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Introduction

I Estimation of consumer demand in differentiated product
industries plays a central role in applied economic analysis

I The conventional approach is to specify a system of demand
functions that correspond to a valid preference ordering, and
estimate the parameters using aggregate data

I A popular example is the Almost Ideal Demand System of
Deaton(1980), where market shares are linear functions of the
logarithm of prices, and real expenditure.

I A major concern in adopting this approach, is the large
number of parameters that need to be estimated, even after
the restrictions of adding-up homogeneity a symmetry have
been imposed

I The dimensionality problem can be solved if preferences are
assumed to be separable; however, this places severe
restrictions on the degree of substitutability between goods in
different sub-groups



Introduction

I The logit-demand model (McFadden 1973) is another way to
address the dimensionality problem, by assuming instead that
consumers’ have preferences over product characteristics

I Although easy to estimate, this model again imposes strong
a-prior restrictions over the patterns of substitutability

I The purpose of this presentation is to discuss the random
coefficients logit demand model (Berry Levinhson Pakes 1995)

I This framework accommodates consumer heterogeneity, by
allowing taste parameters to vary with individual
characteristics and requires market level data for estimation

I The model produces cross price elasticities that are more
realistic and allows for the case where prices are endogenous

I It is very popular in the Industrial Organization literature and
routinely applied by regulatory authorities, yet these is no
official BLP Stata command!



The Model

I Following Nevo(2005), assume we observe t = 1, ..,T markets
consisting of It consumers and J products. For each market,
data is available on total quantities sold, prices and product
characteristics of all J products

I Markets are assumed to be independent and can be
cross-sectional (e.g. different cities) or repeated observations

I let uijt denote the indirect utility that individual i experiences
in market t when consuming product j , and assume this
depends on a K × 1 vector of product characteristics xjt , price
pjt an unobserved component ξjt , and an idiosyncratic error
εijt . If the utility function is quasi-linear utility, then:

uijt = αi (yi − pjt) + x
′
ijtβi + ξjt + εijt (1)

I where yi is income, βi is a K × 1 vector of coefficients and αi

is the marginal utility of income.



The Model

I Consumer i also has the choice to buy the outside product
j = 0 with normalized utility ui0t = αiyi + εi0t .

I Both βi and αi and assumed to be linear functions of
characteristics Di and vi of dimensions d × 1 and (K + 1)× 1:(

βi
αi

)
=

(
β0
α0

)
+ ΠDi + Lvi (2)

I where vi ∼ iid(0, IK+1),Di ∼ iid(0,ΣD),Π is a K + 1× d
matrix of coefficients, and LL

′
= Σv

I Although both Di and vi are unobserved, the distribution of
the demographics Di including ΣD is assumed to be known

I This is not the case for vi where a parametric distribution is
assumed (e.g. normal)

I In practice FD(D) is the empirical non-parametric distribution



The Model

I Define the set: Aijt = {εit : uijt > uikt , ∀j 6= k}, then the
probability that individual i selects product j in market t is

Prijt =

∫
Aijt

dF (εit | Di , vi ) (3)

I Integrating over the unobserved variables Di and vi yields:

Prjt =

∫
Di

∫
vi

PrijtdF (Di | vi )dF (vi ) (4)

I where Prjt is the same for all i and can be estimated by the
product share sjt =

qjt
Mt

where Mt is the market size

I The error in this approximation is O(I
−1/2
t ) and will be

negligible for large It which is often the case



The Model: Distributional Assumptions

I To evaluate the integral in (3) first assume that εijt are iidd
and have a Type I extreme value distribution. Then:

Prijt =
exp(x

′
ijtβi − αipjt + ξjt)

1 +
∑

k exp(1 + x
′
ijtβi − αipjt + ξjt)

(5)

I To evaluate (4), it is necessary to specify the distributions of
Di and vi . At one extreme, we could assume ΣD = Σv = 0

I Although appealing, consider the price elasticities:

ejkt =

{
−α0pjt(1− sjt) if j = k ;
−α0pktskt if  6= k .

I As shares are often small, the own price elasticities will be
proportional to price. This is unrealistic

I Furthermore, the cross price elasticities restrict proportionate
increases to be identical for all goods



The Model: Distributional Assumptions

I When preferences are allowed to differ, the elasticities will be:

ejkt =

{
−pjt

sjt

∫
αiPrijt(1− Prijt)dF (Di , vi ) if j = k ;

pkt
sjt

∫
αiPrijtPriktdF (Di , vi ) if j 6= k .

I The price sensitivity is now a probability weighted average,
and can differ over products. As such the model allows for
flexible substitution patterns

I To continue, assume vi ∼ iidn(0, IK+1), let F (Di ) be the EDF,
and denote δjt = x

′
jtβ0 − α0 + ξjt as the mean-utility. Then

the integral in (4) can be approximated by simulation:

sjt =
1

R

R∑
r=1

exp(δjt + [pjt , x
′
jt ](ΠDr + Lvi ))

1 +
∑

k exp(δjt + [pkt , x
′
kt ](ΠDr + Lvi ))

(6)



Estimation

I As prices pjt may be correlated with error ξjt , the parameters
β0, α0, L and Π are estimated by GMM.

I This is carried out in three steps excluding an initial step

0. Draw R individuals v1, ..., vR , and D1, ...,DR from vi an Di

1. For a given value of Π,L, solve for the vector δ = [δ11, ..., δJT ]
′

such that predicted shares using (4) equals observed shares

2. Compute the sample-moment conditions T−1
∑T

t=1 Ztξt where
Zt is a J × l set of instruments, and form the GMM-objective
function.

3. Search for the values β0, α0,Π, L that minimize the objective
function in step 4

I To simplify the notation, let xjt contain all variables, assume L
is diagonal and define θ = (θ

′
1, θ

′
2)

′
, where:

θ1 =

(
α0

β0

)
, θ2 =

(
vec(Π

′
)

diag(L)

)
(7)



Estimation: Step 1

I For each market t = 1, ...,T , we need the J × 1 vector δt
such that:

s(δt , θ2) = st (8)

I where st = [s1t , ..., sJt ]
′
. This system of J equations can be

solved using the contraction mapping suggested by BLP.

I For a given vector δnt , this involves computing:

δn+1
t = δnt + log st − log (s(δnt , θ2)) (9)

I Iteration continues using (8) and (9) until ‖δnt − δn−1
t ‖ is

below a specified tolerance level.

I In the Stata command blp, iteration is over wt = exp(δt) and
δt is recovered at convergence. This saves considerable time



Estimation: Step 2
I Let Zt be a J × l matrix of instruments that satisfies

E [Z
′
t ξt ] = 0 and define the GMM-objective function as:

Q = h̄
′
(θ)WT h̄(θ) (10)

I where h̄ = T−1Z
′
ξ are the sample moments based on δ and

WT is a positive definite weighting matrix. If the errors are
homoskedastic, a consistent estimator of W is:

Ŵ = (T−1σ̂2ξZ
′
Z )−1 (11)

I If instead the errors are assumed to be correlated over J and
heteroskedastic over t, then:

Ŵ = (T−1
T∑
t=1

Z
′
t ξ̂t ξ̂

′
tZt) (12)

I Estimation using (12) is carried out from an initial estimate of
θ̂ based on (11). This is often referred to as the two-step
method



Estimation: Step 3

I The GMM-estimator θ̂ is the vector that minimizes (10), and
is the solution to the following first order conditions:

∂Q

∂θ1
= X

′
ZWZ

′
ξ = 0 (13)

∂Q

∂θ2
= Dθ2δ

′
ZWZ

′
ξ = 0 (14)

I To reduce search-time, θ1 can be written as a function of θ2

θ̂1 = (X
′
ZWZ

′
X )−1X

′
ZWZ

′
δ(θ2) (15)

I The search is now limited to θ2, but to employ a Newton
method, the analytical derivatives Dθ2δ

′
t are required.

I By the implicit function theorem applied to s(δt(θ2), θ2) = st :

Dθ2δ
′
t = −(Dδt st)

−1Dθ2st (16)



Estimation: Step 3
I The elements inside the matrices of (16) are:

Dθ2δ
′
t = −

(
∂s1t
∂δ1t

..
∂s1t
∂δJt

: : :
∂sJt
∂δ1t

..
∂sJt
∂δJt

)−1( ∂s1t
∂σ1

..
∂s1t
∂σK1

,
∂s1t
∂π11

..
∂s1t
∂πK1d

: : : : : :
∂sJt
∂σ1

..
∂sJt
∂σK1

,
∂sJt
∂π11

..
∂sJt
∂πK1d

)
I From equation (6), the derivatives are:

∂sjt
∂δjt

= R−1
R∑

r=1

Prrjt(1− Prrjt)

∂sjt
∂δmt

= R−1
R∑

r=1

PrrjtPrrmt

∂sjt
∂σk

= R−1
R∑

r=1

Prrjtvrk(xjtk −
J∑

m=1

xmtksrmt)

∂sjt
∂πkd

= R−1
R∑

r=1

PrrjtDrd(xjtk −
J∑

m=1

xmtksrmt)



Stata Command: blp

blp depvar
[

indepvars
] [

if
] [

in
]

(endogvars=instruments),

(stochastic1 = varlist1, ., stochasticK = varlistK )

markets(string) draws(#) ,[vce(string),demofile(string),twostep]

1. endogvars - specify endogenous variables and instruments

2. stochastic - specify variable with random coefficient and
demographic variables (if used)

3. markets - input the market variable

4. draws - specify the number of simulations

5. vce - robust if one-step else standard demotfile - specify the
path and name of the demographics data (optional)

6. twostep - uses optimal weighting matrix



Syntax Example
blp s cons x1 x2, stochastic(x1=d1,x2,p) endog(p=p

x12 x22 expx1 p2 z1 z2) demofile(demodata)

markets(mkt) draws(100)

Random coefficients logit model estimates

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean Utility
cons 6.5911 1.7905 3.68 0.000 3.081747 10.10048

x1 .21846 .75414 0.29 0.772 -1.259628 1.696563
x2 .95836 .061 15.47 0.000 .8369611 1.079762
p -.85106 .04698 -18.11 0.000 -.943158 -.7589756

x1
d1 .57208 .26406 2.17 0.030 .054534 1.089643
SD .49639 .09599 5.17 0.000 .3082529 .6845402

x2
SD .94895 .26694 3.55 0.000 .4257588 1.472146

p
SD .26390 .36210 0.73 0.466 -.445815 .9736282

.



Monte Carlo Experiments: DGP

I To exmaine the properties of the estimator, data is generated
from the following DGP where J = 25 and T = 30

uijt = 10 + β1ix1jt + β2ix2jt + αipjt + ξjt + εijt

αi ∼ N(−1, 0.5)

β1i ∼ N(1, 1)

β2i ∼ N(1, 1)

εijt ∼ EV(
x1jt
x2jt

)
∼

[(
10

10

)
,

2 0.2
0.2 2

]
pjt ∼ N(10, 1)

xit ∼ U(0, 1)



Monte Carlo Experiments: Parameter Estimates

I The following table sets out the mean and standard deviation
of the parameter estimates σβ1 , σβ2 , σα from 50 replications
using 500 draws for each.

Monte Carlo Results

X1 X2 Price

True Parameter 1 1 -0.5
Mean 1.046 1.027 -0.538

Standard deviation 0.162 0.146 0.121



Monte Carlo Experiments: Logit Elasticities

I The following table sets out the price elasticities from the
logit model assuming homogeneous preferences

Logit Price Elasticities

Product 1 2 3 4 5

1 -7.94469 0.139519 0.124729 0.17224 0.049108
2 0.061907 -7.53451 0.124729 0.17224 0.049108
3 0.061907 0.139519 -7.67698 0.17224 0.049108
4 0.061907 0.139519 0.124729 -7.56353 0.049108
5 0.061907 0.139519 0.124729 0.17224 -7.84014



Monte Carlo Experiments: Random Parameter Logit
Elasticities

I The following table set out the price elasticities from the
random-parameters logit model.

Logit Price Elasticities

Product 1 2 3 4 5

1 -4.24647 0.018311 0.001294 0.009764 0.161759
2 0.338069 -1.25824 0.145928 0.108114 0.504705
3 0.167242 1.021352 -0.23844 0.089002 0.247704
4 0.749224 0.449351 0.052852 -0.06635 0.291488
5 1.733515 0.292954 0.020543 0.040708 -0.76139


