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Introduction

>

Estimation of consumer demand in differentiated product
industries plays a central role in applied economic analysis

The conventional approach is to specify a system of demand
functions that correspond to a valid preference ordering, and
estimate the parameters using aggregate data

A popular example is the Almost Ideal Demand System of
Deaton(1980), where market shares are linear functions of the
logarithm of prices, and real expenditure.

A major concern in adopting this approach, is the large
number of parameters that need to be estimated, even after
the restrictions of adding-up homogeneity a symmetry have
been imposed

The dimensionality problem can be solved if preferences are
assumed to be separable; however, this places severe
restrictions on the degree of substitutability between goods in
different sub-groups



Introduction

> The logit-demand model (McFadden 1973) is another way to
address the dimensionality problem, by assuming instead that
consumers’ have preferences over product characteristics

» Although easy to estimate, this model again imposes strong
a-prior restrictions over the patterns of substitutability

» The purpose of this presentation is to discuss the random
coefficients logit demand model (Berry Levinhson Pakes 1995)

» This framework accommodates consumer heterogeneity, by
allowing taste parameters to vary with individual
characteristics and requires market level data for estimation

» The model produces cross price elasticities that are more
realistic and allows for the case where prices are endogenous

» It is very popular in the Industrial Organization literature and
routinely applied by regulatory authorities, yet these is no
official BLP Stata command!



The Model

» Following Nevo(2005), assume we observe t = 1,.., T markets
consisting of I; consumers and J products. For each market,
data is available on total quantities sold, prices and product
characteristics of all J products

» Markets are assumed to be independent and can be
cross-sectional (e.g. different cities) or repeated observations

> let uji; denote the indirect utility that individual / experiences
in market t when consuming product j, and assume this
depends on a K x 1 vector of product characteristics x;, price
pjt an unobserved component §j;, and an idiosyncratic error
€jje. If the utility function is quasi-linear utility, then:

Ujjt = ai(yi — Pjt) + X,fjtﬁi + &je + €t (1)

> where y; is income, G is a K x 1 vector of coefficients and «;
is the marginal utility of income.



The Model

» Consumer i also has the choice to buy the outside product
J = 0 with normalized utility ujor = «;y; + €jot-

» Both ; and «; and assumed to be linear functions of
characteristics D; and v; of dimensions d x 1 and (K + 1) x 1:

A

» where v; ~ iid(O, IK+1)7 D; ~ iid(O,ZD),I'I isaK+1xd
matrix of coefficients, and LL = 2y

» Although both D; and v; are unobserved, the distribution of
the demographics D; including > p is assumed to be known

» This is not the case for v; where a parametric distribution is
assumed (e.g. normal)

» In practice Fp(D) is the empirical non-parametric distribution



The Model

> Define the set: Ajiy = {€it : ujir > ujke, Vj # k}, then the
probability that individual i selects product j in market t is

Pr,-jt = / dF(e,-t | D,‘7 V,‘) (3)
ijt

> Integrating over the unobserved variables D; and v; yields:
Prjt :/ / Pr,-jtdF(D,- ‘ V,')dF(V,') (4)
D,’ 4

» where Prj; is the same for all i and can be estimated by the
product share sj; = ,(\7/,% where M; is the market size

» The error in this approximation is O(l;l/z) and will be
negligible for large I; which is often the case



The Model: Distributional Assumptions

» To evaluate the integral in (3) first assume that €, are iidd
and have a Type | extreme value distribution. Then:

exp(x,Bi — cipje + &je)
1+, exp(l+ x,fjtﬁi — a;jpje +&jt)

» To evaluate (4), it is necessary to specify the distributions of
D; and v;. At one extreme, we could assume Xp =%, =0

Pr,‘jt:

(5)

» Although appealing, consider the price elasticities:

o, — —OZOPjt(l - 5jt) if j = k;
Ikt — Q0 Pkt Skt if J # k.

» As shares are often small, the own price elasticities will be
proportional to price. This is unrealistic

» Furthermore, the cross price elasticities restrict proportionate
increases to be identical for all goods



The Model: Distributional Assumptions

> When preferences are allowed to differ, the elasticities will be:

—2 [ aiPri(1 — Pri)dF(D;, v;) if j = k;
e' = J . .
M B [ iPryPriedF (Di, vi) if £ k.

» The price sensitivity is now a probability weighted average,
and can differ over products. As such the model allows for
flexible substitution patterns

» To continue, assume v; ~ iidn(0, Ix+1), let F(D;) be the EDF,
and denote d;; = xtﬂo ag + &j¢ as the mean-utility. Then
the integral in (4) can be approximated by simulation:

exp(dje + [pjt Jt](I—ID + Lvi))

BT R Z 1+ >, exp(8je + [Pue, X, |(MD; + Lv;)) ©)




Estimation

» As prices pj; may be correlated with error §;;, the parameters
Bo, ag, L and T are estimated by GMM.
» This is carried out in three steps excluding an initial step

0. Draw R individuals v, ..., vg, and Dy, ..., D from v; an D;
1. For a given value of I,L, solve for the vector § = [d11, ..., 0 7]
such that predicted shares using (4) equals observed shares

2. Compute the sample-moment conditions 71 Z;l Z:&: where
Z: is a J x | set of instruments, and form the GMM-objective

function.
3. Search for the values Sy, g, 1, L that minimize the objective
function in step 4
» To simplify the notation, let x;; contain all variables, assume L
is diagonal and define 6 = (6,6,), where:

() () O



Estimation: Step 1

» For each market t = 1,..., T, we need the J x 1 vector §;
such that:
5(5“92) = S5t (8)
» where s; = [s14, ...,th]/. This system of J equations can be
solved using the contraction mapping suggested by BLP.

» For a given vector §7, this involves computing:
SM = 57 + log s; — log (s(37, 62)) (9)

> Iteration continues using (8) and (9) until |67 — 6771 is
below a specified tolerance level.

» In the Stata command blp, iteration is over w; = exp(d;) and
0 is recovered at convergence. This saves considerable time



Estimation: Step 2

» Let Z; be a J x | matrix of instruments that satisfies
E[Z;€:] = 0 and define the GMM-objective function as:

Q = K (6)Wrh(6) (10)

» where h = T~1Z'¢ are the sample moments based on § and
W is a positive definite weighting matrix. If the errors are
homoskedastic, a consistent estimator of W is:

W= (T"13z'z)" (11)

» |If instead the errors are assumed to be correlated over J and
heteroskedastic over t, then:

-1 Z ARWA (12)
» Estimation using (12) is carried out from an initial estimate of

0 based on (11). This is often referred to as the two-step
method



Estimation: Step 3

» The GMM-estimator f is the vector that minimizes (10), and
is the solution to the following first order conditions:

0Q

o, = XIWZe=0 (13)
A Dg,6 ZWZ'¢ =0 (14)
96>

» To reduce search-time, 61 can be written as a function of 65
0, = (X' ZWZ' X)X ZWZ'5(6,) (15)

» The search is now limited to 6, but to employ a Newton
method, the analytical derivatives D925't are required.

» By the implicit function theorem applied to s(d:(62),602) = s¢:

Dy,0; = —(Ds,s:) "' Dg,s: (16)



Estimation: Step 3

» The elements inside the matrices of (16) are:

D02(5; = -

Os: -1 Os11 9811 Os1¢ Os1¢
aslft 901 7 ok’ Omip 7 9mKyd
Osyp Osyp Os Is e Os gy
96y doy o BaKl ’ o1 o BTrKld

» From equation (6), the derivatives are:
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Stata Command: blp

blp depvar [indepvars| [if | [in] (endogvars=instruments),
(stochastic, = varlisty, ., stochastick = varlisty)

markets(string) draws(#) ,[vce(string),demofile(string), twostep]

1. endogvars - specify endogenous variables and instruments

2. stochastic - specify variable with random coefficient and
demographic variables (if used)

3. markets - input the market variable
4. draws - specify the number of simulations

5. vce - robust if one-step else standard demotfile - specify the
path and name of the demographics data (optional)

6. twostep - uses optimal weighting matrix



Syntax Example
blp s cons x1 x2, stochastic(xl=d1l,x2,p) endog(p=p
x12 x22 expxl p2 zl z2) demofile(demodata)
markets (mkt) draws(100)

Random coefficients logit model estimates

Coef. Std. Err. z P>zl [95% Conf. Intervall
Mean Utility

cons 6.5911 1.7905 3.68 0.000 3.081747 10.10048
x1 .21846 .75414 0.29 0.772 -1.259628 1.696563
x2 .95836 .061 15.47 0.000 .8369611 1.079762
P -.85106 .04698 -18.11 0.000 -.943158 -.7589756

x1
d1 .57208 .26406 2.17 0.030 .054534 1.089643
SD .49639 .09599 5.17 0.000 .3082529 .6845402

x2
SD . 94895 .26694 3.55 0.000 .4257588 1.472146

P
SD .26390 .36210 0.73 0.466 -.445815 .9736282




Monte Carlo Experiments: DGP

» To exmaine the properties of the estimator, data is generated
from the following DGP where J =25 and T = 30

ujip = 10+ Brixyje + Boixoje + aipje + &t + €jje
o o~ N(—].7 0.5)

Bri ~ N(1,1)

Boi ~ N(1 1)

€jjt ™~
- o) 02 |
Xjt ’

pjt ~ N(10,

xig ~ U (

)



Monte Carlo Experiments: Parameter Estimates

» The following table sets out the mean and standard deviation
of the parameter estimates o0g,, 03,, 04 from 50 replications
using 500 draws for each.

Monte Carlo Results

X1 X2 Price

True Parameter 1 1 -0.5
Mean 1.046 1.027 -0.538

Standard deviation 0.162 0.146 0.121




Monte Carlo Experiments: Logit Elasticities

» The following table sets out the price elasticities from the
logit model assuming homogeneous preferences

Logit Price Elasticities

Product 1 2 3 4 5
1 -7.94469 0.139519 0.124729 0.17224 0.049108
2 0.061907 -7.53451 0.124729 0.17224 0.049108
3 0.061907 0.139519 -7.67698 0.17224 0.049108
4 0.061907 0.139519 0.124729 -7.56353 0.049108
5 0.061907 0.139519 0.124729 0.17224 -7.84014




Monte Carlo Experiments: Random Parameter Logit

Elasticities

» The following table set out the price elasticities from the
random-parameters logit model.

Product

1

Logit Price Elasticities

2

3

4

5

Gl W N

-4.24647
0.338069
0.167242
0.749224
1.733515

0.018311
-1.25824
1.021352
0.449351
0.292954

0.001294
0.145928
-0.23844
0.052852
0.020543

0.009764
0.108114
0.089002
-0.06635
0.040708

0.161759
0.504705
0.247704
0.291488
-0.76139




