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stpm2: A brief history

Patrick Royston wrote stpm in 2001(Royston, 2001).

Chris Nelson extended the methodology in stpm to relative
survival(Nelson et al., 2007) in strsrcs.

Time-dependent effects could be incorporated, but they tended
to be over parameterised.

I wrote stpm2 (Lambert and Royston, 2009) to

Improve the modelling of time-dependent effects.
Combine the methods for standard and relative survival.
Make it easier to obtain useful predictions.

stpm2 is much faster than stpm, especially with large datasets.
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How stpm2 works

In Royston-Parmar models the linear predictor is

Linear Predictor

ηi = s (ln(t)|γ, k0) + xβ

For models on the log cumulative hazard scale.

Survival and hazard functions

S(t) = exp (− exp (ηi)) h(t) =
ds(ln(t)|γ, k0)

dt
exp (ηi)

Feed these into the likelihood.

ln Li = di ln [h(ti)] + ln [S(ti)]
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How stpm2 works

A simplified version of the ml program is as follow,

stpm2 ml hazard.ado

program stpm2 ml hazard
version 10.0
args todo b lnf g negH g1 g2

tempvar xb dxb
mleval ‘xb’ = ‘b’, eq(1)
mleval ‘dxb’ = ‘b’, eq(2)

local st exp(-exp(‘xb’))
local ht ‘dxb’*exp(‘xb’)

mlsum ‘lnf’ = _d*ln(‘ht’) + ln(‘st’)
/** then deal with late entry, first and ***
*** second derivatives etc **/

end
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Run Rotterdam Example
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England & Wales Breast Cancer Data

Women diagnosed with breast cancer in England and Wales
1986-1990 with follow-up to 1995(Coleman et al., 1999).

As an example I will investigate the effect of deprivation (in five
groups) on all-cause mortality in women who were diagnosed
under the age of 50 years.

Follow-up will be restricted to 5 years.

Due to their age, most of the women who die within 5 years will
die due to their cancer.
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Kaplan-Meier Graphs for Breast Cancer Data
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Why We Need Flexible Models
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Time-Dependent Effects

The difference between two hazard rates may not be
proportional.

We can choose to,
1 Ignore.
2 Model on a different scale.
3 Fit an interaction between the covariate and time.
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Time-Dependent Effects

A proportional hazards model can be written

ln [Hi(t|xi)] = ηi = s (ln(t)|γ, k0) + xiβ

With D time-dependent effects we write,

ln [Hi(t|xi)] = s (ln(t)|γ, k0) +
D∑

j=1

s (ln(t)|δj , kj)xij + xiβ

There is a set of spline variables for each time-dependent effect.

For any time-dependent effect there is an interaction between
the covariate and the spline variables.

The number of spline variables for a particular time-dependent
effect will depend on the number of knots, kj
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stpm2 and Time-Dependent Effects

Non-proportional effects can be fitted by use of the tvc() and
dftvc() options.

Non-proportional hazards models
. stpm2 dep5, scale(hazard) df(5) tvc(dep5) dftvc(3)

There is no need to split the time-scale when fitting
time-dependent effects.

When time-dependence is a linear function of ln(t) and
N = 50, 000, 50% censored and no ties.

stcox using tvc() - 28 minutes, 24 seconds.
stpm2 using dftvc(1) - 0 minutes, 2.5 seconds.
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Predicted Hazard Rates

. stpm2 dep5, scale(hazard) df(5) tvc(dep5) dftvc(3)

. range temptime 0 5 200

. predict h1, hazard timevar(temptime) at(dep5 0) per(1000)

. predict h5, hazard timevar(temptime) at(dep5 1) per(1000)
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Predicting Hazard Ratios

. stpm2 dep5, scale(hazard) df(5) tvc(dep5) dftvc(3)

. predict hr tvc, hrnumerator(dep5 1) hrdenominator(dep5 0) ci
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Quantifying Differences

A key advantage of using a parametric model over the Cox
model is that we can transform the model parameters to express
differences between groups in different ways.

The hazard ratio is a relative measure and a greater
understanding of the impact of an exposure can be obtained by
also looking at absolute differences.

The predict command of stpm2 makes the predictions easy.

They work in a similar way as the hrnumerator() and
hrdenominator() commands.
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Difference in Hazard Rates

. predict hdiff, hdiff1(dep5 1) hdiff2(dep5 0) ci
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Difference in Survival Proportions

. predict sdiff, sdiff1(dep5 1) sdiff2(dep5 0) ci
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More than one time-dependent effect

As we are modelling on the log cumulative hazard scale, we are
essentially modelling non-proportional cumulative hazards.

So far we have just considered one time-dependent factor.

If we have two time-dependent effects (e.g. deprivation group
and year of diagnosis) then the time-dependent hazard ratio for
deprivation group may be different at different levels of year of
diagnosis.
Modelling on the log hazard scale would not have this problem.

Two time-dependent effects
. stpm2 dep5 yeardiag, scale(hazard) df(5) tvc(dep5 yeardiag) dftvc(3)
. predict hr_early, hrnum(dep5 1 yeardiag 1985) ///

hrdenom(dep5 0 yeardiag 1985) ///
timevar(timevar) ci

. predict hr_late, hrnum(dep5 1 yeardiag 1990) ///
hrdenom(dep5 0 yeardiag 1990) ///
timevar(timevar) ci
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Time-dependent hazard ratios for deprivation group
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Average Survival Curves

It can be useful to summarise the average survival curve.
The “easy” method is at the mean of the covariates.

Ŝind(t) = exp
(
−Ĥ0(t) exp

(
x̄β̂
))

Prediction for an individual who happens to have the mean
values of each covariate.
Problem with binary covariates, e.g. a person of average sex.

This is what stcurve does.
A different concept is the mean survival for a population with a
particular covariate distribution.

Ŝpop(t) =
N∑

i=1

exp
(
−Ĥ0(t) exp

(
xβ̂
))

These are not equivalent.
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Adjusted/Standardised Survival Curve

We can extend the ideas of average survival curves to obtain
adjusted survival curves.

The key is to obtain the predicted mean population survival
curves for two or more groups, while allowing the distribution of
other covariates (e.g. age) to be the same for the two groups.

The most common method is to use the covariate distribution in
the study population as a whole, but other covariate
distributions can also be used.

The basic idea is similar to the “correct group prognostic
method”(Nieto and Coresh, 1996).

Using flexible parametric survival models we can allow for
time-dependent covariates, continuous covariates etc.
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Kaplan-Meier Curves - Renal Replacement Therapy
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Predictions for Adjusted Survival Curves

The meansurv option
stpm2 asian age, df(3) scale(hazard)
/* Age distribution for study population as a whole */
predict meansurv pop0, meansurv at(asian 0)
predict meansurv pop1, meansurv at(asian 1)

/* Age distribution for non-asians */
predict meansurv pop0b if asian == 0, meansurv at(asian 0)
predict meansurv pop1b if asian == 0, meansurv at(asian 1)

/* Age distribution for asians */
predict meansurv pop0c if asian == 1, meansurv at(asian 0)
predict meansurv pop1c if asian == 1, meansurv at(asian 1)

Survival curve calculated for each subject in the study
population and then averaged.

In large studies use the timevar() option.
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Adjusted Survival Curve 1
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Adjusted Survival Curve 2
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Adjusted Survival Curve 3
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Example of Attained Age as the Time-scale

Study from Sweden(Dickman et al., 2004) comparing incidence
of hip fracture of,

17,731 men diagnosed with prostate cancer treated with
bilateral orchiectomy.
43,230 men diagnosed with prostate cancer not treated with
bilateral orchiectomy.
362,354 men randomly selected from the general population.

Outcome is for femoral neck fractures.

Risk of fracture varies by age.

Age is used as the main time-scale.

Alternative way of “adjusting” for age.

Gives the age specific incidence rates.
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Estimates from a PH Model

stset using age as the time-scale
. stset dateexit,fail(frac = 1) enter(datecancer) origin(datebirth) ///

id(id) scale(365.25) exit(time datebirth + 100*365.25)

. stcox noorc orc

Cox Model
Incidence rate ratio (no orchiectomy) = 1.37 (1.28 to 1.46)
Incidence rate ratio (orchiectomy) = 2.10 (1.93 to 2.28)

. stpm2 noorc orc, df(5) scale(hazard)

Royston-Parmar Model
Incidence rate ratio (no orchiectomy) = 1.37 (1.28 to 1.46)
Incidence rate ratio (orchiectomy) = 2.10 (1.93 to 2.28)
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Proportional Hazards
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Non Proportional Hazards
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Incidence Rate Ratio
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Incidence Rate Difference
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Relative Survival/Excess Mortality 1

Relative Survival is used in population-based cancer studies.

Growing interest in other disease areas: HIV (Bhaskaran et al.,
2008), CHD (Nelson et al., 2008).

Relative Survival is used to measure mortality associated with a
particular disease.

Avoids needing information on cause of death.

Important as cause of death may not be recorded or may be
inaccurately recorded.

We use expected mortality (from routine data sources).
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Relative Survival/Excess Mortality 1

The total mortality (hazard) rate is the sum of two components.

Observed
Mortality Rate

=
Expected

Mortality Rate
+

Excess
Mortality Rate

h(t) = h∗(t) + λ(t)

If we transform to the survival scale,

Relative Survival =
Observed Survival

Expected Survival
R(t) =

S(t)

S∗(t)
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Likelihood for Relative Survival Models

Relative Survival Models

ln Li = di ln(h∗(ti) + λ(ti)) + ln(S∗(ti)) + ln(R(ti))

S∗(ti) does not depend on the model parameters and can be
excluded from the likelihood.

Merge in expected mortality rate at time of death, h∗(ti).

This is important as many of other models for relative survival
involve fine splitting of the time-scale and/or numerical
integration. With large datasets this can be computationally
intensive.

Relative survival models can be fitted in stpm2 by specifying the
bhazard() option that gives the expected mortality rate at
death.
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Fitting Relative Survival Models using stpm2

Analyse all 115,331 women diagnosed with breast cancer.

Compare 5 age groups.

All Cause Survival
. stpm2 agegrp2-agegrp5, df(5) scale(hazard)

For relative survival models, just add the bhazard() option.

Relative Survival
. stpm2 agegrp2-agegrp5, df(5) scale(hazard) bhazard(rate)
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Hazard Ratios vs Excess Hazard Ratios

All Cause Survival Relative Survival
(Hazard Ratio) (Excess Hazard Ratio)

< 50 - -
50-59 1.12 (1.08 to 1.15) 1.05 (1.02 to 1.09)
60-69 1.28 (1.25 to 1.32) 1.07 (1.04 to 1.11)
70-79 1.98 (1.92 to 2.04) 1.41 (1.36 to 1.46)
80+ 4.15 (4.02 to 4.28) 2.65 (2.55 to 2.75)

The excess hazard ratios come from a poor fitting model.

The effect of age is nearly always time-dependent.

The inclusion of time-dependent effects is the same as for
standard survival models.

Relative and standard survival are now analysed within the same
framework.
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Crude Mortality

Patient survival is the most important single measure of cancer
patient care (the diagnosis and treatment of cancer) and is of
considerable interest to clinicians, patients, researchers,
politicians, health administrators, and public health professionals
(Dickman and Adami, 2006).

Little attention has been paid to the fact that each of these
consumers of survival statistics have quite different needs.

The standard approach of estimating net survival (relative
survival or cause-specific survival) is useful for comparing
populations but not necessarily relevant to individual patients.
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Interpreting Relative Survival

The cumulative relative survival ratio can be interpreted as the
proportion of patients alive after t years of follow-up in the
hypothetical situation where the cancer in question is the only
possible cause of death.

Same interpretation for cause-specific survival.

None of us live in this hypothetical world.

An individual should understand their personal risk, which
includes their risk of dying of other causes.

To calculate “real world” probabilities we need to borrow ideas
from competing risks theory.
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Net and Crude Mortality

Net Probability
of Death

Due to Cancer
=

Probability of death due to cancer
in a hypothetical world where the

cancer under study is the only
possible cause of death

Crude Probability
of Death

Due to Cancer
=

Probability of death due to cancer
in the real world where you may die

of other causes before the
cancer kills you

Some people refer to the crude probability as cumulative
incidence.
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Life table calculation of crude mortality

Cronin and Feuer(Cronin and Feuer, 2000) showed how crude
mortality due to cancer and due to other causes can be
calculated from life tables.

Available in Paul Dickman’s strs command.

Calculated separately in age groups.

Time-scale split into large (yearly) time intervals.

No individual level prediction using continuous covariate.
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Crude Mortality in Relative Survival Models

Crude mortality can be estimated after fitting a relative survival
model.

The fitting of the relative survival model is not any different, but
we do some tricky calculations postestimation.

The flexible parametric models allow individual level covariates
to be modelled.

See Lambert et al. (2009) for details.
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Brief Mathematical Details

h∗(t) - Expected mortality rate
λ(t) - Excess mortality rate
h(t) = h∗(t) + λ(t) - All-cause mortality rate
S∗(t) - Expected Survival
R(t) - Relative Survival
S(t) = S∗(t)λ(t) - Overall Survival

Net Prob of Death = 1− R(t) = 1− exp

(
−
∫ t

0

λ(u)du

)

Crude Prob of Death (cancer) =

∫ t

0

S∗(u)R(u)λ(u)du

Crude Prob of Death (other causes) =

∫ t

0

S∗(u)R(u)h∗(u)du
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Integrating

The integration is performed numerically by splitting the
time-scale into a large number, n, of small intervals (e.g. 1000).

The predicted value of the integrand at each of the n values of t
is obtained.

The crude probability of death is the sum of the these predicted
values.

The variance is a bit trickier, as the observation-specific
derivatives need to be obtained. These are calculated
numerically (Stata’s predictnl command).

The approach is similar to that used by Carstensen when
calculating survival functions from Poisson based survival
models(Carstensen, 2006)
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Example

28,943 men diagnosed with prostate cancer aged 40-90 in
England and Wales between 1986-1988 inclusive and followed up
to 1995.

Restricted cubic splines are used to

Model the baseline excess hazard (6 knots).
Model the main effect of age (4 knots).
Model time-dependence of age (4 knots).

Splines, Splines, Splines
. rcsgen agediag, gen(agercs) df(3) orthog
. stpm2 agercs1-agercs3, scale(h) df(5) bhazard(rate) ///

tvc(agercs1-agercs3) dftvc(3)
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The stpm2cm Command

stpm2cm is a post estimation command.

It will calculate the crude probability of death due to cancer and
other causes with associated confidence intervals.

stpm2cm
. stpm2cm using uk popmort, ///

mergeby( year sex region caquint age) maxt(10) ///
diagage(‘agediag’) diagyear(1986) attyear( year) ///
attage( age) diagsex(1) ///
at(agercs1 ‘a1’ agercs2 ‘a2’ agercs3 ‘a3’) ///
stub(ci‘agediag’) tgen(ci t‘agediag’) ///
mergegen(region 1 caquint 1) nobs(1000) ci
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Net and Crude Probability of Death
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Predictions for a 75 year old man

P(Dead − Prostate Cancer)

P(Dead − Other Causes)

P(Alive)
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Predictions for a 55 year old man
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Predictions for a 85 year old man
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Further Extensions

Update to Stata 11.

Univariate and shared frailty models.

Multiple Events.

Competing Risks.

Survey options?

Cure models.

Estimation of loss in expectation of life.

Enhance ability to model multiple time-scale.
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Example of different knots for baseline hazard
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1 df: AIC = 53746.92, BIC = 53788.35

2 df: AIC = 53723.60, BIC = 53771.93

3 df: AIC = 53521.06, BIC = 53576.29

4 df: AIC = 53510.33, BIC = 53572.47

5 df: AIC = 53507.78, BIC = 53576.83

6 df: AIC = 53511.59, BIC = 53587.54

7 df: AIC = 53510.06, BIC = 53592.91

8 df: AIC = 53510.78, BIC = 53600.54

9 df: AIC = 53509.62, BIC = 53606.28

10 df: AIC = 53512.35, BIC = 53615.92
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Effect of number of knots on hazard ratios
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Where to place the knots?

The default knots positions tend to work fairly well.

Unless the knots are in stupid places then there is usually very
little difference in the fitted values.

The graphs on the following page shows for 5 df (4 internal
knots) the fitted hazard and survival functions with the internal
knot locations randomly selected.
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Baseline hazard - random knots
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Baseline survival - random knots
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Sensitivity to the number of knots

A potential criticism of these models is the subjectivity in the
number and the location of the knots.

A small sensitivity analysis was carried out where the following
models were fitted.

Model Baseline Time-dependent age No. of AIC BIC
dfb dft dfa Parameters

Model (a) 5 3 3 18 97250.11 97399.02
Model (b) 8 5 5 39 97059.30 97381.95
Model (c) 5 5 3 24 97235.68 97434.23
Model (d) 3 3 3 16 97447.35 97579.72
Model (e) 8 8 8 81 97105.8 97775.92
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Knot sensitivity analysis
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