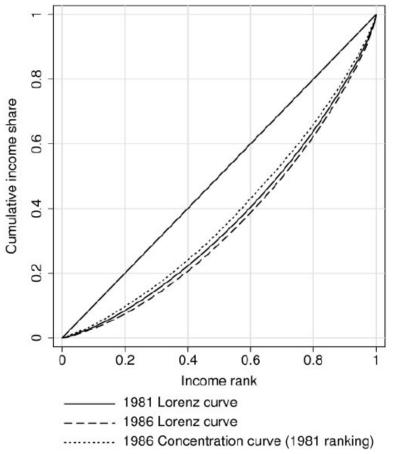


Fig. 1. Decomposition of inequality change (USA, 1981-86)

- Change in inequality in marginal distributions: difference between 1981 and 1986 Lorenz curves
- Progressivity of income growth: from 1986 concentration curve (1981 ranking) to 1986 Lorenz curve
- Reranking: from 1986 concentration curve to 1986 Lorenz curve
- Exact decomposition in terms of (generalized) Gini and concentration indices:

Jenkins and Van Kerm (2006)

An exact decomposition of inequality change (Jenkins & Van Kerm 2006)

Inequality change between year 0 and year 1

= Reranking minus Progressivity

$$\Delta(\mathbf{v}) = R(\mathbf{v}) - P(\mathbf{v})$$

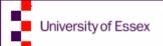
where

Inequality change is the difference in generalized Gini coefficients

$$\Delta(\mathbf{v}) = G(X^1; \mathbf{v}) - G(X^0; \mathbf{v})$$

Reranking:

$$R(v) = G(X^1; v) - C(X^0, X^1; v)$$

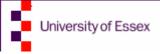

Progressivity of income growth:

$$P(v) = G(X^0; v) - C(X^0, X^1; v)$$

G(.) is the generalized Gini; C(.) is the generalized concentration coeff.

Sensitivity parameter v > 0: larger values give greater weight to lower ranked individuals; v = 2 gives the conventional Gini.

Calculating the inequality change decomposition: dsginideco (for version 8.2 and upwards)


- Prerequisite #1: longitudinal data for 2 time periods for a 'large' number of individuals
 - Requires data in wide form, but it's easy to get this from data from data in long form using time series operators (see below)
- Prerequisite #2: ssc install dsginideco
 - help file contains a link to a pdf manual with further details
- Syntax:

```
dsginideco var0 var1 [if] [in] [weight] [, parameters(numlist) format(string)

percentage percformat(string) kakwani ]
```

aweight and fweight are allowed; see [U] 11.1.6 weight — Weights. by, bootstrap, jackknife are allowed; see [U] 11.1.10 Prefix commands.

Various options (e.g. choose v, output formats), and saved results

Example (1)

.use http://www.stata-press.com/data/r9/nlswork , clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. tsset idcode year

panel variable: idcode (unbalanced)

time variable: year, 68 to 88, but with gaps

delta: 1 unit

. gen $w = \exp(\ln_w \log e)$

. dsginideco L.w w

Decomposition of change in S-Gini coefficient of inequality

Average growth rate = 0.077

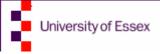
Parameter:	v=2
Initial S-Gini Final S-Gini Change R-component P-component	0.245 0.266 0.021 0.062 0.041

Example (2)

. dsginideco L.w w , percentage parameters(1.5 2 3 4) kakwani

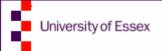
Decomposition of change in S-Gini coefficient of inequality

Average growth rate = 0.077


Parameter:	v=1.5	v=2	v=3	v=4
Initial S-Gini Final S-Gini Change R-component P-component K-index	0.163 0.182 0.020 0.047 0.028 0.386	0.245 0.266 0.021 0.062 0.041 0.580	0.333 0.353 0.020 0.082 0.062 0.865	0.383 0.402 0.019 0.097 0.078 1.098

Change, P- and R-components as percentage of initial S-Gini:

v=4	v=3	v=2	v=1.5	Parameter:
5.0 25.4 20.4 286.4	6.0 24.5 18.5 259.6	8.6 25.4 16.9 236.9	12.1 29.0 16.9 237.7	Change R-component P-component K-index
			•	



Inference

- Resampling-based inference may be implemented using bootstrap or j ackkni fe
 - More details: see help file and manual
 - Application: Jenkins and Van Kerm (2006)

Another application: country growth convergence

- Correspondence between Δ and "sigma convergence" and between R and "beta convergence", linked together in a single framework
- See: O'Neill, D. and Van Kerm, P. (2008). An integrated framework for analysing income convergence. *The Manchester School*, 76(1): 1–20.

