Plagiarism in student papers and cheating on exams Results from a survey using special techniques for sensitive questions

Ben Jann

University of Bern, jann@soz.unibe.ch

17th UK Stata Users' Group meeting London, September 15/16, 2011

Outline

- Sensitive questions in survey research
- Some indirect approaches to elicit truthful answers
 - The Randomized Response Technique (RRT)
 - The Crosswise Model: A new alternative to RRT
 - Stata implementation of estimators
- Empirical application: Plagiarism and cheating on exams

• Conclusions

Eliciting truthful answers - not an easy task

• Direct questioning (DQ) does often not work

Karl-Theodor zu Guttenberg, February 2011 (German Minister of Defense at that time)

Ben Jann (University of Bern)

Plagiarism and cheating on exams

Eliciting truthful answers – not an easy task

- A couple days later, the University of Bayreuth revoked zu Guttenberg's doctoral degree because of plagiarism.
- Some examples for proportion of "liars" (respondents with a false negative response) in surveys that use direct questioning (estimates from validation studies):
 - Penal conviction: 42.5% (F2F, Wolter 2010)
 - Welfare and unemployment benefit fraud: 75% (F2F, van der Heijden et al. 2000)
 - ▶ Driving under influence: 54% (P&P, Locander et al. 1976)
 - ► Bankruptcy: 32% (P&P, Locander et al. 1976)

Some traditional measurement approaches

Asking the Embarrassing Question

BY ALLEN H. BARTON

University of Chicago

T_{HE POLLSTER's} greatest ingenuity has been devoted to finding ways to ask embarrassing questions in non-embarrassing ways. We give here examples of a number of these techniques, as applied to the question, "Did you kill your wife?"

 The Casual Approach: "Do you happen to have murdered your wife?"

Some traditional measurement approaches

2. The Numbered Card:

Would you please read off the number on this card which corresponds to what became of your wife?" (HAND CARD TO RESPONDENT)

1. Natural death

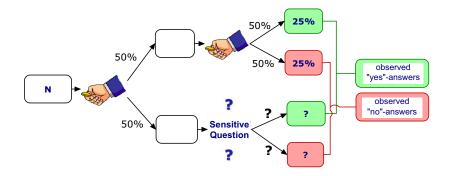
2. I killed her

3. Other (What?)

(GET CARD BACK FROM RESPONDENT BEFORE PRO-CEEDING!)

3. The Everybody Approach:

"As you know, many people have been killing their wives these days. Do you happened to have killed yours?"


8. Putting the question at the end of the interview.

. . .

The Randomized Response Technique (RRT) (Warner 1965; Fox and Tracy 1986)

- Main principle: privacy protection through randomization (i.e. add random noise to the answers)
- A *randomizing device*, the outcome of which is only known to the respondent, decides whether . . .
 - the sensitive question has to be answered
 - or an automatic "yes" or "no" has to be given or a surrogate question has to be answered
- Since only the respondent knows the outcome of the randomization device, a "yes" cannot be interpreted as an admission of guilt.
- However, if the properties of the randomizing device are known, a prevalence estimate for the sensitive question can be derived.

Example (forced response RRT)

 $Pr(observed yes) = Pr(sensitive question) \cdot \pi + Pr(surrogate yes)$

$$\Rightarrow \quad \pi = \frac{\Pr(\text{observed yes}) - \Pr(\text{surrogate yes})}{\Pr(\text{sensitive question})}$$

The Crosswise Model (CM): A new alternative to RRT (Yu, Tian, and Tang 2008)

- Very simply idea: Ask a sensitive question and a nonsensitive question and let the respondent indicate whether ...
 - A the answers to the questions are the same (both "yes" or both "no")
 - ${\bf B}$ the answers are different (one "yes", the other "no")

nonsensitive question

		no	yes
sensitive question	no	Α	В
	yes	В	Α

 Note: Questions must be uncorrelated and probability of "yes" must be unequal 0.5 for the nonsensitive question.

The Crosswise Model (CM): A new alternative to RRT (Yu, Tian, and Tang 2008)

• Prevalence estimate:

 $\Pr(A) = (1 - \pi) \cdot (1 - \Pr(\text{nonsensitive yes})) + \pi \cdot \Pr(\text{nonsensitive yes})$

$$\Rightarrow \quad \pi = \frac{\Pr(A) + \Pr(\text{nonsensitive yes}) - 1}{2 \cdot \Pr(\text{nonsensitive yes}) - 1}$$

 Note: Crosswise Model is formally identical to Warner's original RRT model.

The Crosswise Model: Let's practice

- Two questions:
 - Is your mother's birthday in January or February?
 - 2 Did you ever falsify your data or results?

(e.g. edit data points or delete observations so that hypothesis is confirmed, falsify entire dataset, invent or manipulate reported results)

- Compare your answers: Are they the same or different?
 - ► Write "**A**" if they are the same (both Yes or both No)
 - ► Write "**B**" if they are different (one Yes, the other No)

Plagiarism and cheating on exams
Some indirect approaches to elicit truthful answers
The Crosswise Model: A new alternative to RRT
The Crosswise Model: Let's practice

The Crosswise Model: Let's practice

Taka questions:
 A is our mother's birthday in January or February?
 C by our mother's birthday in January or February?
 (eg a sint all porters or deline adversations so that hypothesis is comment, fully writer durate, invest or manipular reporter results
 Compare your answers: Are they the same or different?

Write "A" if they are the same (both Yes or both No)

- Write ${}^\ast B^\ast$ if they are different (one Yes, the other No)

Results of survey:

2011-09-16

- 24 A and 10 B (N = 34); 1 C
- Design parameter: Pr(nonsensitive yes) = 2/12
- Prevalence estimate:

$$\hat{\pi} = \frac{\widehat{\Pr(A)} + \Pr(\text{nonsensitive yes}) - 1}{2 \cdot \Pr(\text{nonsensitive yes}) - 1} = \frac{24/34 + 2/12 - 1}{2 \cdot 2/12 - 1} = 19.1\%$$

• Standard error:

$$SE(\hat{\pi}) = \sqrt{\frac{\widehat{\Pr(A)} \cdot (1 - \widehat{\Pr(A)})}{(N-1) \cdot (2 \cdot \Pr(\text{nonsensitive yes}) - 1)^2}} = \sqrt{\frac{24/34 \cdot (1 - 24/34)}{(34-1) \cdot (2 \cdot 2/12 - 1)^2}} = 11.9\%$$

• 95% confidence interval: [-5.1%, 43.3%]

Generalized estimator for RRT and CM

• Let

- Y_i response ($Y_i = 1$ if "yes" in RRT or "A" in CM, else $Y_i = 0$)
- λ_i probability of $Y_i = 1$
- π_i (unknown) prevalence of sensitive item
- p_i^{W} probability of being directed to the negated question in Warner's RRT (or prevalence of nonsensitive item in CM)
- p_i^{yes} overall probability of surrogate "yes"
- p_i^{no} overall probability of surrogate "no"

$$\lambda_i = (1 - p_i^{\text{yes}} - p_i^{\text{no}}) p_i^{\text{w}} \pi_i + (1 - p_i^{\text{yes}} - p_i^{\text{no}}) (1 - p_i^{\text{w}}) (1 - \pi_i) + p_i^{\text{yes}}$$

and hence

$$\pi_i = \frac{\lambda_i - (1 - p_i^{\text{yes}} - p_i^{\text{no}})(1 - p_i^{\text{w}}) - p_i^{\text{yes}}}{(2\rho_i^{\text{w}} - 1)(1 - p_i^{\text{yes}} - p_i^{\text{no}})}$$

Two Stata commands (available from the SSC Archive)

 Assumes π_i = X'_iβ and estimates β using least squares with transformed response

$$\tilde{Y}_{i} = \frac{Y_{i} - (1 - p_{i}^{\text{yes}} - p_{i}^{\text{no}})(1 - p_{i}^{\text{w}}) - p_{i}^{\text{yes}}}{(2p_{i}^{\text{w}} - 1)(1 - p_{i}^{\text{yes}} - p_{i}^{\text{no}})}$$

Two Stata commands (available from the SSC Archive)

Assumes π_i = e^{X_iβ}/(1 + e^{X_iβ}) and estimates β using maximum likelihood with

$$\ln L = \sum_{i=1}^{n} \left\{ Y_i \ln(R_i) + (1 - Y_i) \ln(S_i) - \ln(1 + e^{X_i'\beta}) \right\}$$

where

$$\begin{aligned} R_i &= c_i + q_i e^{X'_i \beta} & c_i &= (1 - p_i^{\text{yes}} - p_i^{\text{no}})(1 - p_i^{\text{w}}) + p_i^{\text{yes}} \\ S_i &= (1 - c_i) + (1 - q_i) e^{X'_i \beta} & q_i &= (1 - p_i^{\text{yes}} - p_i^{\text{no}}) p_i^{\text{w}} + p_i^{\text{yes}} \end{aligned}$$

Empirical application

- Web-Survey among student of University of Bern and ETH Zurich in Spring 2011
- Response rate 33%
- Comparing direct questioning to three variants of RRT and two variants of the Crosswise Model
 - example
- Sensitive questions on
 - copying from other students in exam (copy)
 - using crib notes in exam (notes)
 - taking drugs to enhance performance on exam (drugs)
 - partial plagiarism (partial)
 - sever plagiarism/ghostwriting (severe)
- Team: Marc Höglinger, Ben Jann, Andreas Diekmann

Data analysis

```
prog mylincom
    *! version 1.0.1 08jul2009 Ben Jann
    syntax anything(everything equalok), Name(name) [ Level(passthru) ]
    lincom `anything', `level'
    tempname b b1 V
    mat b1' = r(estimate)
    mat coln `b1' = lincom:`name'
    mat b' = e(b)
    local eqs: coleq `b', quoted
    local eqs: subinstr local eqs `""_""' `""main""', all word
    mat coleq `b' = `eqs'
    mat `b' = `b', `b1'
    mat V' = (e(V), J(rowsof(e(V)), 1, 0)) \setminus ///
        (J(1, colsof(e(V)), 0), r(se)^2)
    erepost b=`b´ V=`V´, rename
end
global sqvar copy notes drugs partial severe
forv i = 1/5 {
    local depvar: word `i´ of $sqvar
    di as res _n "==> depvar: `depvar'"
    rrreg `depvar´ DQ RRT CM, nocons hc2 pyes(pyesQ`i´) pno(pnoQ`i´) ///
        pwarner(pwarnQ`i´)
    mylincom RRT-DQ, name(RRT_DQ)
    mylincom CM-DQ, name(CM_DQ)
    eststo `depvar'
}
esttab, starkeep(lincom:) nonumb mti se b(1) compress transform(100*@ 100) ///
     eqlab("Level" "Difference") coef(RRT_DQ "RRT - DQ" CM_DQ "CM - DQ")
```

Results: Prevalence estimates

	сору	notes	drugs	partial	severe
Level					
DQ	17.5	8.8	3.4	2.5	1.5
	(1.2)	(0.9)	(0.6)	(0.6)	(0.5)
RRT	19.6	12.7	0.6	4.2	-0.6
	(1.2)	(1.1)	(1.0)	(1.2)	(1.1)
СМ	27.2	15.0	9.9	8.2	3.0
	(2.0)	(1.9)	(1.9)	(2.1)	(2.0)
Difference					
RRT - DQ	2.1	3.9**	-2.8*	1.7	-2.1
	(1.7)	(1.5)	(1.1)	(1.3)	(1.2)
CM - DQ	9.7***	6.2**	6.5***	5.7**	1.5
	(2.3)	(2.1)	(2.0)	(2.2)	(2.1)
N	5726	5727	5711	4226	4224

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

Results: Determinants of sensitive behavior

	сору	notes	drugs	partial	severe
Perceived	0.053***	0.043***	0.042***	0.051***	0.072***
prevalence	(0.003)	(0.003)	(0.006)	(0.006)	(0.014)
Perceived	-0.018***	-0.031***		0.002	-0.014
risk	(0.005)	(0.008)		(0.005)	(0.016)
Risk	0.074*	0.088*	0.142*	0.079	0.104
attitude	(0.032)	(0.036)	(0.064)	(0.070)	(0.137)
RRT	0.172	0.508**	-0.175	0.812*	-0.432
	(0.148)	(0.172)	(0.334)	(0.350)	(0.679)
CM	0.876***	0.774***	0.860**	1.515***	-0.711
	(0.178)	(0.212)	(0.322)	(0.377)	(1.895)
Constant	-3.475***	-3.718***	-4.997***	-5.226***	-5.390***
	(0.257)	(0.297)	(0.476)	(0.586)	(0.983)
N	4956	4973	5270	3696	3162

Standard errors in parentheses

* p<0.05, ** p<0.01, *** p<0.001

Summary of results

- Crosswise Model clearly outperforms direct questioning (if we are ready to accept the "more-is-better assumption").
 - An exception is the last item (severe plagiarism), where prevalence is very low for all techniques.
- RRT, on the other hand, does not yield higher estimates than direct questioning
- Reasons for the failure of RRT
 - difficulties understanding RRT, no trust in RRT
 - "self-protective no" bias
 - ★ respondents who are not guilty are reluctant to give a "yes" answer and, hence, do not comply with the instructions
 - \star in RRT there is a "dominant strategy": say "no", no matter what

Methodological conclusions

- The Randomized Response Technique does not seem to be a good method for self-administered surveys. Although we put a lot of effort into pretesting and finding good implementations, no convincing evidence could be found that RRT yields more valid estimates than direct questioning.
- The Crosswise Model is a promising alternative, since it does not suffer from some of the deficiencies of the RRT ("self-protective no" bias, complexity).
- Improvement of RRT estimates is possible by correcting for cheating respondents who do not comply with the instructions. Such estimates, however, have low efficiency.

Substantive conclusions

- A substantial proportion of students have cheated on an exam (copying: 20 to 25 percent, crib notes: around 15 percent)
- Using drugs to enhance performance on exams is not uncommon (about 10 percent)
- Rates for partial plagiarism (using a passage from someone else's work without providing proper citation) are about 10 percent. The prevalence of severe plagiarism (hand in someone else's work) is about 2 percent.
- These numbers may not seem too high, but keep in mind:
 - There is lots of nonresponse, and probably mostly the "nice guys" participate.
 - Even with these low numbers we would expect about 200 papers a year containing plagiarism and about 40 papers, that are entirely falsified, at a small University with about 10000 Students.

Thank you for your attention!

References I

- Coutts, E., B. Jann, I. Krumpal, F. Näher (forthcoming). Plagiarism in Student Papers: Prevalence Estimation Using Special Techniques for Sensitive Questions. *Journal of Economics and Statistics*.
- Fox, J. A., P. E. Tracy. 1986. *Randomized response: A method for sensitive surveys.* London: Sage
- Jann, B., J. Jerke und I. Krumpal (forthcoming). Asking Sensitive Questions Using the Crosswise Model: Some Experimental Results. *Public Opinion Quarterly.*
- Locander, W., S. Sudman, N. Bradburn. 1976. An Investigation of Interview Method, Threat and Response Distortion. *Journal of the American Statistical Association* 71: 269-275.
- van der Heijden, P. G. M., G. van Gils, J. Bouts, J. J. Hox. 2000. A Comparison of Randomized Response, Computer-Assisted Self-Interview, and Face-to-Face Direct Questioning. Eliciting Sensitive Information in the Context of Welfare and Unemployment Benefit. *Sociological Methods and Research* 28: 505–537.
- Warner, S. L. 1965. Randomized-response: A survey technique for eliminating evasive answer bias. *Journal of the American Statistical Association* 60:63–69.

References II

- Wolter, F. 2010. Sensitive Questions in Surveys and the Randomized Response Technique: Theoretical Explanations of Respondent Behavior and Results from a Validation Study. Paper presented at the workshop on "Rational Choice Sociology: Theory and Empirical Applications" at Venice International University, November 30, 2010.
- Yu, J.-W., G.-L. Tian, M.-L. Tang. 2008. Two new models for survey sampling with sensitive characteristic: design and analysis. *Metrika* 67:251-263.